File: dsapps.c

package info (click to toggle)
vxl 1.17.0.dfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 153,280 kB
  • ctags: 105,123
  • sloc: cpp: 747,420; ansic: 209,130; fortran: 34,230; lisp: 14,915; sh: 6,187; python: 5,856; makefile: 340; perl: 294; xml: 160
file content (772 lines) | stat: -rw-r--r-- 28,938 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
/* arpack/dsapps.f -- translated by f2c (version 20090411).
   You must link the resulting object file with libf2c:
        on Microsoft Windows system, link with libf2c.lib;
        on Linux or Unix systems, link with .../path/to/libf2c.a -lm
        or, if you install libf2c.a in a standard place, with -lf2c -lm
        -- in that order, at the end of the command line, as in
                cc *.o -lf2c -lm
        Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

                http://www.netlib.org/f2c/libf2c.zip
*/

#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"

/* Common Block Declarations */

/*Extern struct { */
/*  integer logfil, ndigit, mgetv0, msaupd, msaup2, msaitr, mseigt, msapps, */
/*          msgets, mseupd, mnaupd, mnaup2, mnaitr, mneigh, mnapps, mngets, */
/*          mneupd, mcaupd, mcaup2, mcaitr, mceigh, mcapps, mcgets, mceupd; */
/*} debug_; */

/*#define debug_1 debug_ */

/*Extern struct { */
/*  integer nopx, nbx, nrorth, nitref, nrstrt; */
/*  real tsaupd, tsaup2, tsaitr, tseigt, tsgets, tsapps, tsconv, tnaupd, */
/*          tnaup2, tnaitr, tneigh, tngets, tnapps, tnconv, tcaupd, tcaup2, */
/*          tcaitr, tceigh, tcgets, tcapps, tcconv, tmvopx, tmvbx, tgetv0, */
/*          titref, trvec; */
/*} timing_; */

/*#define timing_1 timing_ */

/* Table of constant values */

static doublereal c_b4 = 0.;
static doublereal c_b5 = 1.;
static doublereal c_b14 = -1.;
static integer c__1 = 1;

/* ----------------------------------------------------------------------- */
/* \BeginDoc */

/* \Name: dsapps */

/* \Description: */
/*  Given the Arnoldi factorization */

/*     A*V_{k} - V_{k}*H_{k} = r_{k+p}*e_{k+p}^T, */

/*  apply NP shifts implicitly resulting in */

/*     A*(V_{k}*Q) - (V_{k}*Q)*(Q^T* H_{k}*Q) = r_{k+p}*e_{k+p}^T * Q */

/*  where Q is an orthogonal matrix of order KEV+NP. Q is the product of */
/*  rotations resulting from the NP bulge chasing sweeps.  The updated Arnoldi */
/*  factorization becomes: */

/*     A*VNEW_{k} - VNEW_{k}*HNEW_{k} = rnew_{k}*e_{k}^T. */

/* \Usage: */
/*  call dsapps */
/*     ( N, KEV, NP, SHIFT, V, LDV, H, LDH, RESID, Q, LDQ, WORKD ) */

/* \Arguments */
/*  N       Integer.  (INPUT) */
/*          Problem size, i.e. dimension of matrix A. */

/*  KEV     Integer.  (INPUT) */
/*          INPUT: KEV+NP is the size of the input matrix H. */
/*          OUTPUT: KEV is the size of the updated matrix HNEW. */

/*  NP      Integer.  (INPUT) */
/*          Number of implicit shifts to be applied. */

/*  SHIFT   Double precision array of length NP.  (INPUT) */
/*          The shifts to be applied. */

/*  V       Double precision N by (KEV+NP) array.  (INPUT/OUTPUT) */
/*          INPUT: V contains the current KEV+NP Arnoldi vectors. */
/*          OUTPUT: VNEW = V(1:n,1:KEV); the updated Arnoldi vectors */
/*          are in the first KEV columns of V. */

/*  LDV     Integer.  (INPUT) */
/*          Leading dimension of V exactly as declared in the calling */
/*          program. */

