File: mbl_stepwise_regression.cxx

package info (click to toggle)
vxl 1.17.0.dfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 153,280 kB
  • ctags: 105,123
  • sloc: cpp: 747,420; ansic: 209,130; fortran: 34,230; lisp: 14,915; sh: 6,187; python: 5,856; makefile: 340; perl: 294; xml: 160
file content (316 lines) | stat: -rw-r--r-- 9,720 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
// This is mul/mbl/mbl_stepwise_regression.cxx
#include "mbl_stepwise_regression.h"
//:
// \file
// \brief Conduct stepwise regression
// \author Martin Roberts

#include <vcl_algorithm.h>
#include <vcl_iterator.h>
#include <vcl_utility.h>
// not used? #include <vcl_cmath.h>
#include <vcl_cassert.h>
// not used? #include <vcl_vector.h>
// not used? #include <vcl_iostream.h>
#include <vnl/vnl_math.h>
#include <vnl/algo/vnl_svd.h>
#include <mbl/mbl_stl.h>


mbl_stepwise_regression::mbl_stepwise_regression(const vnl_matrix<double>& x,
                                                 const vnl_vector<double>& y):
        x_(x),y_(y),
        num_examples_(y.size()),
        num_vars_(x.cols()),
        XtX_(num_vars_+1,num_vars_+1,0.0),XtY_(num_vars_+1,0.0),
        FthreshAdd_(2.07),FthreshRemove_(1.8),
        mode_(mbl_stepwise_regression::eFORWARDS)
{
    assert(x.rows() == num_examples_);
    //Initialise the extended covariances

#if 0 // The calculation is as follows
    do
    {
        // XtX += [x, -1]' * [x, -1]
        const vnl_vector<double> &x=inputs.current();
        double y = outputs[inputs.index()] ? 1.0 : -1.0;
        vnl_vector<double> xp(k+1);
        xp.update(x, 0);
        xp(k) = -1.0;
        XtX += outer_product(xp, xp);
        double y = outputs[inputs.index()] ? 1.0 : -1.0;
        XtY += y * xp;
    } while (inputs.next());

#else// However the following version is faster

    rss_ = 0.0;
    for (unsigned irow=0;irow<num_examples_;++irow)
    {
        // XtX += [x, -1]' * [x, -1]
        const double* px=x_[irow];
        double yval = y_[irow];
        for (unsigned i=0; i<num_vars_; ++i)
        {
            //Just work out in triangular form first
            for (unsigned j=0; j<i; ++j)
            {
                XtX_(i,j) += px[i] * px[j];
            }
            XtX_(i,i) += vnl_math_sqr(px[i]);
            XtX_(i,num_vars_) -= px[i];
            XtY_(i) += yval * px[i];
        }
        XtY_(num_vars_) += yval * -1.0;
        rss_ += yval * yval;
    }
    //Initialise residual sum of squares to total sum of y squares about mean
    double sumY = -XtY_(num_vars_);
    rss_ -= (sumY*sumY)/double(num_examples_);
    //Set other half by symmetry
    for (unsigned i=0; i<num_vars_; ++i)
    {
        for (unsigned j=0; j<i; ++j)
        {
            XtX_(j,i) += XtX_(i,j);
        }
        XtX_(num_vars_,i) = XtX_(i,num_vars_);
    }
    XtX_(num_vars_, num_vars_) = (double) num_examples_;

#endif // !0
}

void mbl_stepwise_regression::operator()()
{
    using mbl_stepwise_regression_helpers::lsfit_this_basis;
    if (mode_ == eFORWARDS)
    {
        basis_.clear(); //start from an empty basis
        basis_complement_.clear();
        //And fill the complement with 1..n
        mbl_stl_increments_n(vcl_inserter(basis_complement_,basis_complement_.end()),
                            num_vars_,0);

        //First fit a starting minimally sized basis best sum of squares first
        unsigned  min_basis = vcl_min(num_vars_/10,num_examples_/5);
        if (min_basis<1) min_basis = 1;
        bool forceAdd=true;
        for (unsigned i=0; i<min_basis;i++)
        {
            add_variable(forceAdd);
        }
        //And now carry on and do forward stepwise (with some removals)
        do_forward_stepwise_regression();
    }
    else // Backwards
    {
        // start from a full basis
        mbl_stl_increments_n(vcl_inserter(basis_,basis_.end()),
                            num_vars_,0);
        basis_complement_.clear();
        do_backward_stepwise_regression();
    }
    // And ensure solution is set up for the final basis
    lsfit_this_basis fitter(x_,y_,XtX_,XtY_);
    fitter.set_basis(basis_);
    fitter();
    weights_ = fitter.weights();
}

void mbl_stepwise_regression::do_forward_stepwise_regression()
{
    bool carryOn=true;
    while (carryOn)
    {
        // Now try another addition step followed by one elimination
        bool addedOne = add_variable();
        bool removedOne = remove_variable();
        carryOn = addedOne || removedOne ;
    }
}

void mbl_stepwise_regression::do_backward_stepwise_regression()
{
    bool carryOn=true;
    while (carryOn)
    {
        //try to remove all the unwanted variables
        carryOn = remove_variable();
    }
    //Having removed everything we can check if anything might now come back in that had been removed earlier
    do_forward_stepwise_regression();
}

bool mbl_stepwise_regression::add_variable(bool forceAdd)
{
    //Loop over all variables not in the basis
    //Fit an extended basis with that variable in it
    //Store the best such basis (best residual sum of squares)
    //If significant improvement (or forceAdd set) then add the variable

