1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
|
// This is mul/mbl/mbl_stochastic_data_collector.txx
#ifndef mbl_stochastic_data_collector_txx_
#define mbl_stochastic_data_collector_txx_
//:
// \file
#include "mbl_stochastic_data_collector.h"
#include <vcl_string.h>
#include <vsl/vsl_vector_io.h>
#include <vnl/vnl_math.h>
//=======================================================================
template <class T>
mbl_stochastic_data_collector<T>::
mbl_stochastic_data_collector()
: samples_(0), nPresented_(0), rand(9667566)
{
}
//=======================================================================
template <class T>
mbl_stochastic_data_collector<T>::
mbl_stochastic_data_collector(unsigned n):
samples_(n), nPresented_(0), rand(9667566)
{
}
//=======================================================================
template <class T>
mbl_stochastic_data_collector<T>::
~mbl_stochastic_data_collector()
{
}
//=======================================================================
//: Clear any stored data
template <class T>
void mbl_stochastic_data_collector<T>::clear()
{
nPresented_ = 0;
}
//=======================================================================
//: Set number of samples to be stored
// If not set, the value defaults to 1000.
// Calling this function implicitly calls clean().
template <class T>
void mbl_stochastic_data_collector<T>::set_n_samples(int n)
{
nPresented_ = 0;
samples_.resize(n);
}
//=======================================================================
//: Stochastically record given vector.
// The vector will be recorded, and saved with a probability equal to that of
// every other vector presented to this function.
// returns true if it actually stored the value.
template <class T>
void mbl_stochastic_data_collector<T>::record(const T& v)
{
if (nPresented_ < samples_.size())
{
samples_[nPresented_] = v;
nPresented_ ++;
}
else
{
double nSamples = static_cast<double>(samples_.size());
// recalculate probability from scratch each time to avoid accumulation of rounding errors.
double prob = nSamples * nSamples / (nPresented_ * (nSamples+1));
nPresented_ ++;
if (rand.drand64() < prob)
samples_[rand.lrand32(samples_.size() - 1)] = v;
}
}
//=======================================================================
//: Force recording of this given value
// This does not increment n_presented()
// Used with next(), to avoid calculating values that will not be stored.
template <class T>
void mbl_stochastic_data_collector<T>::force_record(const T& v)
{
if (nPresented_ < samples_.size())
samples_[nPresented_-1] = v;
else
samples_[rand.lrand32(samples_.size() - 1)] = v;
}
//=======================================================================
//: Will decide whether to store the next value
// This will increment n_presented()
// \return true if you should call record_definite() with the next value.
template <class T>
bool mbl_stochastic_data_collector<T>::store_next()
{
if (nPresented_ < samples_.size())
{
nPresented_ ++;
return true;
}
else
{
double nSamples = static_cast<double>(samples_.size());
// recalculate probability from scratch each time
// to avoid accumulation of rounding errors.
double prob = nSamples * nSamples / (nPresented_ * (nSamples+1));
nPresented_ ++;
if (rand.drand64() < prob)
{
return true;
}
else return false;
}
}
//=======================================================================
//: Return object describing stored data
template <class T>
mbl_data_wrapper<T>& mbl_stochastic_data_collector<T>::data_wrapper()
{
v_data_.set(&samples_[0], vnl_math_min((unsigned long) samples_.size(), nPresented_));
return v_data_;
}
//=======================================================================
//: Reseed the internal random number generator.
template <class T>
void mbl_stochastic_data_collector<T>::reseed (unsigned long seed)
{
rand.reseed(seed);
}
//=======================================================================
template <class T>
bool mbl_stochastic_data_collector<T>::is_class(vcl_string const& s) const
{
return s==mbl_stochastic_data_collector<T>::is_a() || mbl_data_collector<T>::is_class(s);
}
//=======================================================================
template <class T>
short mbl_stochastic_data_collector<T>::version_no() const
{
return 1;
}
//=======================================================================
template <class T>
mbl_data_collector_base* mbl_stochastic_data_collector<T>::clone() const
{
return new mbl_stochastic_data_collector<T>(*this);
}
//=======================================================================
template <class T>
void mbl_stochastic_data_collector<T>::print_summary(vcl_ostream& os) const
{
os << "number stored: " << samples_.size()
<< ", number presented: " << nPresented_ << '\n';
}
//=======================================================================
template <class T>
void mbl_stochastic_data_collector<T>::b_write(vsl_b_ostream& bfs) const
{
vsl_b_write(bfs, version_no());
vsl_b_write(bfs, samples_);
vsl_b_write(bfs, nPresented_);
}
//=======================================================================
template <class T>
void mbl_stochastic_data_collector<T>::b_read(vsl_b_istream& bfs)
{
if (!bfs) return;
short version;
vsl_b_read(bfs,version);
switch (version)
{
case (1):
vsl_b_read(bfs, samples_);
vsl_b_read(bfs, nPresented_);
break;
default:
vcl_cerr << "I/O ERROR: mbl_stochastic_data_collector<T::b_read(vsl_b_istream&)\n"
<< " Unknown version number "<< version << '\n';
bfs.is().clear(vcl_ios::badbit); // Set an unrecoverable IO error on stream
return;
}
}
#define MBL_STOCHASTIC_DATA_COLLECTOR_INSTANTIATE(T) \
VCL_DEFINE_SPECIALIZATION vcl_string mbl_stochastic_data_collector<T >::is_a() const \
{ return vcl_string("mbl_stochastic_data_collector<" #T ">"); }\
template class mbl_stochastic_data_collector< T >
#endif // mbl_stochastic_data_collector_txx_
|