1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
|
#include "mbl_dyn_prog.h"
//:
// \file
#include <vcl_cstdlib.h>
#include <vcl_iostream.h>
#include <vcl_algorithm.h> // for std::min() & std::max()
#include <vsl/vsl_indent.h>
#include <vsl/vsl_binary_io.h>
#include <vnl/io/vnl_io_matrix.h>
//=======================================================================
//=======================================================================
// Dflt ctor
//=======================================================================
mbl_dyn_prog::mbl_dyn_prog()
{
}
//=======================================================================
// Destructor
//=======================================================================
mbl_dyn_prog::~mbl_dyn_prog()
{
}
//: Construct path from links_, assuming it ends at end_state
void mbl_dyn_prog::construct_path(vcl_vector<int>& x, int end_state)
{
unsigned int n = links_.rows();
int ** b_data = links_.get_rows()-1; // So that b_data[i] corresponds to i-th row
if (x.size()!=n+1) x.resize(n+1);
int *x_data = &x[0];
x_data[n] = end_state;
for (unsigned int i=n; i>0; --i)
x_data[i-1] = b_data[i][x_data[i]];
}
static inline int mbl_abs(int i) { return i>=0 ? i : -i; }
//=======================================================================
//: Compute running costs for DP problem with costs W
// Pair cost term: C_i(x1,x2) = c(|x1-x2|)
// Size of c indicates maximum displacement between neighbouring
// states.
// If first_state>=0 then the first is constrained to that index value
void mbl_dyn_prog::running_costs(
const vnl_matrix<double>& W,
const vnl_vector<double>& pair_cost,
int first_state)
{
int n = W.rows();
int n_states = W.columns();
const double * const* W_data = W.data_array();
int max_d = pair_cost.size()-1;
// On completion b(i,j) shows the best prior state (ie at i)
// leading to state j at time i+1
links_.resize(n-1,n_states);
int ** b_data = links_.get_rows()-1;
// So that b_data[i] corresponds to i-th row
// ci(j) is total cost to get to current state j
running_cost_ = W.get_row(0);
double *ci = running_cost_.data_block();
next_cost_.set_size(n_states);
double *ci_new = next_cost_.data_block();
for (int i=1;i<n;++i)
{
int *bi = b_data[i];
const double *wi = W_data[i];
for (int j=0;j<n_states;++j)
{
// Evaluate best route to get to state j at time i
int k_best = 0;
double cost;
double wj = wi[j];
double cost_best;
if (i==1 && first_state>=0)
{
// Special case: First point pinned down to first_pt
k_best = first_state;
int d = mbl_abs(j-k_best);
if (d>max_d) cost_best=9e9;
else
cost_best = ci[k_best] + pair_cost[d]+ wj;
}
else
{
int klo = vcl_max(0,j-max_d);
int khi = vcl_min(n_states-1,j+max_d);
k_best=klo;
cost_best = ci[klo] + pair_cost[mbl_abs(j-klo)] + wj;
for (int k=klo+1;k<=khi;++k)
{
cost = ci[k] + pair_cost[mbl_abs(j-k)] + wj;
if (cost<cost_best)
{
cost_best=cost;
k_best = k;
}
}
}
ci_new[j] = cost_best;
bi[j] = k_best;
}
running_cost_=next_cost_;
}
}
//=======================================================================
//: Solve the dynamic programming problem with costs W
// Pair cost term: C_i(x1,x2) = c(|x1-x2|)
// Size of c indicates maximum displacement between neighbouring
// states.
