File: spOutput.c

package info (click to toggle)
vxl 1.14.0-18
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 125,716 kB
  • sloc: cpp: 652,189; ansic: 178,143; fortran: 27,980; sh: 5,248; python: 1,941; lisp: 1,107; makefile: 284; perl: 255; xml: 184
file content (371 lines) | stat: -rw-r--r-- 11,817 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
/*
 *  MATRIX OUTPUT MODULE
 *
 *  Author:                     Advisor:
 *      Kenneth S. Kundert          Alberto Sangiovanni-Vincentelli
 *      UC Berkeley
 */
/*! \file
 *
 *  This file contains the output-to-file and output-to-screen routines for
 *  the matrix package.
 *
 *  Objects that begin with the \a spc prefix are considered private
 *  and should not be used.
 *
 *  \author
 *  Kenneth S. Kundert <kundert@users.sourceforge.net>
 */
/*  >>> User accessible functions contained in this file:
 *  spPrint
 *  spFileMatrix
 *  spFileVector
 *  spFileStats
 *
 *  >>> Other functions contained in this file:
 */


/*
 *  Revision and copyright information.
 *
 *  Copyright (c) 1985-2003
 *  by Kenneth S. Kundert
 */
#if 0
static char copyright[] =
    "Sparse1.4: Copyright (c) 1985-2003 by Kenneth S. Kundert";
#endif
/*
Removed File IO routines to get rid of fopen warnings - JLM
*/


/*
 *  IMPORTS
 *
 *  >>> Import descriptions:
 *  spConfig.h
 *     Macros that customize the sparse matrix routines.
 *  spMatrix.h
 *     Macros and declarations to be imported by the user.
 *  spDefs.h
 *     Matrix type and macro definitions for the sparse matrix routines.
 */

#define spINSIDE_SPARSE
#include <stdio.h>
#include "spConfig.h"
#include "spMatrix.h"
#include "spDefs.h"


#if DOCUMENTATION
/*!
 *  Formats and send the matrix to standard output.  Some elementary
 *  statistics are also output.  The matrix is output in a format that is
 *  readable by people.
 *
 *  \param eMatrix
 *      Pointer to matrix.
 *  \param PrintReordered
 *      Indicates whether the matrix should be printed out in its original
 *      form, as input by the user, or whether it should be printed in its
 *      reordered form, as used by the matrix routines.  A zero indicates that
 *      the matrix should be printed as inputed, a one indicates that it
 *      should be printed reordered.
 *  \param Data
 *      Boolean flag that when false indicates that output should be
 *      compressed such that only the existence of an element should be
 *      indicated rather than giving the actual value.  Thus 11 times as
 *      many can be printed on a row.  A zero signifies that the matrix
 *      should be printed compressed. A one indicates that the matrix
 *      should be printed in all its glory.
 *  \param Header
 *      Flag indicating that extra information should be given, such as row
 *      and column numbers.
 */
/*  >>> Local variables:
 *  Col  (int)
 *      Column being printed.
 *  ElementCount  (int)
 *      Variable used to count the number of nonzero elements in the matrix.
 *  LargestElement  (RealNumber)
 *      The magnitude of the largest element in the matrix.
 *  LargestDiag  (RealNumber)
 *      The magnitude of the largest diagonal in the matrix.
 *  Magnitude  (RealNumber)
 *      The absolute value of the matrix element being printed.
 *  PrintOrdToIntColMap  (int [])
 *      A translation array that maps the order that columns will be
 *      printed in (if not PrintReordered) to the internal column numbers.
 *  PrintOrdToIntRowMap  (int [])
 *      A translation array that maps the order that rows will be
 *      printed in (if not PrintReordered) to the internal row numbers.
 *  pElement  (ElementPtr)
 *      Pointer to the element in the matrix that is to be printed.
 *  pImagElements  (ElementPtr [ ])
 *      Array of pointers to elements in the matrix.  These pointers point
 *      to the elements whose real values have just been printed.  They are
 *      used to quickly access those same elements so their imaginary values
 *      can be printed.
 *  Row  (int)
 *      Row being printed.
 *  Size  (int)
 *      The size of the matrix.
 *  SmallestDiag  (RealNumber)
 *      The magnitude of the smallest diagonal in the matrix.
 *  SmallestElement  (RealNumber)
 *      The magnitude of the smallest element in the matrix excluding zero
 *      elements.
 *  StartCol  (int)
 *      The column number of the first column to be printed in the group of
 *      columns currently being printed.
 *  StopCol  (int)
 *      The column number of the last column to be printed in the group of
 *      columns currently being printed.
 *  Top  (int)
 *      The largest expected external row or column number.
 */

