File: dseupd.c

package info (click to toggle)
vxl 1.17.0.dfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 153,280 kB
  • ctags: 105,123
  • sloc: cpp: 747,420; ansic: 209,130; fortran: 34,230; lisp: 14,915; sh: 6,187; python: 5,856; makefile: 340; perl: 294; xml: 160
file content (1324 lines) | stat: -rw-r--r-- 54,135 bytes parent folder | download | duplicates (9)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
/* arpack/dseupd.f -- translated by f2c (version 20090411).
   You must link the resulting object file with libf2c:
        on Microsoft Windows system, link with libf2c.lib;
        on Linux or Unix systems, link with .../path/to/libf2c.a -lm
        or, if you install libf2c.a in a standard place, with -lf2c -lm
        -- in that order, at the end of the command line, as in
                cc *.o -lf2c -lm
        Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

                http://www.netlib.org/f2c/libf2c.zip
*/

#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"

/* Common Block Declarations */

/*Extern struct { */
/*  integer logfil, ndigit, mgetv0, msaupd, msaup2, msaitr, mseigt, msapps, */
/*          msgets, mseupd, mnaupd, mnaup2, mnaitr, mneigh, mnapps, mngets, */
/*          mneupd, mcaupd, mcaup2, mcaitr, mceigh, mcapps, mcgets, mceupd; */
/*} debug_; */

/*#define debug_1 debug_ */

/* Table of constant values */

static doublereal c_b21 = .66666666666666663;
static integer c__1 = 1;
static logical c_true = TRUE_;
static doublereal c_b103 = 1.;

/* \BeginDoc */

/* \Name: dseupd */

/* \Description: */

/*  This subroutine returns the converged approximations to eigenvalues */
/*  of A*z = lambda*B*z and (optionally): */

/*      (1) the corresponding approximate eigenvectors, */

/*      (2) an orthonormal (Lanczos) basis for the associated approximate */
/*          invariant subspace, */

/*      (3) Both. */

/*  There is negligible additional cost to obtain eigenvectors.  An orthonormal */
/*  (Lanczos) basis is always computed.  There is an additional storage cost */
/*  of n*nev if both are requested (in this case a separate array Z must be */
/*  supplied). */

/*  These quantities are obtained from the Lanczos factorization computed */
/*  by DSAUPD for the linear operator OP prescribed by the MODE selection */
/*  (see IPARAM(7) in DSAUPD documentation.)  DSAUPD must be called before */
/*  this routine is called. These approximate eigenvalues and vectors are */
/*  commonly called Ritz values and Ritz vectors respectively.  They are */
/*  referred to as such in the comments that follow.   The computed orthonormal */
/*  basis for the invariant subspace corresponding to these Ritz values is */
/*  referred to as a Lanczos basis. */

/*  See documentation in the header of the subroutine DSAUPD for a definition */
/*  of OP as well as other terms and the relation of computed Ritz values */
/*  and vectors of OP with respect to the given problem  A*z = lambda*B*z. */

/*  The approximate eigenvalues of the original problem are returned in */
/*  ascending algebraic order.  The user may elect to call this routine */
/*  once for each desired Ritz vector and store it peripherally if desired. */
/*  There is also the option of computing a selected set of these vectors */
/*  with a single call. */

/* \Usage: */
/*  call dseupd */
/*     ( RVEC, HOWMNY, SELECT, D, Z, LDZ, SIGMA, BMAT, N, WHICH, NEV, TOL, */
/*       RESID, NCV, V, LDV, IPARAM, IPNTR, WORKD, WORKL, LWORKL, INFO ) */

/*  RVEC    LOGICAL  (INPUT) */
/*          Specifies whether Ritz vectors corresponding to the Ritz value */
/*          approximations to the eigenproblem A*z = lambda*B*z are computed. */

/*             RVEC = .FALSE.     Compute Ritz values only. */

/*             RVEC = .TRUE.      Compute Ritz vectors. */

/*  HOWMNY  Character*1  (INPUT) */
/*          Specifies how many Ritz vectors are wanted and the form of Z */
/*          the matrix of Ritz vectors. See remark 1 below. */
/*          = 'A': compute NEV Ritz vectors; */
/*          = 'S': compute some of the Ritz vectors, specified */
/*                 by the logical array SELECT. */

/*  SELECT  Logical array of dimension NEV.  (INPUT) */
/*          If HOWMNY = 'S', SELECT specifies the Ritz vectors to be */
/*          computed. To select the Ritz vector corresponding to a */
/*          Ritz value D(j), SELECT(j) must be set to .TRUE.. */
/*          If HOWMNY = 'A' , SELECT is not referenced. */

/*  D       Double precision array of dimension NEV.  (OUTPUT) */
/*          On exit, D contains the Ritz value approximations to the */
/*          eigenvalues of A*z = lambda*B*z. The values are returned */
/*          in ascending order. If IPARAM(7) = 3,4,5 then D represents */
/*          the Ritz values of OP computed by dsaupd transformed to */
/*          those of the original eigensystem A*z = lambda*B*z. If */
/*          IPARAM(7) = 1,2 then the Ritz values of OP are the same */
/*          as the those of A*z = lambda*B*z. */

/*  Z       Double precision N by NEV array if HOWMNY = 'A'.  (OUTPUT) */
/*          On exit, Z contains the B-orthonormal Ritz vectors of the */
/*          eigensystem A*z = lambda*B*z corresponding to the Ritz */
/*          value approximations. */
/*          If  RVEC = .FALSE. then Z is not referenced. */
/*          NOTE: The array Z may be set equal to first NEV columns of the */
/*          Arnoldi/Lanczos basis array V computed by DSAUPD. */

/*  LDZ     Integer.  (INPUT) */
/*          The leading dimension of the array Z.  If Ritz vectors are */
/*          desired, then  LDZ .ge.  max( 1, N ).  In any case,  LDZ .ge. 1. */

/*  SIGMA   Double precision  (INPUT) */
/*          If IPARAM(7) = 3,4,5 represents the shift. Not referenced if */
/*          IPARAM(7) = 1 or 2. */


