File: mbl_k_means.h

package info (click to toggle)
vxl 1.17.0.dfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 153,280 kB
  • ctags: 105,123
  • sloc: cpp: 747,420; ansic: 209,130; fortran: 34,230; lisp: 14,915; sh: 6,187; python: 5,856; makefile: 340; perl: 294; xml: 160
file content (63 lines) | stat: -rw-r--r-- 2,659 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
// This is mul/mbl/mbl_k_means.h
#ifndef mbl_k_means_h
#define mbl_k_means_h
//:
// \file
// \author Ian Scott
// \date 18-May-2001
// \brief K Means clustering functions

#include <vcl_vector.h>
#include <vnl/vnl_vector.h>
#include <mbl/mbl_data_wrapper.h>


//: Find k cluster centres
// Uses batch k-means clustering.
// If you provide parameter partition, it will return the
// cluster index for each data sample. The number of iterations
// performed is returned.
//
// \par Initial Cluster Centres
// If centres contain the correct number of centres, they will
// be used as the initial centres, If not, and if partition is
// given, and it is the correct size, then this will be used
// to find the initial centres.
//
// \par Degenerate Cases
// If at any point the one of the centres has no data points allocated to it
// the number of centres will be reduced below k. This is most likely to
// happen if you start the function with one or more centre identical, or
// if some of the centres start off outside the convex hull of the data set.
// In particular if you let the function initialise the centres, it will
// occur if any of the first k data samples are identical.
unsigned mbl_k_means(mbl_data_wrapper<vnl_vector<double> > &data, unsigned k,
                     vcl_vector<vnl_vector<double> >* cluster_centres,
                     vcl_vector<unsigned> * partition =0 );


//: Find k cluster centres with weighted data
// Uses batch k-means clustering.
// If you provide parameter partition, it will return the
// cluster index for each data sample. The number of iterations
// performed is returned.
//
// \par Initial Cluster Centres
// If centres contain the correct number of centres, they will
// be used as the initial centres, If not, and if partition is
// given, and it is the correct size, then this will be used
// to find the initial centres.
//
// \par Degenerate Cases
// If at any point the one of the centres has no data points allocated to it
// the number of centres will be reduced below k. This is most likely to
// happen if you start the function with one or more centre identical, or
// if some of the centres start off outside the convex hull of the data set.
// In particular if you let the function initialise the centres, it will
// occur if any of the first k data samples are identical.
unsigned mbl_k_means_weighted(mbl_data_wrapper<vnl_vector<double> > &data, unsigned k,
                              const vcl_vector<double>& wts,
                              vcl_vector<vnl_vector<double> >* cluster_centres,
                              vcl_vector<unsigned> * partition =0);

#endif // mbl_k_means_h