1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
|
// This is mul/mbl/mbl_rvm_regression_builder.cxx
#include "mbl_rvm_regression_builder.h"
//:
// \file
// \brief Object to train Relevance Vector Machines for regression
// \author Tim Cootes
#include <vcl_cmath.h>
#include <vcl_algorithm.h>
#include <vnl/algo/vnl_svd.h>
#include <mbl/mbl_matxvec.h>
#include <mbl/mbl_matrix_products.h>
#include <vcl_iostream.h>
#include <vcl_cassert.h>
//=======================================================================
// Note on indexing
// index[i] gives the index (from 0..n-1) of the selected vectors
// The offset weight is always included.
// The alpha's thus only apply to the n vector weights, not the offset
//=======================================================================
// Dflt ctor
//=======================================================================
mbl_rvm_regression_builder::mbl_rvm_regression_builder()
{
}
//=======================================================================
// Destructor
//=======================================================================
mbl_rvm_regression_builder::~mbl_rvm_regression_builder()
{
}
//: Compute design matrix F from subset of elements in kernel matrix
void mbl_rvm_regression_builder::design_matrix(const vnl_matrix<double>& K,
const vcl_vector<int>& index,
vnl_matrix<double>& F)
{
unsigned n=index.size();
unsigned ns=K.rows();
F.set_size(ns,n+1);
for (unsigned i=0;i<ns;++i)
{
F(i,0)=1.0;
for (unsigned j=0;j<n;++j)
{
F(i,j+1)=K(i,index[j]);
}
}
}
//: Train RVM given a set of vectors and set of target values
// Uses gaussian kernel function with variance var
// \param data[i] training vectors
// \param targets[i] gives value at vector i
// \param index returns indices of selected vectors
// \param weights returns weights for selected vectors
// \param error_var returns variance term for gaussian kernel
void mbl_rvm_regression_builder::gauss_build(
mbl_data_wrapper<vnl_vector<double> >& data,
double var, const vnl_vector<double>& targets,
vcl_vector<int>& index,
vnl_vector<double>& weights,
double &error_var)
{
assert(data.size()==targets.size());
unsigned n = data.size();
vnl_matrix<double> K(n,n);
double k = -1.0/2*var;
// Construct kernel matrix
for (unsigned i=1;i<n;++i)
{
data.set_index(i);
vnl_vector<double> vi = data.current();
for (unsigned j=0;j<i;++j)
{
data.set_index(j);
double d = vcl_exp(k*vnl_vector_ssd(vi,data.current()));
K(i,j)=d; K(j,i)=d;
}
}
for (unsigned i=0;i<n;++i) K(i,i)=1.0;
build(K,targets,index,weights,error_var);
}
//: Perform one iteration of optimisation
bool mbl_rvm_regression_builder::update_step(const vnl_matrix<double>& F,
const vnl_vector<double>& targets,
const vcl_vector<int>& index0,
const vcl_vector<double>& alpha0,
double error_var0,
vcl_vector<int>& index,
vcl_vector<double>& alpha,
double &error_var)
{
unsigned n0 = alpha0.size();
assert(F.rows()==targets.size());
assert(F.cols()==n0+1);
vnl_matrix<double> K_inv;
mbl_matrix_product_at_b(K_inv,F,F); // K_inv=F'F
K_inv/=error_var0;
for (unsigned i=0;i<n0;++i) K_inv(i+1,i+1)+=alpha0[i];
// K_inv = F'F/var + diag(alpha0)
vnl_svd<double> svd(K_inv);
S_ = svd.inverse();
vnl_vector<double> t2(n0+1);
mbl_matxvec_prod_vm(targets,F,t2); // t2=F'targets (n+1)
mbl_matxvec_prod_mv(S_,t2,mean_wts_); // mean=S*t2 (n+1)
mean_wts_/=error_var0;
#if 0
// ---------------------
// Estimate p(t|alpha,var)
vnl_vector<double> a_inv(n0+1);
a_inv[0]=0.0;
for (unsigned i=0;i<n0;++i) a_inv[i+1]=1.0/alpha0[i];
vnl_matrix<double> FAF;
mbl_matrix_product_adb(FAF,F,a_inv,F.transpose());
for (unsigned i=0;i<FAF.rows();++i) FAF(i,i)+=1.0/error_var0;
vnl_svd<double> FAFsvd(FAF);
vnl_matrix<double> FAFinv=FAFsvd.inverse();
vnl_vector<double> Xt=FAFinv*targets;
double M = dot_product(Xt,targets);
double det=FAFsvd.determinant_magnitude();
vcl_cout<<"M="<<M<<" -log(p)="<<M+vcl_log(det)<<vcl_endl;
// ---------------------
#endif // 0
// Compute new alphas and eliminate very large values
alpha.resize(0);
index.resize(0);
double sum=0.0;
double change=0.0;
for (unsigned i=0;i<n0;++i)
{
double a=vcl_max(0.0,1.0-alpha0[i]*S_(i+1,i+1));
sum+=a;
if (vcl_fabs(mean_wts_[i+1])<1e-4) continue;
double mi2 = mean_wts_[i+1]*mean_wts_[i+1];
a/=mi2;
if (a>1e8) continue;
alpha.push_back(a);
index.push_back(index0[i]);
change+=vcl_fabs(a-alpha0[i]);
}
// Update estimate of error_var
vnl_vector<double> Fm;
mbl_matxvec_prod_mv(F,mean_wts_,Fm); // Fm=F*mean
double sum_sqr_error=vnl_vector_ssd(targets,Fm);
error_var = sum_sqr_error/(targets.size()-sum);
// vcl_cout<<"Sum sqr error = "<<sum_sqr_error<<vcl_endl;
change+=vcl_fabs(error_var-error_var0);
// Decide if optimisation completed
if (alpha.size()!=alpha0.size()) return true;
return change/n0 > 0.01;
}
//: Train RVM given a distance matrix and set of target values
// \param kernel_matrix (i,j) element gives kernel function between i and j training vectors
// \param targets[i] gives value at vector i
// \param index returns indices of selected vectors
// \param weights returns weights for selected vectors
// \param error_var returns variance term for gaussian kernel
void mbl_rvm_regression_builder::build(
const vnl_matrix<double>& kernel_matrix,
const vnl_vector<double>& targets,
vcl_vector<int>& index,
vnl_vector<double>& weights,
double &error_var)
{
assert(kernel_matrix.rows()==targets.size());
assert(kernel_matrix.cols()<=targets.size());
unsigned n0=kernel_matrix.cols();
// Initialise to use all n0 samples with equal weights
index.resize(n0);
vcl_vector<double> alpha(n0),new_alpha;
vcl_vector<int> new_index;
for (unsigned i=0;i<n0;++i) { index[i]=i; alpha[i]=1e-4; }
error_var = 0.01;
double new_error_var;
vnl_matrix<double> F;
design_matrix(kernel_matrix,index,F);
int max_its=500;
int n_its=0;
while (update_step(F,targets,index,alpha,error_var,
new_index,new_alpha,new_error_var) && n_its<max_its)
{
index = new_index;
alpha = new_alpha;
error_var= new_error_var;
design_matrix(kernel_matrix,index,F);
n_its++;
}
if (n_its>=max_its)
vcl_cerr<<"mbl_rvm_regression_builder::build() Too many iterations. Convergence failure.\n";
weights=mean_wts_;
}
|