/*  H       Double precision (KEV+NP) by 2 array.  (INPUT/OUTPUT) */
/*          INPUT: H contains the symmetric tridiagonal matrix of the */
/*          Arnoldi factorization with the subdiagonal in the 1st column */
/*          starting at H(2,1) and the main diagonal in the 2nd column. */
/*          OUTPUT: H contains the updated tridiagonal matrix in the */
/*          KEV leading submatrix. */

/*  LDH     Integer.  (INPUT) */
/*          Leading dimension of H exactly as declared in the calling */
/*          program. */

/*  RESID   Double precision array of length (N).  (INPUT/OUTPUT) */
/*          INPUT: RESID contains the the residual vector r_{k+p}. */
/*          OUTPUT: RESID is the updated residual vector rnew_{k}. */

/*  Q       Double precision KEV+NP by KEV+NP work array.  (WORKSPACE) */
/*          Work array used to accumulate the rotations during the bulge */
/*          chase sweep. */

/*  LDQ     Integer.  (INPUT) */
/*          Leading dimension of Q exactly as declared in the calling */
/*          program. */

/*  WORKD   Double precision work array of length 2*N.  (WORKSPACE) */
/*          Distributed array used in the application of the accumulated */
/*          orthogonal matrix Q. */

/* \EndDoc */

/* ----------------------------------------------------------------------- */

/* \BeginLib */

/* \Local variables: */
/*     xxxxxx  real */

/* \References: */
/*  1. D.C. Sorensen, "Implicit Application of Polynomial Filters in */
/*     a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992), */
/*     pp 357-385. */
/*  2. R.B. Lehoucq, "Analysis and Implementation of an Implicitly */
/*     Restarted Arnoldi Iteration", Rice University Technical Report */
/*     TR95-13, Department of Computational and Applied Mathematics. */

/* \Routines called: */
/*     second  ARPACK utility routine for timing. */
/*     dlamch  LAPACK routine that determines machine constants. */
/*     dlartg  LAPACK Givens rotation construction routine. */
/*     dlacpy  LAPACK matrix copy routine. */
/*     dlaset  LAPACK matrix initialization routine. */
/*     dgemv   Level 2 BLAS routine for matrix vector multiplication. */
/*     daxpy   Level 1 BLAS that computes a vector triad. */
/*     dcopy   Level 1 BLAS that copies one vector to another. */
/*     dscal   Level 1 BLAS that scales a vector. */

/* \Author */
/*     Danny Sorensen               Phuong Vu */
/*     Richard Lehoucq              CRPC / Rice University */
/*     Dept. of Computational &     Houston, Texas */
/*     Applied Mathematics */
/*     Rice University */
/*     Houston, Texas */

/* \Revision history: */
/*     12/16/93: Version ' 2.1' */

/* \SCCS Information: @(#) */
/* FILE: sapps.F   SID: 2.5   DATE OF SID: 4/19/96   RELEASE: 2 */

/* \Remarks */
/*  1. In this version, each shift is applied to all the subblocks of */
/*     the tridiagonal matrix H and not just to the submatrix that it */
/*     comes from. This routine assumes that the subdiagonal elements */
/*     of H that are stored in h(1:kev+np,1) are nonegative upon input */
/*     and enforce this condition upon output. This version incorporates */
/*     deflation. See code for documentation. */

/* \EndLib */

/* ----------------------------------------------------------------------- */

/*<        >*/
/* Subroutine */ int dsapps_(integer *n, integer *kev, integer *np,
        doublereal *shift, doublereal *v, integer *ldv, doublereal *h__,
        integer *ldh, doublereal *resid, doublereal *q, integer *ldq,
        doublereal *workd)
{
    /* Initialized data */

    static logical first = TRUE_;

    /* System generated locals */
    integer h_dim1, h_offset, q_dim1, q_offset, v_dim1, v_offset, i__1, i__2,
            i__3, i__4;
    doublereal d__1, d__2;

