1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
|
// This is mul/mbl/mbl_ar_process.txx
#ifndef mbl_ar_process_txx_
#define mbl_ar_process_txx_
//:
// \file
#include "mbl_ar_process.h"
#include <vnl/algo/vnl_symmetric_eigensystem.h>
#include <vnl/algo/vnl_qr.h>
#include <vnl/algo/vnl_matrix_inverse.h>
#include <vnl/vnl_vector_fixed.h>
#include <vnl/vnl_random.h>
#include <vcl_cmath.h>
//: Constructor
template<class T>
mbl_ar_process<T>::mbl_ar_process()
{
}
//: Destructor
template<class T>
mbl_ar_process<T>::~mbl_ar_process()
{
}
//: Version number for I/O
template<class T>
short mbl_ar_process<T>::version_no() const
{
return 1;
}
//: Print class to os
template<class T>
void mbl_ar_process<T>::print_summary(vcl_ostream& /*os*/) const
{
#if 0
os << data_; // example of data output
#endif
vcl_cerr << "mbl_ar_process<T>::print_summary() is NYI\n";
}
//: Save class to binary file stream
template <class T>
void mbl_ar_process<T>::b_write(vsl_b_ostream& /*bfs*/) const
{
vcl_cout<<"mbl_ar_process<T>::b_write - NYI !\n";
}
//: Load class from binary file stream
template <class T>
void mbl_ar_process<T>::b_read(vsl_b_istream& /*bfs*/)
{
vcl_cout<<"mbl_ar_process<T>::b_read - NYI !\n";
}
//: Does the name of the class match the argument?
template<class T>
bool mbl_ar_process<T>::is_class(vcl_string const& s) const
{
return s==mbl_ar_process<T>::is_a();
}
//: Prediction
// of a vcl_vector given the two previous vectors
template<class T>
vnl_vector<T> mbl_ar_process<T>::predict(vnl_vector<T>& Xm1,
vnl_vector<T>& Xm2,
vnl_random *rng/*=0*/)
{
vnl_vector<T> Xm0; // uninitialised
if (Xm1.size()!=Xm2.size() || Xm1.size()!=Xm.size()) return Xm0;
vnl_vector<T> wk(Xm.size());
if (!rng)
{
static vnl_random mz_random;
rng = &mz_random;
}
for (unsigned int i=0;i<Xm.size();i++)
{
wk[i]=(T)rng->normal();
}
return Xm+A_2*(Xm2-Xm)+A_1*(Xm1-Xm)+B_0*wk;
}
//: Learning using Burg's algorithm
template<class T>
void mbl_ar_process<T>::learn_burg(vcl_vector<vnl_vector<T> >& data)
{
if (data.size()<2) return;
Xm=data[0];
for (unsigned int i=1;i<data.size();i++)
Xm+=data[i];
Xm/=(T)data.size();
for (unsigned int i=0;i<data.size();i++)
data[i]-=Xm;
unsigned int dim=data.size();
vnl_vector<T> Ef(dim);
vnl_vector<T> Eb(dim);
A_1.set_size(data[0].size(),data[0].size());
A_1.fill((T)0.0);
A_2.set_size(data[0].size(),data[0].size());
A_2.fill((T)0.0);
B_0.set_size(data[0].size(),data[0].size());
B_0.fill((T)0.0);
for (unsigned int j=0;j<data[0].size();j++)
{
T E;
for (unsigned int i=0;i<dim;i++)
{
Ef[i]=data[i][j];
Eb[i]=data[i][j];
}
E=dot_product(Ef,Ef)/((T)dim);
vnl_vector_fixed<T,3> a(T(1),T(0),T(0));
T km;
for (unsigned int i=0;i<2;i++)
{
vnl_vector<T> Efp(dim-i-1);
vnl_vector<T> Ebp(dim-i-1);
for (unsigned int k=0;k<dim-i-1;k++)
{
Efp[k]=Ef[k+1];
Ebp[k]=Eb[k];
}
km=(-((T)(2.0))*dot_product(Ebp,Efp)/
(dot_product(Ebp,Ebp)+dot_product(Efp,Efp)));
for (unsigned int k=0;k<dim-i-1;k++)
{
Ef[k]=Efp[k]+km*Ebp[k];
Eb[k]=Ebp[k]+km*Efp[k];
}
vnl_vector_fixed<T,3> b=a;
for (unsigned int k=0;k<i+1;k++)
{
b[k+1]+=km*a[i-k];
}
a=b;
E=(1-km*km)*E;
}
A_1[j][j]=-a[1];
A_2[j][j]=-a[2];