/*  **** The remaining arguments MUST be the same as for the   **** */
/*  **** call to DNAUPD that was just completed.               **** */

/*  NOTE: The remaining arguments */

/*           BMAT, N, WHICH, NEV, TOL, RESID, NCV, V, LDV, IPARAM, IPNTR, */
/*           WORKD, WORKL, LWORKL, INFO */

/*         must be passed directly to DSEUPD following the last call */
/*         to DSAUPD.  These arguments MUST NOT BE MODIFIED between */
/*         the the last call to DSAUPD and the call to DSEUPD. */

/*  Two of these parameters (WORKL, INFO) are also output parameters: */

/*  WORKL   Double precision work array of length LWORKL.  (OUTPUT/WORKSPACE) */
/*          WORKL(1:4*ncv) contains information obtained in */
/*          dsaupd.  They are not changed by dseupd. */
/*          WORKL(4*ncv+1:ncv*ncv+8*ncv) holds the */
/*          untransformed Ritz values, the computed error estimates, */
/*          and the associated eigenvector matrix of H. */

/*          Note: IPNTR(8:10) contains the pointer into WORKL for addresses */
/*          of the above information computed by dseupd. */
/*          ------------------------------------------------------------- */
/*          IPNTR(8): pointer to the NCV RITZ values of the original system. */
/*          IPNTR(9): pointer to the NCV corresponding error bounds. */
/*          IPNTR(10): pointer to the NCV by NCV matrix of eigenvectors */
/*                     of the tridiagonal matrix T. Only referenced by */
/*                     dseupd if RVEC = .TRUE. See Remarks. */
/*          ------------------------------------------------------------- */

/*  INFO    Integer.  (OUTPUT) */
/*          Error flag on output. */
/*          =  0: Normal exit. */
/*          = -1: N must be positive. */
/*          = -2: NEV must be positive. */
/*          = -3: NCV must be greater than NEV and less than or equal to N. */
/*          = -5: WHICH must be one of 'LM', 'SM', 'LA', 'SA' or 'BE'. */
/*          = -6: BMAT must be one of 'I' or 'G'. */
/*          = -7: Length of private work WORKL array is not sufficient. */
/*          = -8: Error return from trid. eigenvalue calculation; */
/*                Information error from LAPACK routine dsteqr. */
/*          = -9: Starting vector is zero. */
/*          = -10: IPARAM(7) must be 1,2,3,4,5. */
/*          = -11: IPARAM(7) = 1 and BMAT = 'G' are incompatible. */
/*          = -12: NEV and WHICH = 'BE' are incompatible. */
/*          = -14: DSAUPD did not find any eigenvalues to sufficient */
/*                 accuracy. */
/*          = -15: HOWMNY must be one of 'A' or 'S' if RVEC = .true. */
/*          = -16: HOWMNY = 'S' not yet implemented */

/* \BeginLib */

/* \References: */
/*  1. D.C. Sorensen, "Implicit Application of Polynomial Filters in */
/*     a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992), */
/*     pp 357-385. */
/*  2. R.B. Lehoucq, "Analysis and Implementation of an Implicitly */
/*     Restarted Arnoldi Iteration", Rice University Technical Report */
/*     TR95-13, Department of Computational and Applied Mathematics. */
/*  3. B.N. Parlett, "The Symmetric Eigenvalue Problem". Prentice-Hall, */
/*     1980. */
/*  4. B.N. Parlett, B. Nour-Omid, "Towards a Black Box Lanczos Program", */
/*     Computer Physics Communications, 53 (1989), pp 169-179. */
/*  5. B. Nour-Omid, B.N. Parlett, T. Ericson, P.S. Jensen, "How to */
/*     Implement the Spectral Transformation", Math. Comp., 48 (1987), */
/*     pp 663-673. */
/*  6. R.G. Grimes, J.G. Lewis and H.D. Simon, "A Shifted Block Lanczos */
/*     Algorithm for Solving Sparse Symmetric Generalized Eigenproblems", */
/*     SIAM J. Matr. Anal. Apps.,  January (1993). */
/*  7. L. Reichel, W.B. Gragg, "Algorithm 686: FORTRAN Subroutines */
/*     for Updating the QR decomposition", ACM TOMS, December 1990, */
/*     Volume 16 Number 4, pp 369-377. */

/* \Remarks */
/*  1. The converged Ritz values are always returned in increasing */
/*     (algebraic) order. */

/*  2. Currently only HOWMNY = 'A' is implemented. It is included at this */
/*     stage for the user who wants to incorporate it. */

/* \Routines called: */
/*     dsesrt  ARPACK routine that sorts an array X, and applies the */
/*             corresponding permutation to a matrix A. */
/*     dsortr  dsortr  ARPACK sorting routine. */
/*     dgeqr2  LAPACK routine that computes the QR factorization of */
/*             a matrix. */
/*     dlacpy  LAPACK matrix copy routine. */
/*     dlamch  LAPACK routine that determines machine constants. */
/*     dorm2r  LAPACK routine that applies an orthogonal matrix in */
/*             factored form. */
/*     dsteqr  LAPACK routine that computes eigenvalues and eigenvectors */
/*             of a tridiagonal matrix. */
/*     dger    Level 2 BLAS rank one update to a matrix. */
/*     dcopy   Level 1 BLAS that copies one vector to another . */
/*     dnrm2   Level 1 BLAS that computes the norm of a vector. */
/*     dscal   Level 1 BLAS that scales a vector. */
/*     dswap   Level 1 BLAS that swaps the contents of two vectors. */
/* \Authors */
/*     Danny Sorensen               Phuong Vu */
/*     Richard Lehoucq              CRPC / Rice University */
/*     Chao Yang                    Houston, Texas */
/*     Dept. of Computational & */
/*     Applied Mathematics */
/*     Rice University */
/*     Houston, Texas */

/* \Revision history: */
/*     12/15/93: Version ' 2.1' */

/* \SCCS Information: @(#) */
/* FILE: seupd.F   SID: 2.7   DATE OF SID: 8/27/96   RELEASE: 2 */