    /* Local variables */
    doublereal c__, f, g;
    integer i__, j;
    doublereal r__, s, a1, a2, a3, a4;
/*  static real t0, t1; */
    integer jj;
    doublereal big;
    integer iend, itop;
    extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
            integer *), dgemv_(char *, integer *, integer *, doublereal *,
            doublereal *, integer *, doublereal *, integer *, doublereal *,
            doublereal *, integer *, ftnlen), dcopy_(integer *, doublereal *,
            integer *, doublereal *, integer *), daxpy_(integer *, doublereal
            *, doublereal *, integer *, doublereal *, integer *);
    extern doublereal dlamch_(char *, ftnlen);
    extern /* Subroutine */ int second_(real *);
    static doublereal epsmch;
    integer istart, kplusp /*, msglvl */;
    extern /* Subroutine */ int dlacpy_(char *, integer *, integer *,
            doublereal *, integer *, doublereal *, integer *, ftnlen),
            dlartg_(doublereal *, doublereal *, doublereal *, doublereal *,
            doublereal *), dlaset_(char *, integer *, integer *, doublereal *,
             doublereal *, doublereal *, integer *, ftnlen);


/*     %----------------------------------------------------% */
/*     | Include files for debugging and timing information | */
/*     %----------------------------------------------------% */

/*<       include   'debug.h' >*/
/*<       include   'stat.h' >*/

/* \SCCS Information: @(#) */
/* FILE: debug.h   SID: 2.3   DATE OF SID: 11/16/95   RELEASE: 2 */

/*     %---------------------------------% */
/*     | See debug.doc for documentation | */
/*     %---------------------------------% */
/*<        >*/
/*<       integer    kev, ldh, ldq, ldv, n, np >*/

/*     %------------------% */
/*     | Scalar Arguments | */
/*     %------------------% */

/*     %--------------------------------% */
/*     | See stat.doc for documentation | */
/*     %--------------------------------% */

/* \SCCS Information: @(#) */
/* FILE: stat.h   SID: 2.2   DATE OF SID: 11/16/95   RELEASE: 2 */

/*<       save       t0, t1, t2, t3, t4, t5 >*/

/*<       integer    nopx, nbx, nrorth, nitref, nrstrt >*/
/*<        >*/
/*<        >*/

/*     %-----------------% */
/*     | Array Arguments | */
/*     %-----------------% */

/*<        >*/

/*     %------------% */
/*     | Parameters | */
/*     %------------% */

/*<        >*/
/*<       parameter (one = 1.0D+0, zero = 0.0D+0) >*/

/*     %---------------% */
/*     | Local Scalars | */
/*     %---------------% */

/*<       integer    i, iend, istart, itop, j, jj, kplusp, msglvl >*/
/*<       logical    first >*/
/*<        >*/
/*<       save       epsmch, first >*/


/*     %----------------------% */
/*     | External Subroutines | */
/*     %----------------------% */

/*<        >*/

/*     %--------------------% */
/*     | External Functions | */
/*     %--------------------% */

/*<        >*/
/*<       external   dlamch >*/

/*     %----------------------% */
/*     | Intrinsics Functions | */
/*     %----------------------% */

/*<       intrinsic  abs >*/

/*     %----------------% */
/*     | Data statments | */
/*     %----------------% */

/*<       data       first / .true. / >*/
    /* Parameter adjustments */
    --workd;
    --resid;
    --shift;
    v_dim1 = *ldv;
    v_offset = 1 + v_dim1;
    v -= v_offset;
    h_dim1 = *ldh;
    h_offset = 1 + h_dim1;
    h__ -= h_offset;
    q_dim1 = *ldq;
    q_offset = 1 + q_dim1;
    q -= q_offset;

    /* Function Body */

/*     %-----------------------% */
/*     | Executable Statements | */
/*     %-----------------------% */

