1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
|
/* arpack/dsaup2.f -- translated by f2c (version 20090411).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/* Common Block Declarations */
/*Extern struct { */
/* integer logfil, ndigit, mgetv0, msaupd, msaup2, msaitr, mseigt, msapps, */
/* msgets, mseupd, mnaupd, mnaup2, mnaitr, mneigh, mnapps, mngets, */
/* mneupd, mcaupd, mcaup2, mcaitr, mceigh, mcapps, mcgets, mceupd; */
/*} debug_; */
/*#define debug_1 debug_ */
/*Extern struct { */
/* integer nopx, nbx, nrorth, nitref, nrstrt; */
/* real tsaupd, tsaup2, tsaitr, tseigt, tsgets, tsapps, tsconv, tnaupd, */
/* tnaup2, tnaitr, tneigh, tngets, tnapps, tnconv, tcaupd, tcaup2, */
/* tcaitr, tceigh, tcgets, tcapps, tcconv, tmvopx, tmvbx, tgetv0, */
/* titref, trvec; */
/*} timing_; */
/*#define timing_1 timing_ */
/* Table of constant values */
static doublereal c_b3 = .66666666666666663;
static integer c__1 = 1;
static integer c__0 = 0;
static logical c_true = TRUE_;
/* ----------------------------------------------------------------------- */
/* \BeginDoc */
/* \Name: dsaup2 */
/* \Description: */
/* Intermediate level interface called by dsaupd. */
/* \Usage: */
/* call dsaup2 */
/* ( IDO, BMAT, N, WHICH, NEV, NP, TOL, RESID, MODE, IUPD, */
/* ISHIFT, MXITER, V, LDV, H, LDH, RITZ, BOUNDS, Q, LDQ, WORKL, */
/* IPNTR, WORKD, INFO ) */
/* \Arguments */
/* IDO, BMAT, N, WHICH, NEV, TOL, RESID: same as defined in dsaupd. */
/* MODE, ISHIFT, MXITER: see the definition of IPARAM in dsaupd. */
/* NP Integer. (INPUT/OUTPUT) */
/* Contains the number of implicit shifts to apply during */
/* each Arnoldi/Lanczos iteration. */
/* If ISHIFT=1, NP is adjusted dynamically at each iteration */
/* to accelerate convergence and prevent stagnation. */
/* This is also roughly equal to the number of matrix-vector */
/* products (involving the operator OP) per Arnoldi iteration. */
/* The logic for adjusting is contained within the current */
/* subroutine. */
/* If ISHIFT=0, NP is the number of shifts the user needs */
/* to provide via reverse comunication. 0 < NP < NCV-NEV. */
/* NP may be less than NCV-NEV since a leading block of the current */
/* upper Tridiagonal matrix has split off and contains "unwanted" */
/* Ritz values. */
/* Upon termination of the IRA iteration, NP contains the number */
/* of "converged" wanted Ritz values. */
/* IUPD Integer. (INPUT) */
/* IUPD .EQ. 0: use explicit restart instead implicit update. */
/* IUPD .NE. 0: use implicit update. */
/* V Double precision N by (NEV+NP) array. (INPUT/OUTPUT) */
/* The Lanczos basis vectors. */
/* LDV Integer. (INPUT) */
/* Leading dimension of V exactly as declared in the calling */
/* program. */
/* H Double precision (NEV+NP) by 2 array. (OUTPUT) */
/* H is used to store the generated symmetric tridiagonal matrix */
/* The subdiagonal is stored in the first column of H starting */
/* at H(2,1). The main diagonal is stored in the second column */
/* of H starting at H(1,2). If dsaup2 converges store the */
/* B-norm of the final residual vector in H(1,1). */
/* LDH Integer. (INPUT) */
/* Leading dimension of H exactly as declared in the calling */
/* program. */
/* RITZ Double precision array of length NEV+NP. (OUTPUT) */
/* RITZ(1:NEV) contains the computed Ritz values of OP. */
/* BOUNDS Double precision array of length NEV+NP. (OUTPUT) */
/* BOUNDS(1:NEV) contain the error bounds corresponding to RITZ. */
/* Q Double precision (NEV+NP) by (NEV+NP) array. (WORKSPACE) */
/* Private (replicated) work array used to accumulate the */
/* rotation in the shift application step. */
/* LDQ Integer. (INPUT) */
/* Leading dimension of Q exactly as declared in the calling */
/* program. */
/* WORKL Double precision array of length at least 3*(NEV+NP). (INPUT/WORKSPACE) */
/* Private (replicated) array on each PE or array allocated on */
/* the front end. It is used in the computation of the */
/* tridiagonal eigenvalue problem, the calculation and */
/* application of the shifts and convergence checking. */
/* If ISHIFT .EQ. O and IDO .EQ. 3, the first NP locations */
/* of WORKL are used in reverse communication to hold the user */
/* supplied shifts. */
/* IPNTR Integer array of length 3. (OUTPUT) */
/* Pointer to mark the starting locations in the WORKD for */
/* vectors used by the Lanczos iteration. */
/* ------------------------------------------------------------- */
/* IPNTR(1): pointer to the current operand vector X. */
/* IPNTR(2): pointer to the current result vector Y. */
/* IPNTR(3): pointer to the vector B * X when used in one of */
