1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
|
// This is mul/mbl/mbl_stats_1d.cxx
#include "mbl_stats_1d.h"
//:
// \file
// \brief Simple statistics on a 1D variable.
// \author Tim Cootes
#include <vcl_cmath.h>
#include <vcl_iostream.h>
mbl_stats_1d::mbl_stats_1d()
{
clear();
}
mbl_stats_1d::mbl_stats_1d(const vcl_vector<double>& observations)
{
clear();
vcl_vector<double>::const_iterator it;
for (it=observations.begin(); it != observations.end(); ++it)
{
obs(*it);
}
}
void mbl_stats_1d::clear()
{
n_obs_ = 0;
w_obs_ = 0;
sum_ = 0;
sum_sq_ = 0;
}
void mbl_stats_1d::obs(double v)
{
if (n_obs_ == 0)
{
min_v_ = v;
max_v_ = v;
sum_ = v;
sum_sq_ = v * v;
w_obs_=1.0;
n_obs_=1;
return;
}
if (v<min_v_) min_v_ = v;
if (v>max_v_) max_v_ = v;
sum_ += v;
sum_sq_ += v * v;
n_obs_++;
w_obs_++;
}
void mbl_stats_1d::obs(double v, double weight)
{
if (n_obs_ == 0)
{
min_v_ = v;
max_v_ = v;
sum_ = v * weight;
sum_sq_ = v * v * weight;
w_obs_=weight;
n_obs_=1;
return;
}
if (v<min_v_) min_v_ = v;
if (v>max_v_) max_v_ = v;
sum_ += v * weight;
sum_sq_ += v * v * weight;
w_obs_+=weight;
n_obs_++;
}
double mbl_stats_1d::mean() const
{
if (n_obs_==0) return 0;
else return sum_/w_obs_;
}
double mbl_stats_1d::variance() const
{
if (n_obs_==0) return 0;
double mean_v = mean();
return sum_sq_/w_obs_ - mean_v * mean_v;
}
double mbl_stats_1d::sd() const
{
if (n_obs_==0) return 0;
double var_v = variance();
// Use of numerically dodgy Sum{x^2} - {Sum x}^2
// can return negative numbers.
if (var_v<0) var_v=0;
return vcl_sqrt(var_v);
}
double mbl_stats_1d::stdError() const
{
if (n_obs_==0) return 0;
double var_v = variance();
return vcl_sqrt(var_v/w_obs_);
}
double mbl_stats_1d::min() const
{
if (n_obs_==0) return 0;
else return min_v_;
}
double mbl_stats_1d::max() const
{
if (n_obs_==0) return 0;
else return max_v_;
}
double mbl_stats_1d::sum() const
{
return sum_;
}
double mbl_stats_1d::sumSq() const
{
return sum_sq_;
}
double mbl_stats_1d::rms() const
{
return n_obs_==0 ? -1.0 : vcl_sqrt(sum_sq_/w_obs_);
}
mbl_stats_1d& mbl_stats_1d::operator+=(const mbl_stats_1d& s1)
{
sum_ += s1.sum_;
sum_sq_ += s1.sum_sq_;
n_obs_ += s1.n_obs_;
w_obs_ += s1.w_obs_;
if (s1.min()<min_v_) min_v_ = s1.min_v_;
if (s1.max()>max_v_) max_v_ = s1.max_v_;
return *this ;
}
const double MAX_ERROR = 1.0e-8;
//: Test for equality
bool mbl_stats_1d::operator==(const mbl_stats_1d& s) const
{
return n_obs_==s.n_obs_ &&
vcl_fabs(w_obs_-s.w_obs_)<MAX_ERROR &&
vcl_fabs(sum_-s.sum_)<MAX_ERROR &&
vcl_fabs(sum_sq_-s.sum_sq_)<MAX_ERROR &&
vcl_fabs(min_v_-s.min_v_)<MAX_ERROR &&
vcl_fabs(max_v_-s.max_v_)<MAX_ERROR;
}
void mbl_stats_1d::b_write(vsl_b_ostream& bfs) const
{
const short version = 2;
vsl_b_write(bfs,version);
vsl_b_write(bfs,n_obs_);
if (n_obs_==0) return;
vsl_b_write(bfs,min_v_); vsl_b_write(bfs,max_v_);
vsl_b_write(bfs,sum_); vsl_b_write(bfs,sum_sq_);
vsl_b_write(bfs,w_obs_);
}
void mbl_stats_1d::b_read(vsl_b_istream& bfs)
{
if (!bfs) return;
short file_version_no;
vsl_b_read(bfs,file_version_no);
switch (file_version_no)
{
case 1:
{
int tmp;
vsl_b_read(bfs, tmp);
n_obs_ = static_cast<unsigned>(tmp);
}
if (n_obs_<=0) clear();
else
{
vsl_b_read(bfs,min_v_);
vsl_b_read(bfs,max_v_);
vsl_b_read(bfs,sum_);
vsl_b_read(bfs,sum_sq_);
}
w_obs_ = n_obs_;
break;
case 2:
vsl_b_read(bfs, n_obs_);
if (n_obs_<=0) clear();
else
{
vsl_b_read(bfs,min_v_);
vsl_b_read(bfs,max_v_);
vsl_b_read(bfs,sum_);
vsl_b_read(bfs,sum_sq_);
vsl_b_read(bfs,w_obs_);
}
break;
default:
vcl_cerr << "I/O ERROR: mbl_stats_1d::b_read(vsl_b_istream&)\n"
<< " Unknown version number "<< file_version_no << '\n';
bfs.is().clear(vcl_ios::badbit); // Set an unrecoverable IO error on stream
return;
}
}
void mbl_stats_1d::print_summary(vcl_ostream& os) const
{
os << "mbl_stats_1d: ";
if (n_obs_==0)
os << "No samples.";
else
{
os << "mean: "<< mean()
<< " sd: "<< sd()
<< " ["<<min_v_<<','<<max_v_<<"] N:"<<n_obs_;
}
}
vcl_ostream& operator<<(vcl_ostream& os, const mbl_stats_1d& stats)
{
stats.print_summary(os);
return os;
}
//: Stream output operator for class reference
void vsl_print_summary(vcl_ostream& os,const mbl_stats_1d& stats)
{
stats.print_summary(os);
}
mbl_stats_1d operator+(const mbl_stats_1d& s1, const mbl_stats_1d& s2)
{
mbl_stats_1d r = s1;
r+=s2;
return r;
}
//: Binary file stream output operator for class reference
void vsl_b_write(vsl_b_ostream& bfs, const mbl_stats_1d& b)
{
b.b_write(bfs);
}
//: Binary file stream input operator for class reference
void vsl_b_read(vsl_b_istream& bfs, mbl_stats_1d& b)
{
b.b_read(bfs);
}
|