/*<       if (first) then >*/
    if (first) {
/*<          epsmch = dlamch('Epsilon-Machine') >*/
        epsmch = dlamch_("Epsilon-Machine", (ftnlen)15);
/*<          first = .false. >*/
        first = FALSE_;
/*<       end if >*/
    }
/*<       itop = 1 >*/
    itop = 1;

/*     %-------------------------------% */
/*     | Initialize timing statistics  | */
/*     | & message level for debugging | */
/*     %-------------------------------% */

/*<       call second (t0) >*/
/*  second_(&t0); */
/*<       msglvl = msapps >*/
/*  msglvl = debug_1.msapps; */

/*<       kplusp = kev + np  >*/
    kplusp = *kev + *np;

/*     %----------------------------------------------% */
/*     | Initialize Q to the identity matrix of order | */
/*     | kplusp used to accumulate the rotations.     | */
/*     %----------------------------------------------% */

/*<       call dlaset ('All', kplusp, kplusp, zero, one, q, ldq) >*/
    dlaset_("All", &kplusp, &kplusp, &c_b4, &c_b5, &q[q_offset], ldq, (ftnlen)
            3);

/*     %----------------------------------------------% */
/*     | Quick return if there are no shifts to apply | */
/*     %----------------------------------------------% */

/*<       if (np .eq. 0) go to 9000 >*/
    if (*np == 0) {
        goto L9000;
    }

/*     %----------------------------------------------------------% */
/*     | Apply the np shifts implicitly. Apply each shift to the  | */
/*     | whole matrix and not just to the submatrix from which it | */
/*     | comes.                                                   | */
/*     %----------------------------------------------------------% */

/*<       do 90 jj = 1, np >*/
    i__1 = *np;
    for (jj = 1; jj <= i__1; ++jj) {

/*<          istart = itop >*/
        istart = itop;

/*        %----------------------------------------------------------% */
/*        | Check for splitting and deflation. Currently we consider | */
/*        | an off-diagonal element h(i+1,1) negligible if           | */
/*        |         h(i+1,1) .le. epsmch*( |h(i,2)| + |h(i+1,2)| )   | */
/*        | for i=1:KEV+NP-1.                                        | */
/*        | If above condition tests true then we set h(i+1,1) = 0.  | */
/*        | Note that h(1:KEV+NP,1) are assumed to be non negative.  | */
/*        %----------------------------------------------------------% */

/*<    20    continue >*/
L20:

/*        %------------------------------------------------% */
/*        | The following loop exits early if we encounter | */
/*        | a negligible off diagonal element.             | */
/*        %------------------------------------------------% */

/*<          do 30 i = istart, kplusp-1 >*/
        i__2 = kplusp - 1;
        for (i__ = istart; i__ <= i__2; ++i__) {
/*<             big   = abs(h(i,2)) + abs(h(i+1,2)) >*/
            big = (d__1 = h__[i__ + (h_dim1 << 1)], abs(d__1)) + (d__2 = h__[
                    i__ + 1 + (h_dim1 << 1)], abs(d__2));
/*<             if (h(i+1,1) .le. epsmch*big) then >*/
            if (h__[i__ + 1 + h_dim1] <= epsmch * big) {
/*               if (msglvl .gt. 0) then */
/*                  call ivout (logfil, 1, i, ndigit, */
/*     &                 '_sapps: deflation at row/column no.') */
/*                  call ivout (logfil, 1, jj, ndigit, */
/*     &                 '_sapps: occurred before shift number.') */
/*                  call dvout (logfil, 1, h(i+1,1), ndigit, */
/*     &                 '_sapps: the corresponding off diagonal element') */
/*               end if */
/*<                h(i+1,1) = zero >*/
                h__[i__ + 1 + h_dim1] = 0.;
/*<                iend = i >*/
                iend = i__;
/*<                go to 40 >*/
                goto L40;
/*<             end if >*/
            }
/*<    30    continue >*/
/* L30: */
        }
/*<          iend = kplusp >*/
        iend = kplusp;
/*<    40    continue >*/
L40:

/*<          if (istart .lt. iend) then >*/
        if (istart < iend) {

/*           %--------------------------------------------------------% */
/*           | Construct the plane rotation G'(istart,istart+1,theta) | */
/*           | that attempts to drive h(istart+1,1) to zero.          | */
/*           %--------------------------------------------------------% */

/*<              f = h(istart,2) - shift(jj) >*/
            f = h__[istart + (h_dim1 << 1)] - shift[jj];
/*<              g = h(istart+1,1) >*/
            g = h__[istart + 1 + h_dim1];
/*<              call dlartg (f, g, c, s, r) >*/
            dlartg_(&f, &g, &c__, &s, &r__);

/*            %-------------------------------------------------------% */
/*            | Apply rotation to the left and right of H;            | */
/*            | H <- G' * H * G,  where G = G(istart,istart+1,theta). | */
/*            | This will create a "bulge".                           | */
/*            %-------------------------------------------------------% */

/*<              a1 = c*h(istart,2)   + s*h(istart+1,1) >*/
            a1 = c__ * h__[istart + (h_dim1 << 1)] + s * h__[istart + 1 +
                    h_dim1];
/*<              a2 = c*h(istart+1,1) + s*h(istart+1,2) >*/
            a2 = c__ * h__[istart + 1 + h_dim1] + s * h__[istart + 1 + (
                    h_dim1 << 1)];
/*<              a4 = c*h(istart+1,2) - s*h(istart+1,1) >*/
            a4 = c__ * h__[istart + 1 + (h_dim1 << 1)] - s * h__[istart + 1 +
                    h_dim1];
/*<              a3 = c*h(istart+1,1) - s*h(istart,2)  >*/
            a3 = c__ * h__[istart + 1 + h_dim1] - s * h__[istart + (h_dim1 <<
                    1)];
/*<              h(istart,2)   = c*a1 + s*a2 >*/
            h__[istart + (h_dim1 << 1)] = c__ * a1 + s * a2;
/*<              h(istart+1,2) = c*a4 - s*a3 >*/
            h__[istart + 1 + (h_dim1 << 1)] = c__ * a4 - s * a3;
/*<              h(istart+1,1) = c*a3 + s*a4 >*/
            h__[istart + 1 + h_dim1] = c__ * a3 + s * a4;

/*            %----------------------------------------------------% */
/*            | Accumulate the rotation in the matrix Q;  Q <- Q*G | */
/*            %----------------------------------------------------% */

/*<              do 60 j = 1, min(istart+jj,kplusp) >*/
/* Computing MIN */
            i__3 = istart + jj;
            i__2 = min(i__3,kplusp);
            for (j = 1; j <= i__2; ++j) {
/*<                 a1            =   c*q(j,istart) + s*q(j,istart+1) >*/
                a1 = c__ * q[j + istart * q_dim1] + s * q[j + (istart + 1) *
                        q_dim1];
/*<                 q(j,istart+1) = - s*q(j,istart) + c*q(j,istart+1) >*/
                q[j + (istart + 1) * q_dim1] = -s * q[j + istart * q_dim1] +
                        c__ * q[j + (istart + 1) * q_dim1];
/*<                 q(j,istart)   = a1 >*/
                q[j + istart * q_dim1] = a1;
/*<    60        continue >*/
/* L60: */
            }


/*            %----------------------------------------------% */
/*            | The following loop chases the bulge created. | */
/*            | Note that the previous rotation may also be  | */
/*            | done within the following loop. But it is    | */
/*            | kept separate to make the distinction among  | */
/*            | the bulge chasing sweeps and the first plane | */
/*            | rotation designed to drive h(istart+1,1) to  | */
/*            | zero.                                        | */
/*            %----------------------------------------------% */

/*<              do 70 i = istart+1, iend-1 >*/
            i__2 = iend - 1;
            for (i__ = istart + 1; i__ <= i__2; ++i__) {

/*               %----------------------------------------------% */
/*               | Construct the plane rotation G'(i,i+1,theta) | */
/*               | that zeros the i-th bulge that was created   | */
/*               | by G(i-1,i,theta). g represents the bulge.   | */
/*               %----------------------------------------------% */