void
spPrint(
    spMatrix eMatrix,
    int PrintReordered,
    int Data,
    int Header
)
{
MatrixPtr  Matrix = (MatrixPtr)eMatrix;
register  int  J = 0;
int I, Row, Col, Size, Top, StartCol = 1, StopCol, Columns, ElementCount = 0;
double  Magnitude, SmallestDiag=LARGEST_REAL, SmallestElement=LARGEST_REAL;
double  LargestElement = 0.0, LargestDiag = 0.0;
ElementPtr  pElement, pImagElements[PRINTER_WIDTH/10+1];
int  *PrintOrdToIntRowMap, *PrintOrdToIntColMap;

/* Begin `spPrint'. */
    ASSERT_IS_SPARSE( Matrix );
    Size = Matrix->Size;

/* Create a packed external to internal row and column translation array. */
# if TRANSLATE
    Top = Matrix->AllocatedExtSize;
#else
    Top = Matrix->AllocatedSize;
#endif
    CALLOC( PrintOrdToIntRowMap, int, Top + 1 );
    CALLOC( PrintOrdToIntColMap, int, Top + 1 );
    if ( PrintOrdToIntRowMap == NULL OR PrintOrdToIntColMap == NULL)
    {   Matrix->Error = spNO_MEMORY;
        return;
    }
    for (I = 1; I <= Size; I++)
    {   PrintOrdToIntRowMap[ Matrix->IntToExtRowMap[I] ] = I;
        PrintOrdToIntColMap[ Matrix->IntToExtColMap[I] ] = I;
    }

/* Pack the arrays. */
    for (J = 1, I = 1; I <= Top; I++)
    {   if (PrintOrdToIntRowMap[I] != 0)
            PrintOrdToIntRowMap[ J++ ] = PrintOrdToIntRowMap[ I ];
    }
    for (J = 1, I = 1; I <= Top; I++)
    {   if (PrintOrdToIntColMap[I] != 0)
            PrintOrdToIntColMap[ J++ ] = PrintOrdToIntColMap[ I ];
    }

/* Print header. */
    if (Header)
    {   printf("MATRIX SUMMARY\n\n");
        printf("Size of matrix = %1d x %1d.\n", Size, Size);
        if ( Matrix->Reordered AND PrintReordered )
            printf("Matrix has been reordered.\n");
        putchar('\n');

        if ( Matrix->Factored )
            printf("Matrix after factorization:\n");
        else
            printf("Matrix before factorization:\n");
    }
    if (Size == 0) return;

/* Determine how many columns to use. */
    Columns = PRINTER_WIDTH;
    if (Header) Columns -= 5;
    if (Data) Columns = (Columns+1) / 10;

/*
 * Print matrix by printing groups of complete columns until all the columns
 * are printed.
 */
    J = 0;
    while ( J <= Size )

/* Calculate index of last column to printed in this group. */
    {   StopCol = StartCol + Columns - 1;
        if (StopCol > Size)
            StopCol = Size;

/* Label the columns. */
        if (Header)
        {   if (Data)
            {   printf("    ");
                for (I = StartCol; I <= StopCol; I++)
                {   if (PrintReordered)
                        Col = I;
                    else
                        Col = PrintOrdToIntColMap[I];
                    printf(" %9d", Matrix->IntToExtColMap[ Col ]);
                }
                printf("\n\n");
            }
            else
            {   if (PrintReordered)
                    printf("Columns %1d to %1d.\n",StartCol,StopCol);
                else
                {   printf("Columns %1d to %1d.\n",
                        Matrix->IntToExtColMap[ PrintOrdToIntColMap[StartCol] ],
                        Matrix->IntToExtColMap[ PrintOrdToIntColMap[StopCol] ]);
                }
            }
        }