B_0[j][j]=E>((T)0.0)?vcl_sqrt(E):((T)0.0);
}
for (unsigned int i=0;i<data.size();i++)
data[i]+=Xm;
}
//: Dynamic learning
template<class T>
void mbl_ar_process<T>::learn(vcl_vector<vnl_vector<T> >& data)
{
if (data.size()==0) return;
unsigned int dim=data[0].size();
vnl_vector<T> R0(dim,T(0)),R1(dim,T(0)),R2(dim,T(0)); // initialise to 0
vnl_matrix<T> R00(dim,dim,T(0)), R01(dim,dim,T(0)), R02(dim,dim,T(0)),
R10(dim,dim,T(0)), R11(dim,dim,T(0)), R12(dim,dim,T(0)),
R20(dim,dim,T(0)), R21(dim,dim,T(0)), R22(dim,dim,T(0));
Xm=data[0];
for (unsigned int i=1;i<data.size();i++)
Xm+=data[i];
Xm/=(T)data.size();
for (unsigned int i=0;i<data.size();i++)
data[i]-=Xm;
for (unsigned int i=2;i<data.size();i++)
{
R0+=data[i];
R1+=data[i-1];
R2+=data[i-2];
R00+=outer_product(data[i],data[i]);
R01+=outer_product(data[i],data[i-1]);
R02+=outer_product(data[i],data[i-2]);
R10+=outer_product(data[i-1],data[i]);
R11+=outer_product(data[i-1],data[i-1]);
R12+=outer_product(data[i-1],data[i-2]);
R20+=outer_product(data[i-2],data[i]);
R21+=outer_product(data[i-2],data[i-1]);
R22+=outer_product(data[i-2],data[i-2]);
}
T coef=(T)1.0/((T)data.size()-(T)2.0);
vnl_matrix<T> Rp01=R01-coef*outer_product(R0,R1);
vnl_matrix<T> Rp02=R02-coef*outer_product(R0,R2);
vnl_matrix<T> Rp11=R11-coef*outer_product(R1,R1);
vnl_matrix<T> Rp12=R12-coef*outer_product(R1,R2);
vnl_matrix<T> Rp21=R21-coef*outer_product(R2,R1);
vnl_matrix<T> Rp22=R22-coef*outer_product(R2,R2);
vnl_matrix_inverse<double> ti1A2(Rp11);
vnl_matrix<T> t1A2=ti1A2*Rp12;
vnl_matrix_inverse<double> ti2A2(Rp22-Rp21*t1A2);
A_2=(Rp02-Rp01*t1A2)*ti2A2;
A_1=(Rp01-A_2*Rp21)*ti1A2;
vnl_vector<T> D=coef*(R0-A_2*R2-A_1*R1);
vnl_matrix<T> C=coef*(R00-A_2*R20-A_1*R10-outer_product(D,R0));
vnl_symmetric_eigensystem<T> srB(C);
B_0=srB.square_root();
vnl_qr<double> qr_A_1(A_1);
vnl_qr<double> qr_A_2(A_2);
for (unsigned int i=0;i<data.size();i++)
data[i]+=Xm;
}
//: Write to binary stream
template<class T>
void vsl_b_write(vsl_b_ostream& os, const mbl_ar_process<T>* p)
{
if (p==0)
{
vsl_b_write(os, false); // Indicate null pointer stored
}
else
{
vsl_b_write(os,true); // Indicate non-null pointer stored
p->b_write(os);
//vsl_b_write(os,*p);
}
}
//: Read data from binary stream
template<class T>
void vsl_b_read(vsl_b_istream& is, mbl_ar_process<T>* & v)
{
delete v;
bool not_null_ptr;
vsl_b_read(is, not_null_ptr);
if (not_null_ptr)
{
v = new mbl_ar_process<T>();
v->b_read(is);
//vsl_b_read(is, *v);
}
else
v = 0;
}
//: Print class to os
template<class T>
void vsl_print_summary(vcl_ostream& os, const mbl_ar_process<T>* p)
{
p->print_summary(os);
}
#undef MBL_AR_PROCESS_INSTANTIATE
#define MBL_AR_PROCESS_INSTANTIATE(T) \
VCL_DEFINE_SPECIALIZATION vcl_string mbl_ar_process<T >::is_a() const \
{ return vcl_string("mbl_ar_process<" #T ">"); } \
template class mbl_ar_process<T >; \
template void vsl_b_write(vsl_b_ostream& s, const mbl_ar_process<T >* arp); \
template void vsl_b_read(vsl_b_istream& s, mbl_ar_process<T >* & arp); \
template void vsl_print_summary(vcl_ostream& s,const mbl_ar_process<T >* arp)
#endif //mbl_ar_process_txx_
|