/*<                 f = h(i,1) >*/
                f = h__[i__ + h_dim1];
/*<                 g = s*h(i+1,1) >*/
                g = s * h__[i__ + 1 + h_dim1];

/*               %----------------------------------% */
/*               | Final update with G(i-1,i,theta) | */
/*               %----------------------------------% */

/*<                 h(i+1,1) = c*h(i+1,1) >*/
                h__[i__ + 1 + h_dim1] = c__ * h__[i__ + 1 + h_dim1];
/*<                 call dlartg (f, g, c, s, r) >*/
                dlartg_(&f, &g, &c__, &s, &r__);

/*               %-------------------------------------------% */
/*               | The following ensures that h(1:iend-1,1), | */
/*               | the first iend-2 off diagonal of elements | */
/*               | H, remain non negative.                   | */
/*               %-------------------------------------------% */

/*<                 if (r .lt. zero) then >*/
                if (r__ < 0.) {
/*<                    r = -r >*/
                    r__ = -r__;
/*<                    c = -c >*/
                    c__ = -c__;
/*<                    s = -s >*/
                    s = -s;
/*<                 end if >*/
                }

/*               %--------------------------------------------% */
/*               | Apply rotation to the left and right of H; | */
/*               | H <- G * H * G',  where G = G(i,i+1,theta) | */
/*               %--------------------------------------------% */

/*<                 h(i,1) = r >*/
                h__[i__ + h_dim1] = r__;

/*<                 a1 = c*h(i,2)   + s*h(i+1,1) >*/
                a1 = c__ * h__[i__ + (h_dim1 << 1)] + s * h__[i__ + 1 +
                        h_dim1];
/*<                 a2 = c*h(i+1,1) + s*h(i+1,2) >*/
                a2 = c__ * h__[i__ + 1 + h_dim1] + s * h__[i__ + 1 + (h_dim1
                        << 1)];
/*<                 a3 = c*h(i+1,1) - s*h(i,2) >*/
                a3 = c__ * h__[i__ + 1 + h_dim1] - s * h__[i__ + (h_dim1 << 1)
                        ];
/*<                 a4 = c*h(i+1,2) - s*h(i+1,1) >*/
                a4 = c__ * h__[i__ + 1 + (h_dim1 << 1)] - s * h__[i__ + 1 +
                        h_dim1];

/*<                 h(i,2)   = c*a1 + s*a2 >*/
                h__[i__ + (h_dim1 << 1)] = c__ * a1 + s * a2;
/*<                 h(i+1,2) = c*a4 - s*a3 >*/
                h__[i__ + 1 + (h_dim1 << 1)] = c__ * a4 - s * a3;
/*<                 h(i+1,1) = c*a3 + s*a4 >*/
                h__[i__ + 1 + h_dim1] = c__ * a3 + s * a4;

/*               %----------------------------------------------------% */
/*               | Accumulate the rotation in the matrix Q;  Q <- Q*G | */
/*               %----------------------------------------------------% */

/*<                 do 50 j = 1, min( j+jj, kplusp ) >*/
/* Computing MIN */
                i__4 = j + jj;
                i__3 = min(i__4,kplusp);
                for (j = 1; j <= i__3; ++j) {
/*<                    a1       =   c*q(j,i) + s*q(j,i+1) >*/
                    a1 = c__ * q[j + i__ * q_dim1] + s * q[j + (i__ + 1) *
                            q_dim1];
/*<                    q(j,i+1) = - s*q(j,i) + c*q(j,i+1) >*/
                    q[j + (i__ + 1) * q_dim1] = -s * q[j + i__ * q_dim1] +
                            c__ * q[j + (i__ + 1) * q_dim1];
/*<                    q(j,i)   = a1 >*/
                    q[j + i__ * q_dim1] = a1;
/*<    50           continue >*/
/* L50: */
                }