/* the spectral transformation modes. X is the current */
/* operand. */
/* ------------------------------------------------------------- */
/* WORKD Double precision work array of length 3*N. (REVERSE COMMUNICATION) */
/* Distributed array to be used in the basic Lanczos iteration */
/* for reverse communication. The user should not use WORKD */
/* as temporary workspace during the iteration !!!!!!!!!! */
/* See Data Distribution Note in dsaupd. */
/* INFO Integer. (INPUT/OUTPUT) */
/* If INFO .EQ. 0, a randomly initial residual vector is used. */
/* If INFO .NE. 0, RESID contains the initial residual vector, */
/* possibly from a previous run. */
/* Error flag on output. */
/* = 0: Normal return. */
/* = 1: All possible eigenvalues of OP has been found. */
/* NP returns the size of the invariant subspace */
/* spanning the operator OP. */
/* = 2: No shifts could be applied. */
/* = -8: Error return from trid. eigenvalue calculation; */
/* This should never happen. */
/* = -9: Starting vector is zero. */
/* = -9999: Could not build an Lanczos factorization. */
/* Size that was built in returned in NP. */
/* \EndDoc */
/* ----------------------------------------------------------------------- */
/* \BeginLib */
/* \References: */
/* 1. D.C. Sorensen, "Implicit Application of Polynomial Filters in */
/* a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992), */
/* pp 357-385. */
/* 2. R.B. Lehoucq, "Analysis and Implementation of an Implicitly */
/* Restarted Arnoldi Iteration", Rice University Technical Report */
/* TR95-13, Department of Computational and Applied Mathematics. */
/* 3. B.N. Parlett, "The Symmetric Eigenvalue Problem". Prentice-Hall, */
/* 1980. */
/* 4. B.N. Parlett, B. Nour-Omid, "Towards a Black Box Lanczos Program", */
/* Computer Physics Communications, 53 (1989), pp 169-179. */
/* 5. B. Nour-Omid, B.N. Parlett, T. Ericson, P.S. Jensen, "How to */
/* Implement the Spectral Transformation", Math. Comp., 48 (1987), */
/* pp 663-673. */
/* 6. R.G. Grimes, J.G. Lewis and H.D. Simon, "A Shifted Block Lanczos */
/* Algorithm for Solving Sparse Symmetric Generalized Eigenproblems", */
/* SIAM J. Matr. Anal. Apps., January (1993). */
/* 7. L. Reichel, W.B. Gragg, "Algorithm 686: FORTRAN Subroutines */
/* for Updating the QR decomposition", ACM TOMS, December 1990, */
/* Volume 16 Number 4, pp 369-377. */
/* \Routines called: */
/* dgetv0 ARPACK initial vector generation routine. */
/* dsaitr ARPACK Lanczos factorization routine. */
/* dsapps ARPACK application of implicit shifts routine. */
/* dsconv ARPACK convergence of Ritz values routine. */
/* dseigt ARPACK compute Ritz values and error bounds routine. */
/* dsgets ARPACK reorder Ritz values and error bounds routine. */
/* dsortr ARPACK sorting routine. */
/* second ARPACK utility routine for timing. */
/* dlamch LAPACK routine that determines machine constants. */
/* dcopy Level 1 BLAS that copies one vector to another. */
/* ddot Level 1 BLAS that computes the scalar product of two vectors. */
/* dnrm2 Level 1 BLAS that computes the norm of a vector. */
/* dscal Level 1 BLAS that scales a vector. */
/* dswap Level 1 BLAS that swaps two vectors. */
/* \Author */
/* Danny Sorensen Phuong Vu */
/* Richard Lehoucq CRPC / Rice University */
/* Dept. of Computational & Houston, Texas */
/* Applied Mathematics */
/* Rice University */
/* Houston, Texas */
/* \Revision history: */
/* 12/15/93: Version ' 2.4' */
/* xx/xx/95: Version ' 2.4'. (R.B. Lehoucq) */
/* \SCCS Information: @(#) */
/* FILE: saup2.F SID: 2.6 DATE OF SID: 8/16/96 RELEASE: 2 */
/* \EndLib */
/* ----------------------------------------------------------------------- */
/*< >*/
/* Subroutine */ int dsaup2_(integer *ido, char *bmat, integer *n, char *
which, integer *nev, integer *np, doublereal *tol, doublereal *resid,
integer *mode, integer *iupd, integer *ishift, integer *mxiter,
doublereal *v, integer *ldv, doublereal *h__, integer *ldh,
doublereal *ritz, doublereal *bounds, doublereal *q, integer *ldq,
doublereal *workl, integer *ipntr, doublereal *workd, integer *info,
ftnlen bmat_len, ftnlen which_len)
{
/* System generated locals */
integer h_dim1, h_offset, q_dim1, q_offset, v_dim1, v_offset, i__1, i__2,
i__3;
doublereal d__1, d__2, d__3;
/* Builtin functions */
double pow_dd(doublereal *, doublereal *);
integer s_cmp(char *, char *, ftnlen, ftnlen);
/* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
double sqrt(doublereal);
/* Local variables */
integer j;
/* static real t0, t1, t2, t3; */
