File: mbl_rvm_regression_builder.cxx

package info (click to toggle)
vxl 1.17.0.dfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 153,280 kB
  • ctags: 105,123
  • sloc: cpp: 747,420; ansic: 209,130; fortran: 34,230; lisp: 14,915; sh: 6,187; python: 5,856; makefile: 340; perl: 294; xml: 160
file content (210 lines) | stat: -rw-r--r-- 6,930 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
// This is mul/mbl/mbl_rvm_regression_builder.cxx
#include "mbl_rvm_regression_builder.h"
//:
// \file
// \brief Object to train Relevance Vector Machines for regression
// \author Tim Cootes

#include <vcl_cmath.h>
#include <vcl_algorithm.h>
#include <vnl/algo/vnl_svd.h>
#include <mbl/mbl_matxvec.h>
#include <mbl/mbl_matrix_products.h>
#include <vcl_iostream.h>
#include <vcl_cassert.h>

//=======================================================================
// Note on indexing
// index[i] gives the index (from 0..n-1) of the selected vectors
// The offset weight is always included.
// The alpha's thus only apply to the n vector weights, not the offset
//=======================================================================
// Dflt ctor
//=======================================================================

mbl_rvm_regression_builder::mbl_rvm_regression_builder()
{
}

//=======================================================================
// Destructor
//=======================================================================

mbl_rvm_regression_builder::~mbl_rvm_regression_builder()
{
}

//: Compute design matrix F from subset of elements in kernel matrix
void mbl_rvm_regression_builder::design_matrix(const vnl_matrix<double>& K,
                                               const vcl_vector<int>& index,
                                               vnl_matrix<double>& F)
{
  unsigned n=index.size();
  unsigned ns=K.rows();
  F.set_size(ns,n+1);
  for (unsigned i=0;i<ns;++i)
  {
    F(i,0)=1.0;
    for (unsigned j=0;j<n;++j)
    {
      F(i,j+1)=K(i,index[j]);
    }
  }
}

//: Train RVM given a set of vectors and set of target values
// Uses gaussian kernel function with variance var
// \param data[i] training vectors
// \param targets[i] gives value at vector i
// \param index returns indices of selected vectors
// \param weights returns weights for selected vectors
// \param error_var returns variance term for gaussian kernel
void mbl_rvm_regression_builder::gauss_build(
             mbl_data_wrapper<vnl_vector<double> >& data,
             double var, const vnl_vector<double>& targets,
             vcl_vector<int>& index,
             vnl_vector<double>& weights,
             double &error_var)
{
  assert(data.size()==targets.size());
  unsigned n = data.size();
  vnl_matrix<double> K(n,n);
  double k = -1.0/2*var;
  // Construct kernel matrix
  for (unsigned i=1;i<n;++i)
  {
    data.set_index(i);
    vnl_vector<double> vi = data.current();
    for (unsigned j=0;j<i;++j)
    {
      data.set_index(j);
      double d = vcl_exp(k*vnl_vector_ssd(vi,data.current()));
      K(i,j)=d; K(j,i)=d;
    }
  }
  for (unsigned i=0;i<n;++i) K(i,i)=1.0;

  build(K,targets,index,weights,error_var);
}

//: Perform one iteration of optimisation
bool mbl_rvm_regression_builder::update_step(const vnl_matrix<double>& F,
                                             const vnl_vector<double>& targets,
                                             const vcl_vector<int>& index0,
                                             const vcl_vector<double>& alpha0,
                                             double error_var0,
                                             vcl_vector<int>& index,
                                             vcl_vector<double>& alpha,
                                             double &error_var)
{
  unsigned n0 = alpha0.size();
  assert(F.rows()==targets.size());
  assert(F.cols()==n0+1);
  vnl_matrix<double> K_inv;
  mbl_matrix_product_at_b(K_inv,F,F);  // K_inv=F'F
  K_inv/=error_var0;
  for (unsigned i=0;i<n0;++i) K_inv(i+1,i+1)+=alpha0[i];
  // K_inv = F'F/var + diag(alpha0)

  vnl_svd<double> svd(K_inv);
  S_ = svd.inverse();

  vnl_vector<double> t2(n0+1);
  mbl_matxvec_prod_vm(targets,F,t2);  // t2=F'targets  (n+1)
  mbl_matxvec_prod_mv(S_,t2,mean_wts_);     // mean=S*t2 (n+1)
  mean_wts_/=error_var0;