/*<    70        continue >*/
/* L70: */
            }

/*<          end if >*/
        }

/*        %--------------------------% */
/*        | Update the block pointer | */
/*        %--------------------------% */

/*<          istart = iend + 1 >*/
        istart = iend + 1;

/*        %------------------------------------------% */
/*        | Make sure that h(iend,1) is non-negative | */
/*        | If not then set h(iend,1) <-- -h(iend,1) | */
/*        | and negate the last column of Q.         | */
/*        | We have effectively carried out a        | */
/*        | similarity on transformation H           | */
/*        %------------------------------------------% */

/*<          if (h(iend,1) .lt. zero) then >*/
        if (h__[iend + h_dim1] < 0.) {
/*<              h(iend,1) = -h(iend,1) >*/
            h__[iend + h_dim1] = -h__[iend + h_dim1];
/*<              call dscal(kplusp, -one, q(1,iend), 1) >*/
            dscal_(&kplusp, &c_b14, &q[iend * q_dim1 + 1], &c__1);
/*<          end if >*/
        }

/*        %--------------------------------------------------------% */
/*        | Apply the same shift to the next block if there is any | */
/*        %--------------------------------------------------------% */

/*<          if (iend .lt. kplusp) go to 20 >*/
        if (iend < kplusp) {
            goto L20;
        }

/*        %-----------------------------------------------------% */
/*        | Check if we can increase the the start of the block | */
/*        %-----------------------------------------------------% */

/*<          do 80 i = itop, kplusp-1 >*/
        i__2 = kplusp - 1;
        for (i__ = itop; i__ <= i__2; ++i__) {
/*<             if (h(i+1,1) .gt. zero) go to 90 >*/
            if (h__[i__ + 1 + h_dim1] > 0.) {
                goto L90;
            }
/*<             itop  = itop + 1 >*/
            ++itop;
/*<    80    continue >*/
/* L80: */
        }

/*        %-----------------------------------% */
/*        | Finished applying the jj-th shift | */
/*        %-----------------------------------% */

/*<    90 continue >*/
L90:
        ;
    }

/*     %------------------------------------------% */
/*     | All shifts have been applied. Check for  | */
/*     | more possible deflation that might occur | */
/*     | after the last shift is applied.         | */
/*     %------------------------------------------% */

/*<       do 100 i = itop, kplusp-1 >*/
    i__1 = kplusp - 1;
    for (i__ = itop; i__ <= i__1; ++i__) {
/*<          big   = abs(h(i,2)) + abs(h(i+1,2)) >*/
        big = (d__1 = h__[i__ + (h_dim1 << 1)], abs(d__1)) + (d__2 = h__[i__
                + 1 + (h_dim1 << 1)], abs(d__2));
/*<          if (h(i+1,1) .le. epsmch*big) then >*/
        if (h__[i__ + 1 + h_dim1] <= epsmch * big) {
/*            if (msglvl .gt. 0) then */
/*               call ivout (logfil, 1, i, ndigit, */
/*     &              '_sapps: deflation at row/column no.') */
/*               call dvout (logfil, 1, h(i+1,1), ndigit, */
/*     &              '_sapps: the corresponding off diagonal element') */
/*            end if */
/*<             h(i+1,1) = zero >*/
            h__[i__ + 1 + h_dim1] = 0.;
/*<          end if >*/
        }
/*<  100  continue >*/
/* L100: */
    }

/*     %-------------------------------------------------% */
/*     | Compute the (kev+1)-st column of (V*Q) and      | */
/*     | temporarily store the result in WORKD(N+1:2*N). | */
/*     | This is not necessary if h(kev+1,1) = 0.         | */
/*     %-------------------------------------------------% */

/*<        >*/
    if (h__[*kev + 1 + h_dim1] > 0.) {
        dgemv_("N", n, &kplusp, &c_b5, &v[v_offset], ldv, &q[(*kev + 1) *
                q_dim1 + 1], &c__1, &c_b4, &workd[*n + 1], &c__1, (ftnlen)1);
    }