/* integer kp[3]; */
static integer np0, nev0;
extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *,
integer *);
static doublereal eps23;
integer ierr;
static integer iter;
doublereal temp;
integer nevd2;
extern doublereal dnrm2_(integer *, doublereal *, integer *);
static logical getv0;
integer nevm2;
static logical cnorm;
extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
doublereal *, integer *), dswap_(integer *, doublereal *, integer
*, doublereal *, integer *);
static integer nconv;
static logical initv;
static doublereal rnorm;
extern /* Subroutine */ int dgetv0_(integer *, char *, integer *, logical
*, integer *, integer *, doublereal *, integer *, doublereal *,
doublereal *, integer *, doublereal *, integer *, ftnlen);
extern doublereal dlamch_(char *, ftnlen);
integer nevbef;
extern /* Subroutine */ int second_(real *);
static logical update;
char wprime[2];
static logical ushift;
static integer kplusp /*, msglvl */;
integer nptemp;
extern /* Subroutine */ int dsaitr_(integer *, char *, integer *, integer
*, integer *, integer *, doublereal *, doublereal *, doublereal *,
integer *, doublereal *, integer *, integer *, doublereal *,
integer *, ftnlen), dsconv_(integer *, doublereal *, doublereal *,
doublereal *, integer *), dseigt_(doublereal *, integer *,
doublereal *, integer *, doublereal *, doublereal *, doublereal *,
integer *), dsgets_(integer *, char *, integer *, integer *,
doublereal *, doublereal *, doublereal *, ftnlen), dsapps_(
integer *, integer *, integer *, doublereal *, doublereal *,
integer *, doublereal *, integer *, doublereal *, doublereal *,
integer *, doublereal *), dsortr_(char *, logical *, integer *,
doublereal *, doublereal *, ftnlen);
/* %----------------------------------------------------% */
/* | Include files for debugging and timing information | */
/* %----------------------------------------------------% */
/*< include 'debug.h' >*/
/*< include 'stat.h' >*/
/* \SCCS Information: @(#) */
/* FILE: debug.h SID: 2.3 DATE OF SID: 11/16/95 RELEASE: 2 */
/* %---------------------------------% */
/* | See debug.doc for documentation | */
/* %---------------------------------% */
/*< >*/
/*< character bmat*1, which*2 >*/
/* %------------------% */
/* | Scalar Arguments | */
/* %------------------% */
/* %--------------------------------% */
/* | See stat.doc for documentation | */
/* %--------------------------------% */
/* \SCCS Information: @(#) */
/* FILE: stat.h SID: 2.2 DATE OF SID: 11/16/95 RELEASE: 2 */
/*< save t0, t1, t2, t3, t4, t5 >*/
/*< integer nopx, nbx, nrorth, nitref, nrstrt >*/
/*< >*/
/*< >*/
/*< >*/
/*< >*/
/* %-----------------% */
/* | Array Arguments | */
/* %-----------------% */
/*< integer ipntr(3) >*/
/*< >*/
/* %------------% */
/* | Parameters | */
/* %------------% */
/*< >*/
/*< parameter (one = 1.0D+0, zero = 0.0D+0) >*/
/* %---------------% */
/* | Local Scalars | */
/* %---------------% */
/*< character wprime*2 >*/
/*< logical cnorm, getv0, initv, update, ushift >*/
/*< >*/
/*< >*/
/*< >*/
/* %----------------------% */
/* | External Subroutines | */
/* %----------------------% */
/*< >*/
/* %--------------------% */
/* | External Functions | */
/* %--------------------% */
/*< >*/
/*< external ddot, dnrm2, dlamch >*/
/* %---------------------% */
/* | Intrinsic Functions | */
/* %---------------------% */
/*< intrinsic min >*/
/* %-----------------------% */
/* | Executable Statements | */
/* %-----------------------% */
/*< if (ido .eq. 0) then >*/
/* Parameter adjustments */
--workd;
--resid;
--workl;
--bounds;
--ritz;
v_dim1 = *ldv;
v_offset = 1 + v_dim1;
v -= v_offset;
h_dim1 = *ldh;
h_offset = 1 + h_dim1;
h__ -= h_offset;
q_dim1 = *ldq;
q_offset = 1 + q_dim1;
q -= q_offset;
--ipntr;
/* Function Body */
if (*ido == 0) {
/* %-------------------------------% */
/* | Initialize timing statistics | */
/* | & message level for debugging | */
/* %-------------------------------% */
/*< call second (t0) >*/
/* second_(&t0); */
/*< msglvl = msaup2 >*/
/* msglvl = debug_1.msaup2; */
/* %---------------------------------% */
/* | Set machine dependent constant. | */
/* %---------------------------------% */
/*< eps23 = dlamch('Epsilon-Machine') >*/
eps23 = dlamch_("Epsilon-Machine", (ftnlen)15);
/*< eps23 = eps23**(2.0D+0/3.0D+0) >*/
eps23 = pow_dd(&eps23, &c_b3);
/* %-------------------------------------% */
/* | nev0 and np0 are integer variables | */
/* | hold the initial values of NEV & NP | */
/* %-------------------------------------% */
/*< nev0 = nev >*/
nev0 = *nev;
/*< np0 = np >*/
np0 = *np;