/* \EndLib */

/* ----------------------------------------------------------------------- */
/*<        >*/
/* Subroutine */ int dseupd_(logical *rvec, char *howmny, logical *select,
        doublereal *d__, doublereal *z__, integer *ldz, doublereal *sigma,
        char *bmat, integer *n, char *which, integer *nev, doublereal *tol,
        doublereal *resid, integer *ncv, doublereal *v, integer *ldv, integer
        *iparam, integer *ipntr, doublereal *workd, doublereal *workl,
        integer *lworkl, integer *info, ftnlen howmny_len, ftnlen bmat_len,
        ftnlen which_len)
{
    /* System generated locals */
    integer v_dim1, v_offset, z_dim1, z_offset, i__1;
    doublereal d__1, d__2, d__3;

    /* Builtin functions */
    integer s_cmp(char *, char *, ftnlen, ftnlen);
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    double pow_dd(doublereal *, doublereal *);

    /* Local variables */
    integer j, k, ih, iq, iw;
/*  doublereal kv[2]; */
    integer ibd, ihb, ihd, ldh, ilg, ldq, ism, irz;
    extern /* Subroutine */ int dger_(integer *, integer *, doublereal *,
            doublereal *, integer *, doublereal *, integer *, doublereal *,
            integer *);
    integer mode;
    doublereal eps23;
    integer ierr;
    doublereal temp;
    integer next;
    char type__[6];
    integer ritz;
    extern doublereal dnrm2_(integer *, doublereal *, integer *);
    extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
            integer *);
    logical reord;
    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
            doublereal *, integer *);
    integer nconv;
    doublereal rnorm;
    extern /* Subroutine */ int dgeqr2_(integer *, integer *, doublereal *,
            integer *, doublereal *, doublereal *, integer *);
    doublereal bnorm2;
    extern /* Subroutine */ int dorm2r_(char *, char *, integer *, integer *,
            integer *, doublereal *, integer *, doublereal *, doublereal *,
            integer *, doublereal *, integer *, ftnlen, ftnlen);
    doublereal thres1, thres2;
    extern doublereal dlamch_(char *, ftnlen);
    integer bounds, /* msglvl, */ ktrord;
    extern /* Subroutine */ int dlacpy_(char *, integer *, integer *,
            doublereal *, integer *, doublereal *, integer *, ftnlen),
            dsesrt_(char *, logical *, integer *, doublereal *, integer *,
            doublereal *, integer *, ftnlen), dsteqr_(char *, integer *,
            doublereal *, doublereal *, doublereal *, integer *, doublereal *,
             integer *, ftnlen), dsortr_(char *, logical *, integer *,
            doublereal *, doublereal *, ftnlen);
    doublereal tempbnd;
    integer leftptr, rghtptr;


/*     %----------------------------------------------------% */
/*     | Include files for debugging and timing information | */
/*     %----------------------------------------------------% */

/*<       include   'debug.h' >*/
/*<       include   'stat.h' >*/

/* \SCCS Information: @(#) */
/* FILE: debug.h   SID: 2.3   DATE OF SID: 11/16/95   RELEASE: 2 */

/*     %---------------------------------% */
/*     | See debug.doc for documentation | */
/*     %---------------------------------% */
/*<        >*/
/*<       character  bmat, howmny, which*2 >*/

/*     %------------------% */
/*     | Scalar Arguments | */
/*     %------------------% */

/*     %--------------------------------% */
/*     | See stat.doc for documentation | */
/*     %--------------------------------% */

/* \SCCS Information: @(#) */
/* FILE: stat.h   SID: 2.2   DATE OF SID: 11/16/95   RELEASE: 2 */

/*<       save       t0, t1, t2, t3, t4, t5 >*/

/*<       integer    nopx, nbx, nrorth, nitref, nrstrt >*/
/*<        >*/
/*<        >*/
/*<       logical    rvec, select(ncv) >*/
/*<       integer    info, ldz, ldv, lworkl, n, ncv, nev >*/
/*<        >*/

/*     %-----------------% */
/*     | Array Arguments | */
/*     %-----------------% */

/*<       integer    iparam(7), ipntr(11) >*/
/*<        >*/

/*     %------------% */
/*     | Parameters | */
/*     %------------% */

/*<        >*/
/*<       parameter (one = 1.0D+0, zero = 0.0D+0) >*/

/*     %---------------% */
/*     | Local Scalars | */
/*     %---------------% */

/*<       character  type*6 >*/
/*<        >*/
/*<        >*/
/*<       logical    reord >*/

/*     %--------------% */
/*     | Local Arrays | */
/*     %--------------% */

/*<        >*/

/*     %----------------------% */
/*     | External Subroutines | */
/*     %----------------------% */

/*<        >*/

/*     %--------------------% */
/*     | External Functions | */
/*     %--------------------% */

/*<        >*/
/*<       external   dnrm2, dlamch >*/

/*     %---------------------% */
/*     | Intrinsic Functions | */
/*     %---------------------% */

/*<       intrinsic    min >*/

/*     %-----------------------% */
/*     | Executable Statements | */
/*     %-----------------------% */

/*     %------------------------% */
/*     | Set default parameters | */
/*     %------------------------% */

/*<       msglvl = mseupd >*/
    /* Parameter adjustments */
    --workd;
    --resid;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --d__;
    --select;
    v_dim1 = *ldv;
    v_offset = 1 + v_dim1;
    v -= v_offset;
    --iparam;
    --ipntr;
    --workl;

    /* Function Body */
/*  msglvl = debug_1.mseupd; */
/*<       mode = iparam(7) >*/
    mode = iparam[7];
/*<       nconv = iparam(5) >*/
    nconv = iparam[5];
/*<       info = 0 >*/
    *info = 0;

/*     %--------------% */
/*     | Quick return | */
/*     %--------------% */

/*<       if (nconv .eq. 0) go to 9000 >*/
    if (nconv == 0) {
        goto L9000;
    }
/*<       ierr = 0 >*/
    ierr = 0;