#if 0
  // ---------------------
  // Estimate p(t|alpha,var)
  vnl_vector<double> a_inv(n0+1);
  a_inv[0]=0.0;
  for (unsigned i=0;i<n0;++i) a_inv[i+1]=1.0/alpha0[i];
  vnl_matrix<double> FAF;
  mbl_matrix_product_adb(FAF,F,a_inv,F.transpose());
  for (unsigned i=0;i<FAF.rows();++i) FAF(i,i)+=1.0/error_var0;
  vnl_svd<double> FAFsvd(FAF);
  vnl_matrix<double> FAFinv=FAFsvd.inverse();
  vnl_vector<double> Xt=FAFinv*targets;
  double M = dot_product(Xt,targets);
  double det=FAFsvd.determinant_magnitude();
  vcl_cout<<"M="<<M<<"  -log(p)="<<M+vcl_log(det)<<vcl_endl;
  // ---------------------
#endif // 0

  // Compute new alphas and eliminate very large values
  alpha.resize(0);
  index.resize(0);
  double sum=0.0;
  double change=0.0;
  for (unsigned i=0;i<n0;++i)
  {
    double a=vcl_max(0.0,1.0-alpha0[i]*S_(i+1,i+1));
    sum+=a;
    if (vcl_fabs(mean_wts_[i+1])<1e-4) continue;
    double mi2 = mean_wts_[i+1]*mean_wts_[i+1];
    a/=mi2;

    if (a>1e8) continue;

    alpha.push_back(a);
    index.push_back(index0[i]);
    change+=vcl_fabs(a-alpha0[i]);
  }
  // Update estimate of error_var
  vnl_vector<double> Fm;
  mbl_matxvec_prod_mv(F,mean_wts_,Fm);     // Fm=F*mean
  double sum_sqr_error=vnl_vector_ssd(targets,Fm);
  error_var = sum_sqr_error/(targets.size()-sum);
// vcl_cout<<"Sum sqr error = "<<sum_sqr_error<<vcl_endl;
  change+=vcl_fabs(error_var-error_var0);

  // Decide if optimisation completed
  if (alpha.size()!=alpha0.size()) return true;
  return change/n0 > 0.01;
}

//: Train RVM given a distance matrix and set of target values
// \param kernel_matrix (i,j) element gives kernel function between i and j training vectors
// \param targets[i] gives value at vector i
// \param index returns indices of selected vectors
// \param weights returns weights for selected vectors
// \param error_var returns variance term for gaussian kernel
void mbl_rvm_regression_builder::build(
             const vnl_matrix<double>& kernel_matrix,
             const vnl_vector<double>& targets,
             vcl_vector<int>& index,
             vnl_vector<double>& weights,
             double &error_var)
{
  assert(kernel_matrix.rows()==targets.size());
  assert(kernel_matrix.cols()<=targets.size());
  unsigned n0=kernel_matrix.cols();

  // Initialise to use all n0 samples with equal weights
  index.resize(n0);
  vcl_vector<double> alpha(n0),new_alpha;
  vcl_vector<int> new_index;
  for (unsigned i=0;i<n0;++i)  { index[i]=i; alpha[i]=1e-4; }
  error_var = 0.01;
  double new_error_var;

  vnl_matrix<double> F;
  design_matrix(kernel_matrix,index,F);
  int max_its=500;
  int n_its=0;
  while (update_step(F,targets,index,alpha,error_var,
                     new_index,new_alpha,new_error_var)  && n_its<max_its)
  {
    index    = new_index;
    alpha    = new_alpha;
    error_var= new_error_var;
    design_matrix(kernel_matrix,index,F);
    n_its++;
  }

  if (n_its>=max_its)
    vcl_cerr<<"mbl_rvm_regression_builder::build() Too many iterations. Convergence failure.\n";

  weights=mean_wts_;
}