1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
|
//:
// \file
// \author Tim Cootes
// \date 25-Apr-2001
// \brief Various specialised versions of matrix product operations
#include "mbl_matrix_products.h"
#include <vnl/vnl_vector.h>
#include <vnl/vnl_matrix.h>
#include <vcl_cassert.h>
#include <vcl_cstdlib.h> // for vcl_abort()
#include <vcl_iostream.h>
//=======================================================================
//: Compute product AB = A * B
//=======================================================================
void mbl_matrix_product(vnl_matrix<double>& AB, const vnl_matrix<double>& A,
const vnl_matrix<double>& B)
{
unsigned int nr1 = A.rows();
unsigned int nc1 = A.cols();
unsigned int nr2 = B.rows();
unsigned int nc2 = B.cols();
if ( nr2 != nc1 )
{
vcl_cerr<<"Product : B.rows != A.cols\n";
vcl_abort() ;
}
if ( (AB.rows()!=nr1) || (AB.cols()!= nc2) )
AB.set_size( nr1, nc2 ) ;
const double *const * AData = A.data_array();
const double *const * BData = B.data_array();
double ** RData = AB.data_array();
// Zero the elements of AB
AB.fill(0);
for (unsigned int r=0; r < nr1; ++r)
{
const double* A_row = AData[r];
double* R_row = RData[r]-1;
for (unsigned int c=0; c < nc1 ; ++c )
{
double a = A_row[c];
if (a==0.0) continue;
const double* B_row = BData[c]-1;
int i = nc2+1;
while (--i)
{
R_row[i] += a * B_row[i];
}
}
}
}
//=======================================================================
//: Compute product ABt = A * B.transpose()
//=======================================================================
void mbl_matrix_product_a_bt(vnl_matrix<double>& ABt,
const vnl_matrix<double>& A,
const vnl_matrix<double>& B)
{
int nc1 = A.columns();
#ifndef NDEBUG
int nc2 = B.columns();
if ( nc2 != nc1 )
{
vcl_cerr<<"mbl_matrix_product_a_bt : B.columns != A.columns\n";
vcl_abort();
}
#endif //!NDEBUG
mbl_matrix_product_a_bt(ABt,A,B,nc1);
}
//=======================================================================
//: Compute product ABt = A * B.transpose(), using only nc cols of A and B
//=======================================================================
void mbl_matrix_product_a_bt(vnl_matrix<double>& ABt,
const vnl_matrix<double>& A,
const vnl_matrix<double>& B,
int nc)
{
unsigned int nr1 = A.rows();
unsigned int nr2 = B.rows();
assert(A.columns()>=(unsigned int)nc);
assert(B.columns()>=(unsigned int)nc);
if ( (ABt.rows()!=nr1) || (ABt.columns()!= nr2) )
ABt.set_size( nr1, nr2 ) ;
double const *const * A_data = A.data_array();
double const *const * B_data = B.data_array();
double ** R_data = ABt.data_array();
for (unsigned int r=0;r<nr1;++r)
{
const double* A_row = A_data[r];
double* R_row = R_data[r];
for (unsigned int c=0;c<nr2;++c)
{
const double* B_row = B_data[c];
R_row[c] = vnl_c_vector<double>::dot_product(A_row,B_row,nc);
}
}
}
//=======================================================================
//: Compute product AtB = A.transpose() * B
//=======================================================================
void mbl_matrix_product_at_b(vnl_matrix<double>& AtB,
const vnl_matrix<double>& A,
const vnl_matrix<double>& B)
{
mbl_matrix_product_at_b(AtB,A,B,A.columns());
}
//=======================================================================
//: Compute AAt = A * A.transpose(), using only first nr x nc partition of A
// Uses symmetry of result to improve speed
//=======================================================================
void mbl_matrix_product_a_at(vnl_matrix<double>& AAt,
const vnl_matrix<double>& A,
unsigned nr, unsigned nc)
{
assert(nr<=A.rows());
assert(nc<=A.columns());
if ( (AAt.rows()!=nr) || (AAt.columns()!= nr) )
AAt.set_size( nr, nr ) ;
double const *const * A_data = A.data_array();
double ** R_data = AAt.data_array();
// Fill in upper triangle of symmetric matrix
for (unsigned int r=0;r<nr;++r)
{
const double* A_row = A_data[r];