/*<       if (nconv .le. 0)                        ierr = -14  >*/
    if (nconv <= 0) {
        ierr = -14;
    }
/*<       if (n .le. 0)                            ierr = -1 >*/
    if (*n <= 0) {
        ierr = -1;
    }
/*<       if (nev .le. 0)                          ierr = -2 >*/
    if (*nev <= 0) {
        ierr = -2;
    }
/*<       if (ncv .le. nev .or.  ncv .gt. n)       ierr = -3 >*/
    if (*ncv <= *nev || *ncv > *n) {
        ierr = -3;
    }
/*<        >*/
    if (s_cmp(which, "LM", (ftnlen)2, (ftnlen)2) != 0 && s_cmp(which, "SM", (
            ftnlen)2, (ftnlen)2) != 0 && s_cmp(which, "LA", (ftnlen)2, (
            ftnlen)2) != 0 && s_cmp(which, "SA", (ftnlen)2, (ftnlen)2) != 0 &&
             s_cmp(which, "BE", (ftnlen)2, (ftnlen)2) != 0) {
        ierr = -5;
    }
/*<       if (bmat .ne. 'I' .and. bmat .ne. 'G')   ierr = -6 >*/
    if (*(unsigned char *)bmat != 'I' && *(unsigned char *)bmat != 'G') {
        ierr = -6;
    }
/*<        >*/
    if (*(unsigned char *)howmny != 'A' && *(unsigned char *)howmny != 'P' &&
            *(unsigned char *)howmny != 'S' && *rvec) {
        ierr = -15;
    }
/*<       if (rvec .and. howmny .eq. 'S')           ierr = -16 >*/
    if (*rvec && *(unsigned char *)howmny == 'S') {
        ierr = -16;
    }

/*<       if (rvec .and. lworkl .lt. ncv**2+8*ncv) ierr = -7 >*/
/* Computing 2nd power */
    i__1 = *ncv;
    if (*rvec && *lworkl < i__1 * i__1 + (*ncv << 3)) {
        ierr = -7;
    }

/*<       if (mode .eq. 1 .or. mode .eq. 2) then >*/
    if (mode == 1 || mode == 2) {
/*<          type = 'REGULR' >*/
        s_copy(type__, "REGULR", (ftnlen)6, (ftnlen)6);
/*<       else if (mode .eq. 3 ) then >*/
    } else if (mode == 3) {
/*<          type = 'SHIFTI' >*/
        s_copy(type__, "SHIFTI", (ftnlen)6, (ftnlen)6);
/*<       else if (mode .eq. 4 ) then >*/
    } else if (mode == 4) {
/*<          type = 'BUCKLE' >*/
        s_copy(type__, "BUCKLE", (ftnlen)6, (ftnlen)6);
/*<       else if (mode .eq. 5 ) then >*/
    } else if (mode == 5) {
/*<          type = 'CAYLEY' >*/
        s_copy(type__, "CAYLEY", (ftnlen)6, (ftnlen)6);
/*<       else  >*/
    } else {
/*<                                                ierr = -10 >*/
        ierr = -10;
/*<       end if >*/
    }
/*<       if (mode .eq. 1 .and. bmat .eq. 'G')     ierr = -11 >*/
    if (mode == 1 && *(unsigned char *)bmat == 'G') {
        ierr = -11;
    }
/*<       if (nev .eq. 1 .and. which .eq. 'BE')    ierr = -12 >*/
    if (*nev == 1 && s_cmp(which, "BE", (ftnlen)2, (ftnlen)2) == 0) {
        ierr = -12;
    }

/*     %------------% */
/*     | Error Exit | */
/*     %------------% */

/*<       if (ierr .ne. 0) then >*/
    if (ierr != 0) {
/*<          info = ierr >*/
        *info = ierr;
/*<          go to 9000 >*/
        goto L9000;
/*<       end if >*/
    }

/*     %-------------------------------------------------------% */
/*     | Pointer into WORKL for address of H, RITZ, BOUNDS, Q  | */
/*     | etc... and the remaining workspace.                   | */
/*     | Also update pointer to be used on output.             | */
/*     | Memory is laid out as follows:                        | */
/*     | workl(1:2*ncv) := generated tridiagonal matrix H      | */
/*     |       The subdiagonal is stored in workl(2:ncv).      | */
/*     |       The dead spot is workl(1) but upon exiting      | */
/*     |       dsaupd stores the B-norm of the last residual   | */
/*     |       vector in workl(1). We use this !!!             | */
/*     | workl(2*ncv+1:2*ncv+ncv) := ritz values               | */
/*     |       The wanted values are in the first NCONV spots. | */
/*     | workl(3*ncv+1:3*ncv+ncv) := computed Ritz estimates   | */
/*     |       The wanted values are in the first NCONV spots. | */
/*     | NOTE: workl(1:4*ncv) is set by dsaupd and is not      | */
/*     |       modified by dseupd.                             | */
/*     %-------------------------------------------------------% */

/*     %-------------------------------------------------------% */
/*     | The following is used and set by dseupd.              | */
/*     | workl(4*ncv+1:4*ncv+ncv) := used as workspace during  | */
/*     |       computation of the eigenvectors of H. Stores    | */
/*     |       the diagonal of H. Upon EXIT contains the NCV   | */
/*     |       Ritz values of the original system. The first   | */
/*     |       NCONV spots have the wanted values. If MODE =   | */
/*     |       1 or 2 then will equal workl(2*ncv+1:3*ncv).    | */
/*     | workl(5*ncv+1:5*ncv+ncv) := used as workspace during  | */
/*     |       computation of the eigenvectors of H. Stores    | */
/*     |       the subdiagonal of H. Upon EXIT contains the    | */
/*     |       NCV corresponding Ritz estimates of the         | */
/*     |       original system. The first NCONV spots have the | */
/*     |       wanted values. If MODE = 1,2 then will equal    | */
/*     |       workl(3*ncv+1:4*ncv).                           | */
/*     | workl(6*ncv+1:6*ncv+ncv*ncv) := orthogonal Q that is  | */
/*     |       the eigenvector matrix for H as returned by     | */
/*     |       dsteqr. Not referenced if RVEC = .False.        | */
/*     |       Ordering follows that of workl(4*ncv+1:5*ncv)   | */
/*     | workl(6*ncv+ncv*ncv+1:6*ncv+ncv*ncv+2*ncv) :=         | */
/*     |       Workspace. Needed by dsteqr and by dseupd.      | */
/*     | GRAND total of NCV*(NCV+8) locations.                 | */
/*     %-------------------------------------------------------% */


