File: mbl_mod_gram_schmidt.cxx

package info (click to toggle)
vxl 1.17.0.dfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 153,280 kB
  • ctags: 105,123
  • sloc: cpp: 747,420; ansic: 209,130; fortran: 34,230; lisp: 14,915; sh: 6,187; python: 5,856; makefile: 340; perl: 294; xml: 160
file content (110 lines) | stat: -rw-r--r-- 3,490 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
// This is mul/mbl/mbl_mod_gram_schmidt.cxx
#include "mbl_mod_gram_schmidt.h"
//:
// \file
// \brief Orthogonalise a basis using modified Gram-Schmidt (and normalise)
// \author Martin Roberts
//
// Transform basis {vk} to orthonormal basis {ek} with k in range 1..N
// for j = 1 to N
//     ej = vj
//     for k = 1 to j-1
//         ej = ej - <ej,ek>ek   //NB Classical GS has vj in inner product
//     end
//     ej = ej/|ej|
//  end
//
// \verbatim
//  Modifications
//   Mar. 2011 - Patrick Sauer - added variant that returns normalisation multipliers
// \endverbatim

#include <vcl_vector.h>
#include <vnl/vnl_vector.h>

//=======================================================================
//: Convert input basis {v} to orthonormal basis {e}
// Each basis vector is a column of v, and likewise the orthonormal bases are returned as columns of e
void mbl_mod_gram_schmidt(const vnl_matrix<double>& v,
                          vnl_matrix<double>& e)
{
    unsigned N=v.cols();

    //Note internally it is easier to deal with the basis as a vector of vnl_vectors
    //As matrices are stored row-wise
    vcl_vector<vnl_vector<double > > vbasis(N);
    vcl_vector<vnl_vector<double > > evecs(N);

    //Copy into more convenient holding storage as vector of vectors
    //And also initialise output basis to input
    for (unsigned jcol=0;jcol<N;++jcol)
    {
        evecs[jcol] = vbasis[jcol] = v.get_column(jcol);
    }
    evecs[0].normalize();

    for (unsigned j=1;j<N;++j)
    {
        //Loop over previously created bases and subtract off partial projections
        //Thus producing orthogonality

        unsigned n2 = j-1;
        for (unsigned k=0;k<=n2;++k)
        {
            evecs[j] -= dot_product(evecs[j],evecs[k]) * evecs[k];
        }
        evecs[j].normalize();
    }

    //And copy into column-wise matrix (kth base is the kth column)
    e.set_size(v.rows(),N);
    for (unsigned jcol=0;jcol<N;++jcol)
    {
        e.set_column(jcol,evecs[jcol]);
    }
}

//: Convert input basis {v} to orthonormal basis {e}
// Each basis vector is a column of v, and likewise the orthonormal bases are returned as columns of e
// The multipliers used to normalise each vector in {e} are returned in np
void mbl_mod_gram_schmidt(const vnl_matrix<double>& v,
                          vnl_matrix<double>& e, vnl_vector<double>& np)
{
    unsigned N=v.cols();
    np.set_size(N);

    //Note internally it is easier to deal with the basis as a vector of vnl_vectors
    //As matrices are stored row-wise
    vcl_vector<vnl_vector<double > > vbasis(N);
    vcl_vector<vnl_vector<double > > evecs(N);

    //Copy into more convenient holding storage as vector of vectors
    //And also initialise output basis to input
    for (unsigned jcol=0;jcol<N;++jcol)
    {
        evecs[jcol] = vbasis[jcol] = v.get_column(jcol);
    }
    np[0]     = evecs[0].magnitude();
    evecs[0] /= np[0];

    for (unsigned j=1;j<N;++j)
    {
        //Loop over previously created bases and subtract off partial projections
        //Thus producing orthogonality

        unsigned n2 = j-1;
        for (unsigned k=0;k<=n2;++k)
        {
            evecs[j] -= dot_product(evecs[j],evecs[k]) * evecs[k];
        }
        np[j]     = evecs[j].magnitude();
        evecs[j] /= np[j];
    }

    //And copy into column-wise matrix (kth base is the kth column)
    e.set_size(v.rows(),N);
    for (unsigned jcol=0;jcol<N;++jcol)
    {
        e.set_column(jcol,evecs[jcol]);
    }
}