/*     %-------------------------------------------------------% */
/*     | Compute column 1 to kev of (V*Q) in backward order    | */
/*     | taking advantage that Q is an upper triangular matrix | */
/*     | with lower bandwidth np.                              | */
/*     | Place results in v(:,kplusp-kev:kplusp) temporarily.  | */
/*     %-------------------------------------------------------% */

/*<       do 130 i = 1, kev >*/
    i__1 = *kev;
    for (i__ = 1; i__ <= i__1; ++i__) {
/*<        >*/
        i__2 = kplusp - i__ + 1;
        dgemv_("N", n, &i__2, &c_b5, &v[v_offset], ldv, &q[(*kev - i__ + 1) *
                q_dim1 + 1], &c__1, &c_b4, &workd[1], &c__1, (ftnlen)1);
/*<          call dcopy (n, workd, 1, v(1,kplusp-i+1), 1) >*/
        dcopy_(n, &workd[1], &c__1, &v[(kplusp - i__ + 1) * v_dim1 + 1], &
                c__1);
/*<   130 continue >*/
/* L130: */
    }

/*     %-------------------------------------------------% */
/*     |  Move v(:,kplusp-kev+1:kplusp) into v(:,1:kev). | */
/*     %-------------------------------------------------% */

/*<       call dlacpy ('All', n, kev, v(1,np+1), ldv, v, ldv) >*/
    dlacpy_("All", n, kev, &v[(*np + 1) * v_dim1 + 1], ldv, &v[v_offset], ldv,
             (ftnlen)3);

/*     %--------------------------------------------% */
/*     | Copy the (kev+1)-st column of (V*Q) in the | */
/*     | appropriate place if h(kev+1,1) .ne. zero. | */
/*     %--------------------------------------------% */

/*<        >*/
    if (h__[*kev + 1 + h_dim1] > 0.) {
        dcopy_(n, &workd[*n + 1], &c__1, &v[(*kev + 1) * v_dim1 + 1], &c__1);
    }

/*     %-------------------------------------% */
/*     | Update the residual vector:         | */
/*     |    r <- sigmak*r + betak*v(:,kev+1) | */
/*     | where                               | */
/*     |    sigmak = (e_{kev+p}'*Q)*e_{kev}  | */
/*     |    betak = e_{kev+1}'*H*e_{kev}     | */
/*     %-------------------------------------% */

/*<       call dscal (n, q(kplusp,kev), resid, 1) >*/
    dscal_(n, &q[kplusp + *kev * q_dim1], &resid[1], &c__1);
/*<        >*/
    if (h__[*kev + 1 + h_dim1] > 0.) {
        daxpy_(n, &h__[*kev + 1 + h_dim1], &v[(*kev + 1) * v_dim1 + 1], &c__1,
                 &resid[1], &c__1);
    }

/*      if (msglvl .gt. 1) then */
/*         call dvout (logfil, 1, q(kplusp,kev), ndigit, */
/*     &      '_sapps: sigmak of the updated residual vector') */
/*         call dvout (logfil, 1, h(kev+1,1), ndigit, */
/*     &      '_sapps: betak of the updated residual vector') */
/*         call dvout (logfil, kev, h(1,2), ndigit, */
/*     &      '_sapps: updated main diagonal of H for next iteration') */
/*         if (kev .gt. 1) then */
/*         call dvout (logfil, kev-1, h(2,1), ndigit, */
/*     &      '_sapps: updated sub diagonal of H for next iteration') */
/*         end if */
/*      end if */

/*<       call second (t1) >*/
/*  second_(&t1); */
/*<       tsapps = tsapps + (t1 - t0) >*/
/*  timing_1.tsapps += t1 - t0; */

/*<  9000 continue  >*/
L9000:
/*<       return >*/
    return 0;

/*     %---------------% */
/*     | End of dsapps | */
/*     %---------------% */

/*<       end >*/
} /* dsapps_ */

#ifdef __cplusplus
        }
#endif