/*<       ih     = ipntr(5) >*/
    ih = ipntr[5];
/*<       ritz   = ipntr(6) >*/
    ritz = ipntr[6];
/*<       bounds = ipntr(7) >*/
    bounds = ipntr[7];
/*<       ldh    = ncv >*/
    ldh = *ncv;
/*<       ldq    = ncv >*/
    ldq = *ncv;
/*<       ihd    = bounds + ldh >*/
    ihd = bounds + ldh;
/*<       ihb    = ihd    + ldh >*/
    ihb = ihd + ldh;
/*<       iq     = ihb    + ldh >*/
    iq = ihb + ldh;
/*<       iw     = iq     + ldh*ncv >*/
    iw = iq + ldh * *ncv;
/*<       next   = iw     + 2*ncv >*/
    next = iw + (*ncv << 1);
/*<       ipntr(4)  = next >*/
    ipntr[4] = next;
/*<       ipntr(8)  = ihd >*/
    ipntr[8] = ihd;
/*<       ipntr(9)  = ihb >*/
    ipntr[9] = ihb;
/*<       ipntr(10) = iq >*/
    ipntr[10] = iq;

/*     %----------------------------------------% */
/*     | irz points to the Ritz values computed | */
/*     |     by _seigt before exiting _saup2.   | */
/*     | ibd points to the Ritz estimates       | */
/*     |     computed by _seigt before exiting  | */
/*     |     _saup2.                            | */
/*     %----------------------------------------% */

/*<       irz = ipntr(11)+ncv >*/
    irz = ipntr[11] + *ncv;
/*<       ibd = irz+ncv >*/
    ibd = irz + *ncv;


/*     %---------------------------------% */
/*     | Set machine dependent constant. | */
/*     %---------------------------------% */

/*<       eps23 = dlamch('Epsilon-Machine')  >*/
    eps23 = dlamch_("Epsilon-Machine", (ftnlen)15);
/*<       eps23 = eps23**(2.0D+0 / 3.0D+0) >*/
    eps23 = pow_dd(&eps23, &c_b21);

/*     %---------------------------------------% */
/*     | RNORM is B-norm of the RESID(1:N).    | */
/*     | BNORM2 is the 2 norm of B*RESID(1:N). | */
/*     | Upon exit of dsaupd WORKD(1:N) has    | */
/*     | B*RESID(1:N).                         | */
/*     %---------------------------------------% */

/*<       rnorm = workl(ih) >*/
    rnorm = workl[ih];
/*<       if (bmat .eq. 'I') then >*/
    if (*(unsigned char *)bmat == 'I') {
/*<          bnorm2 = rnorm >*/
        bnorm2 = rnorm;
/*<       else if (bmat .eq. 'G') then >*/
    } else if (*(unsigned char *)bmat == 'G') {
/*<          bnorm2 = dnrm2(n, workd, 1) >*/
        bnorm2 = dnrm2_(n, &workd[1], &c__1);
/*<       end if >*/
    }

/*<       if (rvec) then >*/
    if (*rvec) {

/*        %------------------------------------------------% */
/*        | Get the converged Ritz value on the boundary.  | */
/*        | This value will be used to dermine whether we  | */
/*        | need to reorder the eigenvalues and            | */
/*        | eigenvectors comupted by _steqr, and is        | */
/*        | referred to as the "threshold" value.          | */
/*        |                                                | */
/*        | A Ritz value gamma is said to be a wanted      | */
/*        | one, if                                        | */
/*        | abs(gamma) .ge. threshold, when WHICH = 'LM';  | */
/*        | abs(gamma) .le. threshold, when WHICH = 'SM';  | */
/*        | gamma      .ge. threshold, when WHICH = 'LA';  | */
/*        | gamma      .le. threshold, when WHICH = 'SA';  | */
/*        | gamma .le. thres1 .or. gamma .ge. thres2       | */
/*        |                            when WHICH = 'BE';  | */
/*        |                                                | */
/*        | Note: converged Ritz values and associated     | */
/*        | Ritz estimates have been placed in the first   | */
/*        | NCONV locations in workl(ritz) and             | */
/*        | workl(bounds) respectively. They have been     | */
/*        | sorted (in _saup2) according to the WHICH      | */
/*        | selection criterion. (Except in the case       | */
/*        | WHICH = 'BE', they are sorted in an increasing | */
/*        | order.)                                        | */
/*        %------------------------------------------------% */

/*<        >*/
        if (s_cmp(which, "LM", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(which,
                "SM", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(which, "LA", (
                ftnlen)2, (ftnlen)2) == 0 || s_cmp(which, "SA", (ftnlen)2, (
                ftnlen)2) == 0) {

/*<              thres1 = workl(ritz) >*/
            thres1 = workl[ritz];

/*             if (msglvl .gt. 2) then */
/*                call dvout(logfil, 1, thres1, ndigit, */
/*     &          '_seupd: Threshold eigenvalue used for re-ordering') */
/*             end if */

/*<          else if (which .eq. 'BE') then >*/
        } else if (s_cmp(which, "BE", (ftnlen)2, (ftnlen)2) == 0) {

/*            %------------------------------------------------% */
/*            | Ritz values returned from _saup2 have been     | */
/*            | sorted in increasing order.  Thus two          | */
/*            | "threshold" values (one for the small end, one | */
/*            | for the large end) are in the middle.          | */
/*            %------------------------------------------------% */

