1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
// This is mul/mbl/mbl_rbf_network.cxx
#include "mbl_rbf_network.h"
//:
// \file
// \brief A class to perform some of the functions of a Radial Basis Function Network.
// \author Tim Cootes
//
// Given a set of n training vectors, x_i (i=0..n-1), a set of internal weights are computed.
// Given a new vector, x, a vector of weights, w, are computed such that
// if x = x_i then w(i+1) = 1, w(j !=i+1) = 0 The sum of the weights
// should always be unity.
// If x is not equal to any training vector, the vector of weights varies
// smoothly. This is useful for interpolation purposes.
// It can also be used to define non-linear transformations between
// vector spaces. If Y is a matrix of n columns, each corresponding to
// a vector in a new space which corresponds to one of the original
// training vectors x_i, then a vector x can be mapped to Yw in the
// new space. (Note: y-space does not have to have the same dimension
// as x space). This class is equivalent to
// the basis of thin-plate spline warping.
//
// I'm not sure if this is exactly an RBF network in the original
// definition. I'll check one day.
#include <vcl_cstdlib.h>
#include <vcl_cassert.h>
#include <vsl/vsl_indent.h>
#include <mbl/mbl_stats_1d.h>
#include <vnl/algo/vnl_svd.h>
#include <mbl/mbl_matxvec.h>
#include <vnl/io/vnl_io_vector.h>
#include <vsl/vsl_vector_io.h>
//=======================================================================
// Dflt ctor
//=======================================================================
mbl_rbf_network::mbl_rbf_network()
{
sum_to_one_ = true;
}
//: Build weights given examples x.
// s gives the scaling to use in r2 * vcl_log(r2) r2 = distSqr/(s*s)
// If s<=0 then a suitable s is estimated from the data
void mbl_rbf_network::build(const vcl_vector<vnl_vector<double> >& x, double s)
{
int n = x.size();
build(&(x.front()),n,s);
}
//: Build weights given n examples x[0] to x[n-1].
// s gives the scaling to use in r2 * vcl_log(r2) r2 = distSqr/(s*s)
// If s<=0 then a suitable s is estimated from the data
void mbl_rbf_network::build(const vnl_vector<double>* x, int n, double s)
{
assert (n>0);
// Copy training examples
if (x_.size()!=(unsigned)n) x_.resize(n);
for (int i=0;i<n;++i)
x_[i] = x[i];
// Compute distances
vnl_matrix<double> D(n,n);
double **D_data = D.data_array();
mbl_stats_1d d2_stats;
for (int i=0;i<n;++i)
D(i,i)=0.0;
for (int i=0;i<n-1;++i)
for (int j=i+1;j<n;++j)
{
double d2 = distSqr(x_[i],x_[j]);
D_data[i][j] = d2;
D_data[j][i] = d2;
d2_stats.obs(d2);
}
if (s<=0)
{
s2_ = d2_stats.min();
}
else
s2_ = s*s;
// Apply rbf() to elements of D
for (int i=0;i<n;++i)
for (int j=0;j<n;++j)
D_data[i][j] = rbf(D_data[i][j]/s2_);
// W_ is the inverse of D
vnl_svd<double> svd(D);
W_ = svd.inverse();
}
double mbl_rbf_network::distSqr(const vnl_vector<double>& x, const vnl_vector<double>& y) const
{
unsigned int n = x.size();
if (y.size()!=n)
{
vcl_cerr<<"mbl_rbf_network::distSqr() x and y different sizes.\n";
vcl_abort();
}
const double *x_data = x.begin();
const double *y_data = y.begin();
double sum = 0.0;
for (unsigned int i=0;i<n;++i)
{
double dx = x_data[i]-y_data[i];
sum += dx*dx;
}
return sum;
}
//: Set flag. If false, calcWts returns raw weights
void mbl_rbf_network::setSumToOne(bool flag)
{
sum_to_one_ = flag;
}
//: Compute weights for given new_x.