/* Print every row ...  */
        for (I = 1; I <= Size; I++)
        {   if (PrintReordered)
                Row = I;
            else
                Row = PrintOrdToIntRowMap[I];

            if (Header)
            {   if (PrintReordered AND NOT Data)
                    printf("%4d", I);
                else
                    printf("%4d", Matrix->IntToExtRowMap[ Row ]);
                if (NOT Data) putchar(' ');
            }

/* ... in each column of the group. */
            for (J = StartCol; J <= StopCol; J++)
            {   if (PrintReordered)
                    Col = J;
                else
                    Col = PrintOrdToIntColMap[J];

                pElement = Matrix->FirstInCol[Col];
                while (pElement != NULL AND pElement->Row != Row)
                    pElement = pElement->NextInCol;

                if (Data)
                    pImagElements[J - StartCol] = pElement;

                if (pElement != NULL)

/* Case where element exists */
                {   if (Data)
                        printf(" %9.3g", (double)pElement->Real);
                    else
                        putchar('x');

/* Update status variables */
                    if ( (Magnitude = ELEMENT_MAG(pElement)) > LargestElement )
                        LargestElement = Magnitude;
                    if ((Magnitude < SmallestElement) AND (Magnitude != 0.0))
                        SmallestElement = Magnitude;
                    ElementCount++;
                }

/* Case where element is structurally zero */
                else
                {   if (Data)
                        printf("       ...");
                    else
                        putchar('.');
                }
            }
            putchar('\n');

#if spCOMPLEX
            if (Matrix->Complex AND Data)
            {   if (Header)
		    printf("    ");
                for (J = StartCol; J <= StopCol; J++)
                {   if (pImagElements[J - StartCol] != NULL)
                    {   printf(" %8.2gj",
                               (double)pImagElements[J-StartCol]->Imag);
                    }
                    else printf("          ");
                }
                putchar('\n');
            }
#endif /* spCOMPLEX */
        }

/* Calculate index of first column in next group. */
        StartCol = StopCol;
        StartCol++;
        putchar('\n');
    }
    if (Header)
    {   printf("\nLargest element in matrix = %-1.4g.\n", LargestElement);
        printf("Smallest element in matrix = %-1.4g.\n", SmallestElement);

/* Search for largest and smallest diagonal values */
        for (I = 1; I <= Size; I++)
        {   if (Matrix->Diag[I] != NULL)
            {   Magnitude = ELEMENT_MAG( Matrix->Diag[I] );
                if ( Magnitude > LargestDiag ) LargestDiag = Magnitude;
                if ( Magnitude < SmallestDiag ) SmallestDiag = Magnitude;
            }
        }

    /* Print the largest and smallest diagonal values */
        if ( Matrix->Factored )
        {   printf("\nLargest diagonal element = %-1.4g.\n", LargestDiag);
            printf("Smallest diagonal element = %-1.4g.\n", SmallestDiag);
        }
        else
        {   printf("\nLargest pivot element = %-1.4g.\n", LargestDiag);
            printf("Smallest pivot element = %-1.4g.\n", SmallestDiag);
        }

    /* Calculate and print sparsity and number of fill-ins created. */
	printf("\nDensity = %2.2f%%.\n", ((double)ElementCount * 100.0)
					 / (((double)Size * (double)Size)));
        if (NOT Matrix->NeedsOrdering)
            printf("Number of fill-ins = %1d.\n", Matrix->Fillins);
    }
    putchar('\n');
    (void)fflush(stdout);

    FREE(PrintOrdToIntColMap);
    FREE(PrintOrdToIntRowMap);
    return;
}

#endif /* DOCUMENTATION */

/* Added to export the row and column maps to convert the
   internal matrix to an external form - JLM */
void
spRowColOrder(
    spMatrix eMatrix,
    int* OrdToIntRowMap,
    int* OrdToIntColMap
)
{
  MatrixPtr  Matrix = (MatrixPtr)eMatrix;

  int I, Size;
  ASSERT_IS_SPARSE( Matrix );
  Size = Matrix->Size;
  if ( OrdToIntRowMap == NULL OR OrdToIntColMap == NULL)
    {   Matrix->Error = spNO_MEMORY;
        return;
    }
  for (I = 1; I <= Size; I++)
    {   OrdToIntRowMap[ Matrix->IntToExtRowMap[I] ] = I;
        OrdToIntColMap[ Matrix->IntToExtColMap[I] ] = I;
    }
}