/*<              ism = max(nev,nconv) / 2 >*/
            ism = max(*nev,nconv) / 2;
/*<              ilg = ism + 1 >*/
            ilg = ism + 1;
/*<              thres1 = workl(ism) >*/
            thres1 = workl[ism];
/*<              thres2 = workl(ilg)  >*/
            thres2 = workl[ilg];

/*<              if (msglvl .gt. 2) then >*/
/*          if (msglvl > 2) { */
/*<                 kv(1) = thres1 >*/
/*              kv[0] = thres1; */
/*<                 kv(2) = thres2 >*/
/*              kv[1] = thres2; */
/*                call dvout(logfil, 2, kv, ndigit, */
/*     &          '_seupd: Threshold eigenvalues used for re-ordering') */
/*<              end if >*/
/*          } */

/*<          end if >*/
        }

/*        %----------------------------------------------------------% */
/*        | Check to see if all converged Ritz values appear within  | */
/*        | the first NCONV diagonal elements returned from _seigt.  | */
/*        | This is done in the following way:                       | */
/*        |                                                          | */
/*        | 1) For each Ritz value obtained from _seigt, compare it  | */
/*        |    with the threshold Ritz value computed above to       | */
/*        |    determine whether it is a wanted one.                 | */
/*        |                                                          | */
/*        | 2) If it is wanted, then check the corresponding Ritz    | */
/*        |    estimate to see if it has converged.  If it has, set  | */
/*        |    corresponding entry in the logical array SELECT to    | */
/*        |    .TRUE..                                               | */
/*        |                                                          | */
/*        | If SELECT(j) = .TRUE. and j > NCONV, then there is a     | */
/*        | converged Ritz value that does not appear at the top of  | */
/*        | the diagonal matrix computed by _seigt in _saup2.        | */
/*        | Reordering is needed.                                    | */
/*        %----------------------------------------------------------% */

/*<          reord = .false. >*/
        reord = FALSE_;
/*<          ktrord = 0 >*/
        ktrord = 0;
/*<          do 10 j = 0, ncv-1 >*/
        i__1 = *ncv - 1;
        for (j = 0; j <= i__1; ++j) {
/*<             select(j+1) = .false. >*/
            select[j + 1] = FALSE_;
/*<             if (which .eq. 'LM') then >*/
            if (s_cmp(which, "LM", (ftnlen)2, (ftnlen)2) == 0) {
/*<                if (abs(workl(irz+j)) .ge. abs(thres1)) then >*/
                if ((d__1 = workl[irz + j], abs(d__1)) >= abs(thres1)) {
/*<                    tempbnd = max( eps23, abs(workl(irz+j)) ) >*/
/* Computing MAX */
                    d__2 = eps23, d__3 = (d__1 = workl[irz + j], abs(d__1));
                    tempbnd = max(d__2,d__3);
/*<                    if (workl(ibd+j) .le. tol*tempbnd) then >*/
                    if (workl[ibd + j] <= *tol * tempbnd) {
/*<                       select(j+1) = .true. >*/
                        select[j + 1] = TRUE_;
/*<                    end if >*/
                    }
/*<                end if >*/
                }
/*<             else if (which .eq. 'SM') then >*/
            } else if (s_cmp(which, "SM", (ftnlen)2, (ftnlen)2) == 0) {
/*<                if (abs(workl(irz+j)) .le. abs(thres1)) then >*/
                if ((d__1 = workl[irz + j], abs(d__1)) <= abs(thres1)) {
/*<                    tempbnd = max( eps23, abs(workl(irz+j)) ) >*/
/* Computing MAX */
                    d__2 = eps23, d__3 = (d__1 = workl[irz + j], abs(d__1));
                    tempbnd = max(d__2,d__3);
/*<                    if (workl(ibd+j) .le. tol*tempbnd) then >*/
                    if (workl[ibd + j] <= *tol * tempbnd) {
/*<                       select(j+1) = .true. >*/
                        select[j + 1] = TRUE_;
/*<                    end if >*/
                    }
/*<                end if >*/
                }
/*<             else if (which .eq. 'LA') then >*/
            } else if (s_cmp(which, "LA", (ftnlen)2, (ftnlen)2) == 0) {
/*<                if (workl(irz+j) .ge. thres1) then >*/
                if (workl[irz + j] >= thres1) {
/*<                   tempbnd = max( eps23, abs(workl(irz+j)) ) >*/
/* Computing MAX */
                    d__2 = eps23, d__3 = (d__1 = workl[irz + j], abs(d__1));
                    tempbnd = max(d__2,d__3);
/*<                   if (workl(ibd+j) .le. tol*tempbnd) then >*/
                    if (workl[ibd + j] <= *tol * tempbnd) {
/*<                      select(j+1) = .true. >*/
                        select[j + 1] = TRUE_;
/*<                   end if >*/
                    }
/*<                end if >*/
                }
/*<             else if (which .eq. 'SA') then >*/
            } else if (s_cmp(which, "SA", (ftnlen)2, (ftnlen)2) == 0) {
/*<                if (workl(irz+j) .le. thres1) then >*/
                if (workl[irz + j] <= thres1) {
/*<                   tempbnd = max( eps23, abs(workl(irz+j)) ) >*/
/* Computing MAX */
                    d__2 = eps23, d__3 = (d__1 = workl[irz + j], abs(d__1));
                    tempbnd = max(d__2,d__3);
/*<                   if (workl(ibd+j) .le. tol*tempbnd) then >*/
                    if (workl[ibd + j] <= *tol * tempbnd) {
/*<                      select(j+1) = .true. >*/
                        select[j + 1] = TRUE_;
/*<                   end if >*/
                    }
/*<                end if >*/
                }
/*<             else if (which .eq. 'BE') then >*/
            } else if (s_cmp(which, "BE", (ftnlen)2, (ftnlen)2) == 0) {
/*<        >*/
                if (workl[irz + j] <= thres1 || workl[irz + j] >= thres2) {
/*<                   tempbnd = max( eps23, abs(workl(irz+j)) ) >*/
/* Computing MAX */
                    d__2 = eps23, d__3 = (d__1 = workl[irz + j], abs(d__1));
                    tempbnd = max(d__2,d__3);
/*<                   if (workl(ibd+j) .le. tol*tempbnd) then >*/
                    if (workl[ibd + j] <= *tol * tempbnd) {
/*<                      select(j+1) = .true. >*/
                        select[j + 1] = TRUE_;
/*<                   end if >*/
                    }
/*<                end if >*/
                }
/*<             end if >*/
            }
/*<             if (j+1 .gt. nconv ) reord = select(j+1) .or. reord >*/
            if (j + 1 > nconv) {
                reord = select[j + 1] || reord;
            }
/*<             if (select(j+1)) ktrord = ktrord + 1 >*/
            if (select[j + 1]) {
                ++ktrord;
            }
/*<  10      continue >*/
/* L10: */
        }
/*        %-------------------------------------------% */
/*        | If KTRORD .ne. NCONV, something is wrong. | */
/*        %-------------------------------------------% */