// If first_state>=0 then the first is constrained to that index value
// \retval x Optimal path
// \return Total cost of given path
double mbl_dyn_prog::solve(vcl_vector<int>& x,
const vnl_matrix<double>& W,
const vnl_vector<double>& pair_cost,
int first_state)
{
running_costs(W,pair_cost,first_state);
double *ci = running_cost_.data_block();
int n_states = W.columns();
// Find the best final cost
int best_j = 0;
double best_cost = ci[0];
for (int j=1;j<n_states;++j)
{
if (ci[j]<best_cost) { best_j=j; best_cost=ci[j]; }
}
construct_path(x,best_j);
return best_cost;
}
//: Solve the DP problem including constraint between first and last
// Cost of moving from state i to state j is move_cost[j-i]
// (move_cost[i] must be valid for i in range [1-n_states,n_states-1])
// Includes cost between x[0] and x[n-1] to ensure loop closure.
// \retval x Optimal path
// \return Total cost of given path
double mbl_dyn_prog::solve_loop(vcl_vector<int>& x,
const vnl_matrix<double>& W,
const vnl_vector<double>& pair_cost)
{
int n_states = W.columns();
int max_d = pair_cost.size()-1;
double best_overall_cost=9.9e9;
vcl_vector<int> x1;
for (int i0=0;i0<n_states;++i0)
{
// Solve with constraint that first is i0
running_costs(W,pair_cost,i0);
double *ci = running_cost_.data_block();
// Find the best final cost
int klo = vcl_max(0,i0-max_d);
int khi = vcl_min(n_states-1,i0+max_d);
int k_best=klo;
double best_cost = ci[klo] + pair_cost[mbl_abs(i0-klo)];
for (int k=klo+1;k<=khi;++k)
{
double cost = ci[k] + pair_cost[mbl_abs(i0-k)];
if (cost<best_cost) { best_cost=cost; k_best = k; }
}
if (best_cost<best_overall_cost)
{
best_overall_cost=best_cost;
construct_path(x,k_best);
}
}
return best_overall_cost;
}
//=======================================================================
// Method: version_no
//=======================================================================
short mbl_dyn_prog::version_no() const
{
return 1;
}
//=======================================================================
// Method: is_a
//=======================================================================
vcl_string mbl_dyn_prog::is_a() const
{
return vcl_string("mbl_dyn_prog");
}
//=======================================================================
// Method: print
//=======================================================================
// required if data is present in this class
void mbl_dyn_prog::print_summary(vcl_ostream& os) const
{
}
//=======================================================================
// Method: save
//=======================================================================
// required if data is present in this class
void mbl_dyn_prog::b_write(vsl_b_ostream& bfs) const
{
vsl_b_write(bfs,is_a());
vsl_b_write(bfs,version_no());
}
//=======================================================================
// Method: load
//=======================================================================
// required if data is present in this class
void mbl_dyn_prog::b_read(vsl_b_istream& bfs)
{
if (!bfs) return;
vcl_string name;
vsl_b_read(bfs,name);
if (name != is_a())
{
vcl_cerr << "DerivedClass::load :"
<< " Attempted to load object of type "
<< name <<" into object of type " << is_a() << vcl_endl;
vcl_abort();
}
short version;
vsl_b_read(bfs,version);
switch (version)
{
case (1):
// vsl_b_read(bfs,data_); // example of data input
break;
default:
vcl_cerr << "I/O ERROR: vsl_b_read(vsl_b_istream&, mbl_dyn_prog &)\n"
<< " Unknown version number "<< version << vcl_endl;
bfs.is().clear(vcl_ios::badbit); // Set an unrecoverable IO error on stream
return;
}
}
//=======================================================================
// Associated function: operator<<
//=======================================================================
void vsl_b_write(vsl_b_ostream& bfs, const mbl_dyn_prog& b)
{
b.b_write(bfs);
}
//=======================================================================
// Associated function: operator>>
//=======================================================================
void vsl_b_read(vsl_b_istream& bfs, mbl_dyn_prog& b)
{
b.b_read(bfs);
}
//=======================================================================
// Associated function: operator<<
//=======================================================================
vcl_ostream& operator<<(vcl_ostream& os,const mbl_dyn_prog& b)
{
os << b.is_a() << ": ";
vsl_indent_inc(os);
b.print_summary(os);
vsl_indent_dec(os);
return os;
}
|