/* %-------------------------------------% */
/* | kplusp is the bound on the largest | */
/* | Lanczos factorization built. | */
/* | nconv is the current number of | */
/* | "converged" eigenvlues. | */
/* | iter is the counter on the current | */
/* | iteration step. | */
/* %-------------------------------------% */
/*< kplusp = nev0 + np0 >*/
kplusp = nev0 + np0;
/*< nconv = 0 >*/
nconv = 0;
/*< iter = 0 >*/
iter = 0;
/* %--------------------------------------------% */
/* | Set flags for computing the first NEV steps | */
/* | of the Lanczos factorization. | */
/* %--------------------------------------------% */
/*< getv0 = .true. >*/
getv0 = TRUE_;
/*< update = .false. >*/
update = FALSE_;
/*< ushift = .false. >*/
ushift = FALSE_;
/*< cnorm = .false. >*/
cnorm = FALSE_;
/*< if (info .ne. 0) then >*/
if (*info != 0) {
/* %--------------------------------------------% */
/* | User provides the initial residual vector. | */
/* %--------------------------------------------% */
/*< initv = .true. >*/
initv = TRUE_;
/*< info = 0 >*/
*info = 0;
/*< else >*/
} else {
/*< initv = .false. >*/
initv = FALSE_;
/*< end if >*/
}
/*< end if >*/
}
/* %---------------------------------------------% */
/* | Get a possibly random starting vector and | */
/* | force it into the range of the operator OP. | */
/* %---------------------------------------------% */
/*< 10 continue >*/
/* L10: */
/*< if (getv0) then >*/
if (getv0) {
/*< >*/
dgetv0_(ido, bmat, &c__1, &initv, n, &c__1, &v[v_offset], ldv, &resid[
1], &rnorm, &ipntr[1], &workd[1], info, (ftnlen)1);
/*< if (ido .ne. 99) go to 9000 >*/
if (*ido != 99) {
goto L9000;
}
/*< if (rnorm .eq. zero) then >*/
if (rnorm == 0.) {
/* %-----------------------------------------% */
/* | The initial vector is zero. Error exit. | */
/* %-----------------------------------------% */
/*< info = -9 >*/
*info = -9;
/*< go to 1200 >*/
goto L1200;
/*< end if >*/
}
/*< getv0 = .false. >*/
getv0 = FALSE_;
/*< ido = 0 >*/
*ido = 0;
/*< end if >*/
}
/* %------------------------------------------------------------% */
/* | Back from reverse communication: continue with update step | */
/* %------------------------------------------------------------% */
/*< if (update) go to 20 >*/
if (update) {
goto L20;
}
/* %-------------------------------------------% */
/* | Back from computing user specified shifts | */
/* %-------------------------------------------% */
/*< if (ushift) go to 50 >*/
if (ushift) {
goto L50;
}
/* %-------------------------------------% */
/* | Back from computing residual norm | */
/* | at the end of the current iteration | */
/* %-------------------------------------% */
/*< if (cnorm) go to 100 >*/
if (cnorm) {
goto L100;
}
/* %----------------------------------------------------------% */
/* | Compute the first NEV steps of the Lanczos factorization | */
/* %----------------------------------------------------------% */
/*< >*/
dsaitr_(ido, bmat, n, &c__0, &nev0, mode, &resid[1], &rnorm, &v[v_offset],
ldv, &h__[h_offset], ldh, &ipntr[1], &workd[1], info, (ftnlen)1);
/* %---------------------------------------------------% */
/* | ido .ne. 99 implies use of reverse communication | */
/* | to compute operations involving OP and possibly B | */
/* %---------------------------------------------------% */
/*< if (ido .ne. 99) go to 9000 >*/
if (*ido != 99) {
goto L9000;
}
/*< if (info .gt. 0) then >*/
if (*info > 0) {
/* %-----------------------------------------------------% */
/* | dsaitr was unable to build an Lanczos factorization | */
/* | of length NEV0. INFO is returned with the size of | */
/* | the factorization built. Exit main loop. | */
/* %-----------------------------------------------------% */
/*< np = info >*/
*np = *info;
/*< mxiter = iter >*/
*mxiter = iter;
/*< info = -9999 >*/
*info = -9999;
/*< go to 1200 >*/
goto L1200;
/*< end if >*/
}
/* %--------------------------------------------------------------% */
/* | | */
/* | M A I N LANCZOS I T E R A T I O N L O O P | */
/* | Each iteration implicitly restarts the Lanczos | */
/* | factorization in place. | */
/* | | */
/* %--------------------------------------------------------------% */
/*< 1000 continue >*/
L1000:
/*< iter = iter + 1 >*/
++iter;
/* if (msglvl .gt. 0) then */
/* call ivout (logfil, 1, iter, ndigit, */
/* & '_saup2: **** Start of major iteration number ****') */
/* end if */
/* if (msglvl .gt. 1) then */
/* call ivout (logfil, 1, nev, ndigit, */
/* & '_saup2: The length of the current Lanczos factorization') */
/* call ivout (logfil, 1, np, ndigit, */