/*         if (msglvl .gt. 2) then */
/*             call ivout(logfil, 1, ktrord, ndigit, */
/*     &            '_seupd: Number of specified eigenvalues') */
/*             call ivout(logfil, 1, nconv, ndigit, */
/*     &            '_seupd: Number of "converged" eigenvalues') */
/*         end if */

/*        %-----------------------------------------------------------% */
/*        | Call LAPACK routine _steqr to compute the eigenvalues and | */
/*        | eigenvectors of the final symmetric tridiagonal matrix H. | */
/*        | Initialize the eigenvector matrix Q to the identity.      | */
/*        %-----------------------------------------------------------% */

/*<          call dcopy (ncv-1, workl(ih+1), 1, workl(ihb), 1) >*/
        i__1 = *ncv - 1;
        dcopy_(&i__1, &workl[ih + 1], &c__1, &workl[ihb], &c__1);
/*<          call dcopy (ncv, workl(ih+ldh), 1, workl(ihd), 1) >*/
        dcopy_(ncv, &workl[ih + ldh], &c__1, &workl[ihd], &c__1);

/*<        >*/
        dsteqr_("Identity", ncv, &workl[ihd], &workl[ihb], &workl[iq], &ldq, &
                workl[iw], &ierr, (ftnlen)8);

/*<          if (ierr .ne. 0) then >*/
        if (ierr != 0) {
/*<             info = -8 >*/
            *info = -8;
/*<             go to 9000 >*/
            goto L9000;
/*<          end if >*/
        }

/*<          if (msglvl .gt. 1) then >*/
/*      if (msglvl > 1) { */
/*<             call dcopy (ncv, workl(iq+ncv-1), ldq, workl(iw), 1) >*/
/*          dcopy_(ncv, &workl[iq + *ncv - 1], &ldq, &workl[iw], &c__1); */
/*            call dvout (logfil, ncv, workl(ihd), ndigit, */
/*     &          '_seupd: NCV Ritz values of the final H matrix') */
/*            call dvout (logfil, ncv, workl(iw), ndigit, */
/*     &           '_seupd: last row of the eigenvector matrix for H') */
/*<          end if >*/
/*      } */

/*<          if (reord) then >*/
        if (reord) {

/*           %---------------------------------------------% */
/*           | Reordered the eigenvalues and eigenvectors  | */
/*           | computed by _steqr so that the "converged"  | */
/*           | eigenvalues appear in the first NCONV       | */
/*           | positions of workl(ihd), and the associated | */
/*           | eigenvectors appear in the first NCONV      | */
/*           | columns.                                    | */
/*           %---------------------------------------------% */

/*<             leftptr = 1 >*/
            leftptr = 1;
/*<             rghtptr = ncv >*/
            rghtptr = *ncv;

/*<             if (ncv .eq. 1) go to 30 >*/
            if (*ncv == 1) {
                goto L30;
            }

/*<  20         if (select(leftptr)) then >*/
L20:
            if (select[leftptr]) {

/*              %-------------------------------------------% */
/*              | Search, from the left, for the first Ritz | */
/*              | value that has not converged.             | */
/*              %-------------------------------------------% */

/*<                leftptr = leftptr + 1 >*/
                ++leftptr;

/*<             else if ( .not. select(rghtptr)) then >*/
            } else if (! select[rghtptr]) {

/*              %----------------------------------------------% */
/*              | Search, from the right, the first Ritz value | */
/*              | that has converged.                          | */
/*              %----------------------------------------------% */

/*<                rghtptr = rghtptr - 1 >*/
                --rghtptr;

/*<             else >*/
            } else {

/*              %----------------------------------------------% */
/*              | Swap the Ritz value on the left that has not | */
/*              | converged with the Ritz value on the right   | */
/*              | that has converged.  Swap the associated     | */
/*              | eigenvector of the tridiagonal matrix H as   | */
/*              | well.                                        | */
/*              %----------------------------------------------% */

/*<                temp = workl(ihd+leftptr-1) >*/
                temp = workl[ihd + leftptr - 1];
/*<                workl(ihd+leftptr-1) = workl(ihd+rghtptr-1) >*/
                workl[ihd + leftptr - 1] = workl[ihd + rghtptr - 1];
/*<                workl(ihd+rghtptr-1) = temp >*/
                workl[ihd + rghtptr - 1] = temp;
/*<        >*/
                dcopy_(ncv, &workl[iq + *ncv * (leftptr - 1)], &c__1, &workl[
                        iw], &c__1);
/*<        >*/
                dcopy_(ncv, &workl[iq + *ncv * (rghtptr - 1)], &c__1, &workl[
                        iq + *ncv * (leftptr - 1)], &c__1);
/*<        >*/
                dcopy_(ncv, &workl[iw], &c__1, &workl[iq + *ncv * (rghtptr -
                        1)], &c__1);
/*<                leftptr = leftptr + 1 >*/
                ++leftptr;
/*<                rghtptr = rghtptr - 1 >*/
                --rghtptr;