double* R_row = R_data[r];
for (unsigned int c=r;c<nr;++c)
{
const double* B_row = A_data[c];
R_row[c] = vnl_c_vector<double>::dot_product(A_row,B_row,nc);
}
}
// Copy upper triangle to lower triangle
for (unsigned int r=1;r<nr;++r)
for (unsigned int c=0;c<r;++c)
AAt(r,c)=AAt(c,r);
}
//=======================================================================
//: Compute product AAt = A * A.transpose()
// Uses symmetry of result to be approx twice as fast as
// mbl_matrix_product_a_bt(AAt,A,A)
//=======================================================================
void mbl_matrix_product_a_at(vnl_matrix<double>& AAt,
const vnl_matrix<double>& A)
{
mbl_matrix_product_a_at(AAt,A,A.rows(),A.columns());
}
//=======================================================================
//: Compute product AtB = A.transpose() * B, using nc_a cols of A
//=======================================================================
void mbl_matrix_product_at_b(vnl_matrix<double>& AtB,
const vnl_matrix<double>& A,
const vnl_matrix<double>& B,
int nc_a)
{
assert(nc_a >= 0 && A.columns()>=(unsigned int)nc_a);
unsigned int nr1 = A.rows();
unsigned int nr2 = B.rows();
unsigned int nc2 = B.columns();
if ( nr2 != nr1 )
{
vcl_cerr<<"TC_ProductAtB : B.rows != A.rows\n";
vcl_abort();
}
if ( (AtB.rows()!=(unsigned int)nc_a) || (AtB.columns()!= nc2) )
AtB.set_size( nc_a, nc2 ) ;
double const *const * A_data = A.data_array();
double const *const * B_data = B.data_array();
double ** R_data = AtB.data_array()-1;
AtB.fill(0);
for (unsigned int r1 = 0; r1<nr1; ++r1)
{
const double* A_row = A_data[r1]-1;
const double* B_row = B_data[r1]-1;
double a;
int c1 = nc_a+1;
while (--c1)
{
double *R_row = R_data[c1]-1;
a = A_row[c1];
int c2 = nc2+1;
while (--c2)
{
R_row[c2] +=a*B_row[c2];
}
}
}
}
//=======================================================================
//: Compute product AtA = A.transpose() * A using nc cols of A
//=======================================================================
void mbl_matrix_product_at_a(vnl_matrix<double>& AtA,
const vnl_matrix<double>& A,
unsigned nc)
{
assert(A.columns()>=nc);
unsigned int nr = A.rows();
if ( AtA.rows()!=nr || (AtA.columns()!= nc) )
AtA.set_size( nc, nc ) ;
double const *const * A_data = A.data_array();
double ** R_data = AtA.data_array()-1;
AtA.fill(0);
for (unsigned int r = 0; r<nr; ++r)
{
const double* A_row = A_data[r]-1;
double a;
int c1 = nc+1;
while (--c1)
{
double *R_row = R_data[c1]-1;
a = A_row[c1];
int c2 = nc+1;
while (--c2)
{
R_row[c2] +=a*A_row[c2];
}
}
}
}
//=======================================================================
//: Compute product AtA = A.transpose() * A
//=======================================================================
void mbl_matrix_product_at_a(vnl_matrix<double>& AtA,
const vnl_matrix<double>& A)
{
mbl_matrix_product_at_a(AtA,A,A.columns());
}
//: Returns ADB = A * D * B
// where D is diagonal with elements d
void mbl_matrix_product_adb(vnl_matrix<double>& ADB,
const vnl_matrix<double>& A,
const vnl_vector<double>& d,
const vnl_matrix<double>& B)
{
unsigned int nr1 = A.rows();
unsigned int nc1 = A.cols();
unsigned int nc2 = B.cols();
assert ( B.rows() == nc1 ); //Product : B.nrows != A.ncols
assert ( B.rows() == d.size() ); // Product : d.nelems != A.ncols
if ( (ADB.rows()!=nr1) || (ADB.cols()!= nc2) )
ADB.set_size( nr1, nc2 ) ;
const double * const* AData = A.data_array();
const double * const* BData = B.data_array();
const double * d_data = d.data_block();
double ** ADBdata = ADB.data_array();
ADB.fill(0);
for (unsigned int r=0; r < nr1; ++r)
{
const double* A_row = AData[r];
double* ADB_row = ADBdata[r]-1;
for (unsigned int c=0; c < nc1 ; ++c )
{
double ad = A_row[c] * d_data[c];
if (ad==0.0) continue;
const double* B_row = BData[c]-1;
int i = nc2+1;
while (--i)
{
ADB_row[i] += ad * B_row[i];
}
}
}
}
|