/* & '_saup2: Extend the Lanczos factorization by') */
/* end if */
/* %------------------------------------------------------------% */
/* | Compute NP additional steps of the Lanczos factorization. | */
/* %------------------------------------------------------------% */
/*< ido = 0 >*/
*ido = 0;
/*< 20 continue >*/
L20:
/*< update = .true. >*/
update = TRUE_;
/*< >*/
dsaitr_(ido, bmat, n, nev, np, mode, &resid[1], &rnorm, &v[v_offset], ldv,
&h__[h_offset], ldh, &ipntr[1], &workd[1], info, (ftnlen)1);
/* %---------------------------------------------------% */
/* | ido .ne. 99 implies use of reverse communication | */
/* | to compute operations involving OP and possibly B | */
/* %---------------------------------------------------% */
/*< if (ido .ne. 99) go to 9000 >*/
if (*ido != 99) {
goto L9000;
}
/*< if (info .gt. 0) then >*/
if (*info > 0) {
/* %-----------------------------------------------------% */
/* | dsaitr was unable to build an Lanczos factorization | */
/* | of length NEV0+NP0. INFO is returned with the size | */
/* | of the factorization built. Exit main loop. | */
/* %-----------------------------------------------------% */
/*< np = info >*/
*np = *info;
/*< mxiter = iter >*/
*mxiter = iter;
/*< info = -9999 >*/
*info = -9999;
/*< go to 1200 >*/
goto L1200;
/*< end if >*/
}
/*< update = .false. >*/
update = FALSE_;
/* if (msglvl .gt. 1) then */
/* call dvout (logfil, 1, rnorm, ndigit, */
/* & '_saup2: Current B-norm of residual for factorization') */
/* end if */
/* %--------------------------------------------------------% */
/* | Compute the eigenvalues and corresponding error bounds | */
/* | of the current symmetric tridiagonal matrix. | */
/* %--------------------------------------------------------% */
/*< call dseigt (rnorm, kplusp, h, ldh, ritz, bounds, workl, ierr) >*/
dseigt_(&rnorm, &kplusp, &h__[h_offset], ldh, &ritz[1], &bounds[1], &
workl[1], &ierr);
/*< if (ierr .ne. 0) then >*/
if (ierr != 0) {
/*< info = -8 >*/
*info = -8;
/*< go to 1200 >*/
goto L1200;
/*< end if >*/
}
/* %----------------------------------------------------% */
/* | Make a copy of eigenvalues and corresponding error | */
/* | bounds obtained from _seigt. | */
/* %----------------------------------------------------% */
/*< call dcopy(kplusp, ritz, 1, workl(kplusp+1), 1) >*/
dcopy_(&kplusp, &ritz[1], &c__1, &workl[kplusp + 1], &c__1);
/*< call dcopy(kplusp, bounds, 1, workl(2*kplusp+1), 1) >*/
dcopy_(&kplusp, &bounds[1], &c__1, &workl[(kplusp << 1) + 1], &c__1);
/* %---------------------------------------------------% */
/* | Select the wanted Ritz values and their bounds | */
/* | to be used in the convergence test. | */
/* | The selection is based on the requested number of | */
/* | eigenvalues instead of the current NEV and NP to | */
/* | prevent possible misconvergence. | */
/* | * Wanted Ritz values := RITZ(NP+1:NEV+NP) | */
/* | * Shifts := RITZ(1:NP) := WORKL(1:NP) | */
/* %---------------------------------------------------% */
/*< nev = nev0 >*/
*nev = nev0;
/*< np = np0 >*/
*np = np0;
/*< call dsgets (ishift, which, nev, np, ritz, bounds, workl) >*/
dsgets_(ishift, which, nev, np, &ritz[1], &bounds[1], &workl[1], (ftnlen)
2);
/* %-------------------% */
/* | Convergence test. | */
/* %-------------------% */
/*< call dcopy (nev, bounds(np+1), 1, workl(np+1), 1) >*/
dcopy_(nev, &bounds[*np + 1], &c__1, &workl[*np + 1], &c__1);
/*< call dsconv (nev, ritz(np+1), workl(np+1), tol, nconv) >*/
dsconv_(nev, &ritz[*np + 1], &workl[*np + 1], tol, &nconv);
/*< if (msglvl .gt. 2) then >*/
/* if (msglvl > 2) { */
/*< kp(1) = nev >*/
/* kp[0] = *nev; */
/*< kp(2) = np >*/
/* kp[1] = *np; */
/*< kp(3) = nconv >*/
/* kp[2] = nconv; */
/* call ivout (logfil, 3, kp, ndigit, */
/* & '_saup2: NEV, NP, NCONV are') */
/* call dvout (logfil, kplusp, ritz, ndigit, */
/* & '_saup2: The eigenvalues of H') */
/* call dvout (logfil, kplusp, bounds, ndigit, */
/* & '_saup2: Ritz estimates of the current NCV Ritz values') */
/*< end if >*/
/* } */
/* %---------------------------------------------------------% */
/* | Count the number of unwanted Ritz values that have zero | */
/* | Ritz estimates. If any Ritz estimates are equal to zero | */
/* | then a leading block of H of order equal to at least | */
/* | the number of Ritz values with zero Ritz estimates has | */
/* | split off. None of these Ritz values may be removed by | */
/* | shifting. Decrease NP the number of shifts to apply. If | */
/* | no shifts may be applied, then prepare to exit | */