    using mbl_stepwise_regression_helpers::lsfit_this_basis;

    if (basis_complement_.empty()) return false;

    lsfit_this_basis fitter(x_,y_,XtX_,XtY_);
    fitter.set_basis(basis_);
    double FratioMax=-1.0;

    int  knew= -1;
    vcl_set<unsigned>::const_iterator candIter=basis_complement_.begin();
    vcl_set<unsigned>::const_iterator candIterEnd=basis_complement_.end();
    double rssNew=rss_;
    while (candIter != candIterEnd)
    {
        unsigned k = *candIter;
        double rssPrime = fitter.add(k);
        double F = f_ratio(rssPrime,rss_,1);
        if (F>FratioMax)
        {
            FratioMax= F;
            knew = k;
            rssNew = rssPrime;
        }
        ++candIter;
    }
    bool really_added = false;
    bool significant = test_significance(rssNew,rss_,FthreshAdd_);
    if (significant || forceAdd)
    {
        if (knew>=0)
        {
            vcl_pair<vcl_set<unsigned>::iterator,bool> inserted = basis_.insert(knew);
            really_added = inserted.second;
            basis_complement_.erase(knew);
            rss_ = rssNew;
        }
    }
    return significant && really_added;
}

bool mbl_stepwise_regression::remove_variable()
{
    //Loop over all variables in the basis
    //Fit a diminished basis with that variable in it
    //Store the least diminishing (to residual sum of squares) variable
    //If the reduction is not significant then eliminate this variable

    using mbl_stepwise_regression_helpers::lsfit_this_basis;
    lsfit_this_basis fitter(x_,y_,XtX_,XtY_);
    fitter.set_basis(basis_);
    double min_Fratio=1.0E30;
    double rssBest=rss_;
    int knew=-1;
    vcl_set<unsigned>::const_iterator candIter=basis_.begin();
    vcl_set<unsigned>::const_iterator candIterEnd=basis_.end();
    while (candIter != candIterEnd)
    {
        unsigned k = *candIter++;
        double rssNew = fitter.remove(k);
        double F = f_ratio(rss_,rssNew,1);
        if (F < min_Fratio)
        {
            min_Fratio = F;
            knew = k;
            rssBest = rssNew;
        }
    }
    bool significant = test_significance(rss_,rssBest,FthreshRemove_);
    if (!significant)
    {
        basis_.erase(knew);
        basis_complement_.insert(knew);
        rss_ = rssBest;
    }
    return !significant;
}

//---------------------------------------------------------------------------
//------------------------------ Helpers ------------------------------------
//---------------------------------------------------------------------------

double mbl_stepwise_regression_helpers::lsfit_this_basis::add(unsigned k)
{
    basis_.insert(k);
    double rss = (*this)();
    basis_.erase(k);
    return rss;
}

double mbl_stepwise_regression_helpers::lsfit_this_basis::remove(unsigned k)
{
    basis_.erase(k);
    double rss = (*this)();
    basis_.insert(k);
    return rss;
}

double mbl_stepwise_regression_helpers::lsfit_this_basis::operator()()
{
    // Find the solution to X w = Y;
    // However it is easier to find X' X w = X' Y;
    // because X is n_train x n_dims whereas X'X is n_dims x n_dims

    //Solve by SVD
    unsigned ndims = basis_.size();
    //Create working copies of mtrices containing just the subset of variables in the basis
    vnl_matrix<double> XtX(1+ndims,1+ndims);

    vcl_set<unsigned>::iterator basisVarIter=basis_.begin();
    vcl_set<unsigned>::iterator basisVarIterEnd=basis_.end();
    unsigned i = 0;
    vnl_vector<double> XtY(ndims+1, 0.0);

    while (basisVarIter != basisVarIterEnd)
    {
        unsigned k1=*basisVarIter++;
        vcl_set<unsigned>::iterator basisVarInnerIter=basis_.begin();
        unsigned j = 0;
        //Set half of off-diagonals
        while (*basisVarInnerIter < k1) //NB set is ordered
        {
            unsigned k2=*basisVarInnerIter++;
            XtX(i,j) = XtX_(k1,k2);
            ++j;
        }
        XtX(i,i) = XtX_(k1,k1); //diagonal
        XtX(i,ndims) = XtX_(k1,num_vars_); //extra bias column
        XtY(i) = XtY_(k1);
        ++i;
    }
    XtY(ndims) = XtY_(num_vars_);
    //Copy the other half by symmetry
    for (unsigned i=0;i<ndims;++i)
    {
        for (unsigned j=0;j<i;++j)
        {
            XtX(j,i) = XtX(i,j);
        }
        XtX(ndims,i) = XtX(i,ndims);
    }

    XtX(ndims,ndims) = double (num_examples_);

    vnl_svd<double> svd(XtX, 1.0e-12); // 1e-12 = zero-tolerance for singular values
    weights_ = svd.solve(XtY);

    double rss=0.0;
    //Now compute the residual sum of squares
    for (unsigned i=0;i<num_examples_;++i)
    {
        const double* pDataRow=x_[i];
        double ypred = 0.0;
        basisVarIter=basis_.begin();
        vnl_vector<double>::iterator weightIter = weights_.begin();
        while (basisVarIter != basisVarIterEnd)
        {
            ypred += pDataRow[*basisVarIter++] * (*weightIter++);
        }
        ypred -= *weightIter; //Final -1 term
        double dy = y_[i] - ypred;
        rss += dy*dy;
    }
    return rss;
}