// If new_x = x()(i) then w(i+1)==1, w(j!=i+1)==0
// Otherwise w varies smoothly depending on distance
// of new_x from x()'s
// If sumToOne() then elements of w will sum to 1.0
// otherwise they will sum to <=1.0, decreasing as new_x
// moves away from the training examples x().
void mbl_rbf_network::calcWts(vnl_vector<double>& w, const vnl_vector<double>& new_x)
{
unsigned int n = x_.size();
if (w.size()!=n) w.set_size(n);
if (v_.size()!=n) v_.set_size(n);
double* v_data = &v_[0];
const vnl_vector<double>* x_data = &x_[0];
if (n==1)
{
w(0)=1.0;
return;
}
if (n==2)
{
// Use linear interpolation based on distance.
double d0 = vcl_sqrt(distSqr(new_x,x_data[0]));
double d1 = vcl_sqrt(distSqr(new_x,x_data[1]));
w(0) = d1/(d0+d1);
w(1) = 1.0 - w(0);
return;
}
for (unsigned int i=0;i<n;++i)
{
v_data[i] = rbf(new_x,x_data[i]);
}
mbl_matxvec_prod_mv(W_,v_,w);
if (sum_to_one_)
{
double sum = w.sum();
if (sum!=0) w/=sum;
}
}
//=======================================================================
// Method: version_no
//=======================================================================
short mbl_rbf_network::version_no() const
{
return 1;
}
//=======================================================================
// Method: is_a
//=======================================================================
vcl_string mbl_rbf_network::is_a() const
{
return vcl_string("mbl_rbf_network");
}
//=======================================================================
// Method: is_class
//=======================================================================
bool mbl_rbf_network::is_class(vcl_string const& s) const
{
return s==is_a();
}
//=======================================================================
// Method: print
//=======================================================================
// required if data is present in this class
void mbl_rbf_network::print_summary(vcl_ostream& os) const
{
os << "Built with "<<x_.size()<<" examples.";
// os << x_ << '\n' << W_ << '\n' << s2_<< '\n';
}
//=======================================================================
// Method: save
//=======================================================================
// required if data is present in this class
void mbl_rbf_network::b_write(vsl_b_ostream& bfs) const
{
vsl_b_write(bfs,version_no());
vsl_b_write(bfs,x_);
vsl_b_write(bfs,W_);
vsl_b_write(bfs,s2_);
if (sum_to_one_)
vsl_b_write(bfs,short(1));
else
vsl_b_write(bfs,short(0));
}
//=======================================================================
// Method: load
//=======================================================================
// required if data is present in this class
void mbl_rbf_network::b_read(vsl_b_istream& bfs)
{
if (!bfs) return;
short version;
short flag;
vsl_b_read(bfs,version);
switch (version)
{
case (1):
vsl_b_read(bfs,x_);
vsl_b_read(bfs,W_);
vsl_b_read(bfs,s2_);
vsl_b_read(bfs,flag); sum_to_one_ = (flag!=0);
break;
default:
vcl_cerr << "I/O ERROR: vsl_b_read(vsl_b_istream&, mbl_rbf_network &)\n"
<< " Unknown version number "<< version << vcl_endl;
bfs.is().clear(vcl_ios::badbit); // Set an unrecoverable IO error on stream
return;
}
}
//=======================================================================
// Associated function: operator<<
//=======================================================================
void vsl_b_write(vsl_b_ostream& bfs, const mbl_rbf_network& b)
{
b.b_write(bfs);
}
//=======================================================================
// Associated function: operator>>
//=======================================================================
void vsl_b_read(vsl_b_istream& bfs, mbl_rbf_network& b)
{
b.b_read(bfs);
}
//=======================================================================
// Associated function: operator<<
//=======================================================================
vcl_ostream& operator<<(vcl_ostream& os,const mbl_rbf_network& b)
{
os << b.is_a() << ": ";
vsl_indent_inc(os);
b.print_summary(os);
vsl_indent_dec(os);
return os;
}
|