/* %---------------------------------------------------------% */
/*< nptemp = np >*/
nptemp = *np;
/*< do 30 j=1, nptemp >*/
i__1 = nptemp;
for (j = 1; j <= i__1; ++j) {
/*< if (bounds(j) .eq. zero) then >*/
if (bounds[j] == 0.) {
/*< np = np - 1 >*/
--(*np);
/*< nev = nev + 1 >*/
++(*nev);
/*< end if >*/
}
/*< 30 continue >*/
/* L30: */
}
/*< >*/
if (nconv >= nev0 || iter > *mxiter || *np == 0) {
/* %------------------------------------------------% */
/* | Prepare to exit. Put the converged Ritz values | */
/* | and corresponding bounds in RITZ(1:NCONV) and | */
/* | BOUNDS(1:NCONV) respectively. Then sort. Be | */
/* | careful when NCONV > NP since we don't want to | */
/* | swap overlapping locations. | */
/* %------------------------------------------------% */
/*< if (which .eq. 'BE') then >*/
if (s_cmp(which, "BE", (ftnlen)2, (ftnlen)2) == 0) {
/* %-----------------------------------------------------% */
/* | Both ends of the spectrum are requested. | */
/* | Sort the eigenvalues into algebraically decreasing | */
/* | order first then swap low end of the spectrum next | */
/* | to high end in appropriate locations. | */
/* | NOTE: when np < floor(nev/2) be careful not to swap | */
/* | overlapping locations. | */
/* %-----------------------------------------------------% */
/*< wprime = 'SA' >*/
s_copy(wprime, "SA", (ftnlen)2, (ftnlen)2);
/*< call dsortr (wprime, .true., kplusp, ritz, bounds) >*/
dsortr_(wprime, &c_true, &kplusp, &ritz[1], &bounds[1], (ftnlen)2)
;
/*< nevd2 = nev / 2 >*/
nevd2 = *nev / 2;
/*< nevm2 = nev - nevd2 >*/
nevm2 = *nev - nevd2;
/*< if ( nev .gt. 1 ) then >*/
if (*nev > 1) {
/*< >*/
i__1 = min(nevd2,*np);
/* Computing MAX */
i__2 = kplusp - nevd2 + 1, i__3 = kplusp - *np + 1;
dswap_(&i__1, &ritz[nevm2 + 1], &c__1, &ritz[max(i__2,i__3)],
&c__1);
/*< >*/
i__1 = min(nevd2,*np);
/* Computing MAX */
i__2 = kplusp - nevd2 + 1, i__3 = kplusp - *np;
dswap_(&i__1, &bounds[nevm2 + 1], &c__1, &bounds[max(i__2,
i__3) + 1], &c__1);
/*< end if >*/
}
/*< else >*/
} else {
/* %--------------------------------------------------% */
/* | LM, SM, LA, SA case. | */
/* | Sort the eigenvalues of H into the an order that | */
/* | is opposite to WHICH, and apply the resulting | */
/* | order to BOUNDS. The eigenvalues are sorted so | */
/* | that the wanted part are always within the first | */
/* | NEV locations. | */
/* %--------------------------------------------------% */
/*< if (which .eq. 'LM') wprime = 'SM' >*/
if (s_cmp(which, "LM", (ftnlen)2, (ftnlen)2) == 0) {
s_copy(wprime, "SM", (ftnlen)2, (ftnlen)2);
}
/*< if (which .eq. 'SM') wprime = 'LM' >*/
if (s_cmp(which, "SM", (ftnlen)2, (ftnlen)2) == 0) {
s_copy(wprime, "LM", (ftnlen)2, (ftnlen)2);
}
/*< if (which .eq. 'LA') wprime = 'SA' >*/
if (s_cmp(which, "LA", (ftnlen)2, (ftnlen)2) == 0) {
s_copy(wprime, "SA", (ftnlen)2, (ftnlen)2);
}
/*< if (which .eq. 'SA') wprime = 'LA' >*/
if (s_cmp(which, "SA", (ftnlen)2, (ftnlen)2) == 0) {
s_copy(wprime, "LA", (ftnlen)2, (ftnlen)2);
}
/*< call dsortr (wprime, .true., kplusp, ritz, bounds) >*/
dsortr_(wprime, &c_true, &kplusp, &ritz[1], &bounds[1], (ftnlen)2)
;
/*< end if >*/
}
/* %--------------------------------------------------% */
/* | Scale the Ritz estimate of each Ritz value | */
/* | by 1 / max(eps23,magnitude of the Ritz value). | */
/* %--------------------------------------------------% */
/*< do 35 j = 1, nev0 >*/
i__1 = nev0;
for (j = 1; j <= i__1; ++j) {
/*< temp = max( eps23, abs(ritz(j)) ) >*/
/* Computing MAX */
d__2 = eps23, d__3 = (d__1 = ritz[j], abs(d__1));
temp = max(d__2,d__3);
/*< bounds(j) = bounds(j)/temp >*/
bounds[j] /= temp;
/*< 35 continue >*/
/* L35: */
}
/* %----------------------------------------------------% */
/* | Sort the Ritz values according to the scaled Ritz | */
/* | esitmates. This will push all the converged ones | */
/* | towards the front of ritzr, ritzi, bounds | */
/* | (in the case when NCONV < NEV.) | */
/* %----------------------------------------------------% */
/*< wprime = 'LA' >*/
s_copy(wprime, "LA", (ftnlen)2, (ftnlen)2);
/*< call dsortr(wprime, .true., nev0, bounds, ritz) >*/
dsortr_(wprime, &c_true, &nev0, &bounds[1], &ritz[1], (ftnlen)2);
/* %----------------------------------------------% */
/* | Scale the Ritz estimate back to its original | */
/* | value. | */
/* %----------------------------------------------% */
/*< do 40 j = 1, nev0 >*/
i__1 = nev0;
for (j = 1; j <= i__1; ++j) {
/*< temp = max( eps23, abs(ritz(j)) ) >*/
/* Computing MAX */
d__2 = eps23, d__3 = (d__1 = ritz[j], abs(d__1));
temp = max(d__2,d__3);
