File: mbl_k_means.cxx

package info (click to toggle)
vxl 1.17.0.dfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 153,280 kB
  • ctags: 105,123
  • sloc: cpp: 747,420; ansic: 209,130; fortran: 34,230; lisp: 14,915; sh: 6,187; python: 5,856; makefile: 340; perl: 294; xml: 160
file content (360 lines) | stat: -rw-r--r-- 10,226 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
// This is mul/mbl/mbl_k_means.cxx
#include "mbl_k_means.h"
//:
//  \file

#include <vcl_algorithm.h>
#include <vcl_iostream.h>
#include <vcl_cstdlib.h>
#include <vcl_cassert.h>

//: Find k cluster centres
// Uses batch k-means clustering.
// If you provide parameter partition, it will return the
// cluster index for each data sample. The number of iterations
// performed is returned.
//
// \par Initial Cluster Centres
// If centres contain the correct number of centres, they will
// be used as the initial centres, If not, and if partition is
// given, and it is the correct size, then this will be used
// to find the initial centres.
//
// \par Degenerate Cases
// If at any point the one of the centres has no data points allocated to it
// the number of centres will be reduced below k. This is most likely to
// happen if you start the function with one or more centre identical, or
// if some of the centres start off outside the convex hull of the data set.
// In particular if you let the function initialise the centres, it will
// occur if any of the first k data samples are identical.
unsigned mbl_k_means(mbl_data_wrapper<vnl_vector<double> > &data, unsigned k,
                     vcl_vector<vnl_vector<double> >* cluster_centres,
                     vcl_vector<unsigned> * partition //=0
                    )
{
  vcl_vector<vnl_vector<double> > & centres = *cluster_centres;

  vcl_vector<unsigned> * p_partition;
  data.reset();
  unsigned  dims = data.current().size();
  vcl_vector<vnl_vector<double> > sums(k, vnl_vector<double>(dims, 0.0));
  vcl_vector<unsigned> nNearest(k,0);
  unsigned i;
  unsigned iterations =0;

  assert(data.size() >= k);

  bool initialise_from_clusters = false;

  // set up p_partition to point to something sensible
  if (partition)
  {
    p_partition = partition;
    if (p_partition->size() != data.size())
    {
      p_partition->resize(data.size());
      vcl_fill(p_partition->begin(), p_partition->end(), 0);
    }
    else initialise_from_clusters = true;
  }
  else
    p_partition = new vcl_vector<unsigned>(int(data.size()), 0u);


// Calculate initial centres

  if (centres.size() != k) // use first k data items as centres
  {
    centres.resize(k);
    for (i=0; i<k; ++i)
    {
      centres[i] = data.current();
      sums[i] += data.current();
      nNearest[i]++;
      data.next();
    }
  }
  else if (initialise_from_clusters)
  {                         // calculate centres fro existing
    do
    {
      sums[(*p_partition)[data.index()] ] += data.current();
      nNearest[(*p_partition)[data.index()] ]++;
    } while (data.next());
    // Calculate centres
    for (i=0; i<k; ++i)
      centres[i] = sums[i]/nNearest[i];
    data.reset();
    vcl_fill(sums.begin(), sums.end(), vnl_vector<double>(dims, 0.0));
    vcl_fill(nNearest.begin(), nNearest.end(), 0);
  }

  bool changed = true;
  while (changed)
  {
    changed = false;
    do
    {
      unsigned bestCentre = 0;
      double bestDist = vnl_vector_ssd(centres[0], data.current());
      for (i=1; i<k; ++i)
      {
        double dist = vnl_vector_ssd(centres[i], data.current());
        if (dist < bestDist)
        {
            bestDist = dist;
            bestCentre = i;
        }
      }
      sums[bestCentre] += data.current();
      nNearest[bestCentre] ++;
      if (bestCentre != (*p_partition)[data.index()])
      {
        changed = true;
        (*p_partition)[data.index()] = bestCentre;
      }
    } while (data.next());


    // reduce k if any centres have no data items assigned to its cluster.
    for (i=0; i<k; ++i)
    {
      if ( nNearest[i] == 0)
      {
        k--;
        centres.erase(centres.begin()+i);
        sums.erase(sums.begin()+i);
        nNearest.erase(nNearest.begin()+i);

        for (unsigned j=0; j<p_partition->size(); ++j)
        {
          assert ((*p_partition)[j] = i);
          if ((*p_partition)[j] > i) (*p_partition)[j]--;
        }

        changed= true;
      }
    }

    // Calculate new centres
    for (i=0; i<k; ++i)
      centres[i] = sums[i]/nNearest[i];

    // and repeat
    data.reset();
    vcl_fill(sums.begin(), sums.end(), vnl_vector<double>(dims, 0.0));
    vcl_fill(nNearest.begin(), nNearest.end(), 0);
    iterations ++;
  }

  if (!partition)
    delete p_partition;

  return iterations;
}

static inline void incXbyYv(vnl_vector<double> *X, const vnl_vector<double> &Y, double v)
{
  assert(X->size() == Y.size());
  assert(X->size() > 0);
  int i = ((int)X->size()) - 1;
  double * const pX=X->data_block();
  while (i >= 0)
  {
    pX[i] += Y[i] * v;
    i--;
  }
}

//: Find k cluster centres with weighted data
// Uses batch k-means clustering.
// If you provide parameter partition, it will return the
// cluster index for each data sample. The number of iterations
// performed is returned.
//
// \par Initial Cluster Centres
// If centres contain the correct number of centres, they will
// be used as the initial centres, If not, and if partition is
// given, and it is the correct size, then this will be used
// to find the initial centres.
//
// \par Degenerate Cases
// If at any point the one of the centres has no data points allocated to it
// the number of centres will be reduced below k. This is most likely to
// happen if you start the function with one or more centre identical, or
// if some of the centres start off outside the convex hull of the data set.
// In particular if you let the function initialise the centres, it will
// occur if any of the first k data samples are identical.
//
// \par
// The algorithm has been optimised
unsigned mbl_k_means_weighted(mbl_data_wrapper<vnl_vector<double> > &data, unsigned k,
                              const vcl_vector<double>& wts,
                              vcl_vector<vnl_vector<double> >* cluster_centres,
                              vcl_vector<unsigned> * partition //=0
                             )
{
  vcl_vector<vnl_vector<double> > & centres = *cluster_centres;

  vcl_vector<unsigned> * p_partition;
  data.reset();
  unsigned  dims = data.current().size();
  vcl_vector<vnl_vector<double> > sums(k, vnl_vector<double>(dims, 0.0));
  vcl_vector<double> nNearest(k,0.0);
  unsigned i;
  unsigned iterations =0;

  bool initialise_from_clusters = false;

  assert(data.size() >= k);
  assert(data.size() == wts.size());

  // set up p_partition to point to something sensible
  if (partition)
  {
    p_partition = partition;
    if (p_partition->size() != data.size())
    {
      p_partition->resize(data.size());
      vcl_fill(p_partition->begin(), p_partition->end(), 0);
    }
    else initialise_from_clusters = true;
  }
  else
    p_partition = new vcl_vector<unsigned>(int(data.size()), 0u);

  const vnl_vector<double>  vcl_vector_double_dims_0(dims, 0.0);


// Calculate initial centres

  if (centres.size() != k) // use first k non-zero weighted data items as centres
  {
    centres.resize(k);
    for (i=0; i<k; ++i)
    {
      while (wts[data.index()] == 0.0) // skip zero weighted data
      {
#ifdef NDEBUG
        data.next();
#else
        if (!data.next())
        {
          vcl_cerr << "ERROR: mbl_k_means_weighted, while initialising centres from data\n"
                   << "Not enough non-zero-weighted data\n";
          vcl_abort();
        }
#endif //NDEBUG
      }
      centres[i] = data.current();
      incXbyYv(&sums[i], data.current(), wts[data.index()]);

      nNearest[i]+= wts[data.index()];
      data.next();
    }
  }
  else if (initialise_from_clusters)
  {                         // calculate centres fro existing

    do
    {
      incXbyYv(&sums[(*p_partition)[data.index()] ], data.current(), wts[data.index()]);
      nNearest[(*p_partition)[data.index()] ]+=wts[data.index()];
    } while (data.next());
    // Calculate centres
    for (i=0; i<k; ++i)
      centres[i] = sums[i]/nNearest[i];
    data.reset();
    vcl_fill(sums.begin(), sums.end(), vcl_vector_double_dims_0);
    vcl_fill(nNearest.begin(), nNearest.end(), 0.0);
  }

  bool changed = true;
  while (changed)
  {
    changed = false;
    do
    {
      const double w = wts[data.index()];
      if (w != 0.0)
      {
        unsigned bestCentre = 0;
        double bestDist = vnl_vector_ssd(centres[0], data.current());
        for (i=1; i<k; ++i)
        {
          double dist = vnl_vector_ssd(centres[i], data.current());
          if (dist < bestDist)
          {
              bestDist = dist;
              bestCentre = i;
          }
        }
        incXbyYv(&sums[bestCentre], data.current(), w);
        nNearest[bestCentre] += w;
        if (bestCentre != (*p_partition)[data.index()])
        {
          changed = true;
          (*p_partition)[data.index()] = bestCentre;
        }
      }
    } while (data.next());


    // reduce k if any centres have no data items assigned to its cluster.
    for (i=0; i<k; ++i)
    {
      if ( nNearest[i] == 0.0)
      {
        k--;
        centres.erase(centres.begin()+i);
        sums.erase(sums.begin()+i);
        nNearest.erase(nNearest.begin()+i);
        for (unsigned j=0; j<p_partition->size(); ++j)
        {
          if (wts[j] != 0.0)
          {
            assert ((*p_partition)[j]  != i);
            if ((*p_partition)[j] > i) (*p_partition)[j]--;
          }
        }
      }
    }

    // Calculate new centres
    for (i=0; i<k; ++i)
      centres[i] = sums[i]/nNearest[i];

    // and repeat
    data.reset();
    vcl_fill(sums.begin(), sums.end(), vcl_vector_double_dims_0);
    vcl_fill(nNearest.begin(), nNearest.end(), 0.0);
    iterations ++;
  }

  if (!partition)
    delete p_partition;
  else // assign all the zero weighted samples to their nearest centres.
  {
    data.reset();
    do
    {
      if (wts[data.index()] == 0.0)
      {
        unsigned bestCentre = 0;
        double bestDist = vnl_vector_ssd(centres[0], data.current());
        for (i=1; i<k; ++i)
        {
          double dist = vnl_vector_ssd(centres[i], data.current());
          if (dist < bestDist)
          {
            bestDist = dist;
            bestCentre = i;
          }
        }
        (*p_partition)[data.index()] = bestCentre;
      }
    } while (data.next());
  }

  return iterations;
}