/*< bounds(j) = bounds(j)*temp >*/
bounds[j] *= temp;
/*< 40 continue >*/
/* L40: */
}
/* %--------------------------------------------------% */
/* | Sort the "converged" Ritz values again so that | */
/* | the "threshold" values and their associated Ritz | */
/* | estimates appear at the appropriate position in | */
/* | ritz and bound. | */
/* %--------------------------------------------------% */
/*< if (which .eq. 'BE') then >*/
if (s_cmp(which, "BE", (ftnlen)2, (ftnlen)2) == 0) {
/* %------------------------------------------------% */
/* | Sort the "converged" Ritz values in increasing | */
/* | order. The "threshold" values are in the | */
/* | middle. | */
/* %------------------------------------------------% */
/*< wprime = 'LA' >*/
s_copy(wprime, "LA", (ftnlen)2, (ftnlen)2);
/*< call dsortr(wprime, .true., nconv, ritz, bounds) >*/
dsortr_(wprime, &c_true, &nconv, &ritz[1], &bounds[1], (ftnlen)2);
/*< else >*/
} else {
/* %----------------------------------------------% */
/* | In LM, SM, LA, SA case, sort the "converged" | */
/* | Ritz values according to WHICH so that the | */
/* | "threshold" value appears at the front of | */
/* | ritz. | */
/* %----------------------------------------------% */
/*< call dsortr(which, .true., nconv, ritz, bounds) >*/
dsortr_(which, &c_true, &nconv, &ritz[1], &bounds[1], (ftnlen)2);
/*< end if >*/
}
/* %------------------------------------------% */
/* | Use h( 1,1 ) as storage to communicate | */
/* | rnorm to _seupd if needed | */
/* %------------------------------------------% */
/*< h(1,1) = rnorm >*/
h__[h_dim1 + 1] = rnorm;
/* if (msglvl .gt. 1) then */
/* call dvout (logfil, kplusp, ritz, ndigit, */
/* & '_saup2: Sorted Ritz values.') */
/* call dvout (logfil, kplusp, bounds, ndigit, */
/* & '_saup2: Sorted ritz estimates.') */
/* end if */
/* %------------------------------------% */
/* | Max iterations have been exceeded. | */
/* %------------------------------------% */
/*< if (iter .gt. mxiter .and. nconv .lt. nev) info = 1 >*/
if (iter > *mxiter && nconv < *nev) {
*info = 1;
}
/* %---------------------% */
/* | No shifts to apply. | */
/* %---------------------% */
/*< if (np .eq. 0 .and. nconv .lt. nev0) info = 2 >*/
if (*np == 0 && nconv < nev0) {
*info = 2;
}
/*< np = nconv >*/
*np = nconv;
/*< go to 1100 >*/
goto L1100;
/*< else if (nconv .lt. nev .and. ishift .eq. 1) then >*/
} else if (nconv < *nev && *ishift == 1) {
/* %---------------------------------------------------% */
/* | Do not have all the requested eigenvalues yet. | */
/* | To prevent possible stagnation, adjust the number | */
/* | of Ritz values and the shifts. | */
/* %---------------------------------------------------% */
/*< nevbef = nev >*/
nevbef = *nev;
/*< nev = nev + min (nconv, np/2) >*/
/* Computing MIN */
i__1 = nconv, i__2 = *np / 2;
*nev += min(i__1,i__2);
/*< if (nev .eq. 1 .and. kplusp .ge. 6) then >*/
if (*nev == 1 && kplusp >= 6) {
/*< nev = kplusp / 2 >*/
*nev = kplusp / 2;
/*< else if (nev .eq. 1 .and. kplusp .gt. 2) then >*/
} else if (*nev == 1 && kplusp > 2) {
/*< nev = 2 >*/
*nev = 2;
/*< end if >*/
}
/*< np = kplusp - nev >*/
*np = kplusp - *nev;
/* %---------------------------------------% */
/* | If the size of NEV was just increased | */
/* | resort the eigenvalues. | */
/* %---------------------------------------% */
/*< >*/
if (nevbef < *nev) {
dsgets_(ishift, which, nev, np, &ritz[1], &bounds[1], &workl[1], (
ftnlen)2);
}
/*< end if >*/
}
/*< if (msglvl .gt. 0) then >*/
/* if (msglvl > 0) { */
/* call ivout (logfil, 1, nconv, ndigit, */
/* & '_saup2: no. of "converged" Ritz values at this iter.') */
/*< if (msglvl .gt. 1) then >*/
/* if (msglvl > 1) { */
/*< kp(1) = nev >*/
/* kp[0] = *nev; */
/*< kp(2) = np >*/
/* kp[1] = *np; */
/* call ivout (logfil, 2, kp, ndigit, */
/* & '_saup2: NEV and NP are') */
/* call dvout (logfil, nev, ritz(np+1), ndigit, */
/* & '_saup2: "wanted" Ritz values.') */
/* call dvout (logfil, nev, bounds(np+1), ndigit, */
/* & '_saup2: Ritz estimates of the "wanted" values ') */
/*< end if >*/
/* } */
/*< end if >*/
/* } */
/*< if (ishift .eq. 0) then >*/
if (*ishift == 0) {
/* %-----------------------------------------------------% */
/* | User specified shifts: reverse communication to | */
/* | compute the shifts. They are returned in the first | */
/* | NP locations of WORKL. | */
/* %-----------------------------------------------------% */
/*< ushift = .true. >*/
ushift = TRUE_;
/*< ido = 3 >*/
*ido = 3;
/*< go to 9000 >*/
goto L9000;
/*< end if >*/
}
/*< 50 continue >*/
L50:
/* %------------------------------------% */
/* | Back from reverse communication; | */
/* | User specified shifts are returned | */
/* | in WORKL(1:*NP) | */
/* %------------------------------------% */
/*< ushift = .false. >*/
ushift = FALSE_;
/* %---------------------------------------------------------% */
/* | Move the NP shifts to the first NP locations of RITZ to | */
/* | free up WORKL. This is for the non-exact shift case; | */
/* | in the exact shift case, dsgets already handles this. | */
/* %---------------------------------------------------------% */
/*< if (ishift .eq. 0) call dcopy (np, workl, 1, ritz, 1) >*/
if (*ishift == 0) {
dcopy_(np, &workl[1], &c__1, &ritz[1], &c__1);
}
/* if (msglvl .gt. 2) then */
/* call ivout (logfil, 1, np, ndigit, */
/* & '_saup2: The number of shifts to apply ') */
/* call dvout (logfil, np, workl, ndigit, */
/* & '_saup2: shifts selected') */
/* if (ishift .eq. 1) then */
/* call dvout (logfil, np, bounds, ndigit, */
/* & '_saup2: corresponding Ritz estimates') */
/* end if */
/* end if */
/* %---------------------------------------------------------% */
/* | Apply the NP0 implicit shifts by QR bulge chasing. | */
/* | Each shift is applied to the entire tridiagonal matrix. | */
/* | The first 2*N locations of WORKD are used as workspace. | */
/* | After dsapps is done, we have a Lanczos | */
/* | factorization of length NEV. | */
/* %---------------------------------------------------------% */
/*< >*/
dsapps_(n, nev, np, &ritz[1], &v[v_offset], ldv, &h__[h_offset], ldh, &
resid[1], &q[q_offset], ldq, &workd[1]);
/* %---------------------------------------------% */
/* | Compute the B-norm of the updated residual. | */
/* | Keep B*RESID in WORKD(1:N) to be used in | */
/* | the first step of the next call to dsaitr. | */
/* %---------------------------------------------% */
/*< cnorm = .true. >*/
cnorm = TRUE_;
/*< call second (t2) >*/
/* second_(&t2); */
/*< if (bmat .eq. 'G') then >*/
if (*(unsigned char *)bmat == 'G') {
/*< nbx = nbx + 1 >*/
/* ++timing_1.nbx; */
/*< call dcopy (n, resid, 1, workd(n+1), 1) >*/
dcopy_(n, &resid[1], &c__1, &workd[*n + 1], &c__1);
/*< ipntr(1) = n + 1 >*/
ipntr[1] = *n + 1;
/*< ipntr(2) = 1 >*/
ipntr[2] = 1;
/*< ido = 2 >*/
*ido = 2;
/* %----------------------------------% */
/* | Exit in order to compute B*RESID | */
/* %----------------------------------% */
/*< go to 9000 >*/
goto L9000;
/*< else if (bmat .eq. 'I') then >*/
} else if (*(unsigned char *)bmat == 'I') {
/*< call dcopy (n, resid, 1, workd, 1) >*/
dcopy_(n, &resid[1], &c__1, &workd[1], &c__1);
/*< end if >*/
}
/*< 100 continue >*/
L100:
/* %----------------------------------% */
/* | Back from reverse communication; | */
/* | WORKD(1:N) := B*RESID | */
/* %----------------------------------% */
/*< if (bmat .eq. 'G') then >*/
if (*(unsigned char *)bmat == 'G') {
/*< call second (t3) >*/
/* second_(&t3); */
/*< tmvbx = tmvbx + (t3 - t2) >*/
/* timing_1.tmvbx += t3 - t2; */
/*< end if >*/
}
/*< if (bmat .eq. 'G') then >*/
if (*(unsigned char *)bmat == 'G') {
/*< rnorm = ddot (n, resid, 1, workd, 1) >*/
rnorm = ddot_(n, &resid[1], &c__1, &workd[1], &c__1);
/*< rnorm = sqrt(abs(rnorm)) >*/
rnorm = sqrt((abs(rnorm)));
/*< else if (bmat .eq. 'I') then >*/
} else if (*(unsigned char *)bmat == 'I') {
/*< rnorm = dnrm2(n, resid, 1) >*/
rnorm = dnrm2_(n, &resid[1], &c__1);
/*< end if >*/
}
/*< cnorm = .false. >*/
cnorm = FALSE_;
/*< 130 continue >*/
/* L130: */
/* if (msglvl .gt. 2) then */
/* call dvout (logfil, 1, rnorm, ndigit, */
/* & '_saup2: B-norm of residual for NEV factorization') */
/* call dvout (logfil, nev, h(1,2), ndigit, */
/* & '_saup2: main diagonal of compressed H matrix') */
/* call dvout (logfil, nev-1, h(2,1), ndigit, */
/* & '_saup2: subdiagonal of compressed H matrix') */
/* end if */
/*< go to 1000 >*/
goto L1000;
/* %---------------------------------------------------------------% */
/* | | */
/* | E N D O F M A I N I T E R A T I O N L O O P | */
/* | | */
/* %---------------------------------------------------------------% */
/*< 1100 continue >*/
L1100:
/*< mxiter = iter >*/
*mxiter = iter;
/*< nev = nconv >*/
*nev = nconv;
/*< 1200 continue >*/
L1200:
/*< ido = 99 >*/
*ido = 99;
/* %------------% */
/* | Error exit | */
/* %------------% */
/*< call second (t1) >*/
/* second_(&t1); */
/*< tsaup2 = t1 - t0 >*/
/* timing_1.tsaup2 = t1 - t0; */
/*< 9000 continue >*/
L9000:
/*< return >*/
return 0;
/* %---------------% */
/* | End of dsaup2 | */
/* %---------------% */
/*< end >*/
} /* dsaup2_ */
#ifdef __cplusplus
}
#endif
|