/*<             end if >*/
            }

/*<             if (leftptr .lt. rghtptr) go to 20 >*/
            if (leftptr < rghtptr) {
                goto L20;
            }

/*<  30      end if >*/
L30:
            ;
        }

/*         if (msglvl .gt. 2) then */
/*             call dvout (logfil, ncv, workl(ihd), ndigit, */
/*     &       '_seupd: The eigenvalues of H--reordered') */
/*         end if */

/*        %----------------------------------------% */
/*        | Load the converged Ritz values into D. | */
/*        %----------------------------------------% */

/*<          call dcopy(nconv, workl(ihd), 1, d, 1) >*/
        dcopy_(&nconv, &workl[ihd], &c__1, &d__[1], &c__1);

/*<       else >*/
    } else {

/*        %-----------------------------------------------------% */
/*        | Ritz vectors not required. Load Ritz values into D. | */
/*        %-----------------------------------------------------% */

/*<          call dcopy (nconv, workl(ritz), 1, d, 1) >*/
        dcopy_(&nconv, &workl[ritz], &c__1, &d__[1], &c__1);
/*<          call dcopy (ncv, workl(ritz), 1, workl(ihd), 1) >*/
        dcopy_(ncv, &workl[ritz], &c__1, &workl[ihd], &c__1);

/*<       end if >*/
    }

/*     %------------------------------------------------------------------% */
/*     | Transform the Ritz values and possibly vectors and corresponding | */
/*     | Ritz estimates of OP to those of A*x=lambda*B*x. The Ritz values | */
/*     | (and corresponding data) are returned in ascending order.        | */
/*     %------------------------------------------------------------------% */

/*<       if (type .eq. 'REGULR') then >*/
    if (s_cmp(type__, "REGULR", (ftnlen)6, (ftnlen)6) == 0) {

/*        %---------------------------------------------------------% */
/*        | Ascending sort of wanted Ritz values, vectors and error | */
/*        | bounds. Not necessary if only Ritz values are desired.  | */
/*        %---------------------------------------------------------% */

/*<          if (rvec) then >*/
        if (*rvec) {
/*<             call dsesrt ('LA', rvec , nconv, d, ncv, workl(iq), ldq) >*/
            dsesrt_("LA", rvec, &nconv, &d__[1], ncv, &workl[iq], &ldq, (
                    ftnlen)2);
/*<          else >*/
        } else {
/*<             call dcopy (ncv, workl(bounds), 1, workl(ihb), 1) >*/
            dcopy_(ncv, &workl[bounds], &c__1, &workl[ihb], &c__1);
/*<          end if >*/
        }

/*<       else  >*/
    } else {

/*        %-------------------------------------------------------------% */
/*        | *  Make a copy of all the Ritz values.                      | */
/*        | *  Transform the Ritz values back to the original system.   | */
/*        |    For TYPE = 'SHIFTI' the transformation is                | */
/*        |             lambda = 1/theta + sigma                        | */
/*        |    For TYPE = 'BUCKLE' the transformation is                | */
/*        |             lambda = sigma * theta / ( theta - 1 )          | */
/*        |    For TYPE = 'CAYLEY' the transformation is                | */
/*        |             lambda = sigma * (theta + 1) / (theta - 1 )     | */
/*        |    where the theta are the Ritz values returned by dsaupd.  | */
/*        | NOTES:                                                      | */
/*        | *The Ritz vectors are not affected by the transformation.   | */
/*        |  They are only reordered.                                   | */
/*        %-------------------------------------------------------------% */

/*<          call dcopy (ncv, workl(ihd), 1, workl(iw), 1) >*/
        dcopy_(ncv, &workl[ihd], &c__1, &workl[iw], &c__1);
/*<          if (type .eq. 'SHIFTI') then  >*/
        if (s_cmp(type__, "SHIFTI", (ftnlen)6, (ftnlen)6) == 0) {
/*<             do 40 k=1, ncv >*/
            i__1 = *ncv;
            for (k = 1; k <= i__1; ++k) {
/*<                workl(ihd+k-1) = one / workl(ihd+k-1) + sigma >*/
                workl[ihd + k - 1] = 1. / workl[ihd + k - 1] + *sigma;
/*<   40        continue >*/
/* L40: */
            }
/*<          else if (type .eq. 'BUCKLE') then >*/
        } else if (s_cmp(type__, "BUCKLE", (ftnlen)6, (ftnlen)6) == 0) {
/*<             do 50 k=1, ncv >*/
            i__1 = *ncv;
            for (k = 1; k <= i__1; ++k) {
/*<        >*/
                workl[ihd + k - 1] = *sigma * workl[ihd + k - 1] / (workl[ihd
                        + k - 1] - 1.);
/*<   50        continue >*/
/* L50: */
            }
/*<          else if (type .eq. 'CAYLEY') then >*/
        } else if (s_cmp(type__, "CAYLEY", (ftnlen)6, (ftnlen)6) == 0) {
/*<             do 60 k=1, ncv >*/
            i__1 = *ncv;
            for (k = 1; k <= i__1; ++k) {
/*<        >*/
                workl[ihd + k - 1] = *sigma * (workl[ihd + k - 1] + 1.) / (
                        workl[ihd + k - 1] - 1.);
/*<   60        continue >*/
/* L60: */
            }
/*<          end if >*/
        }

/*        %-------------------------------------------------------------% */
/*        | *  Store the wanted NCONV lambda values into D.             | */
/*        | *  Sort the NCONV wanted lambda in WORKL(IHD:IHD+NCONV-1)   | */
/*        |    into ascending order and apply sort to the NCONV theta   | */
/*        |    values in the transformed system. We'll need this to     | */
/*        |    compute Ritz estimates in the original system.           | */
/*        | *  Finally sort the lambda's into ascending order and apply | */
/*        |    to Ritz vectors if wanted. Else just sort lambda's into  | */
/*        |    ascending order.                                         | */
/*        | NOTES:                                                      | */
/*        | *workl(iw:iw+ncv-1) contain the theta ordered so that they  | */
/*        |  match the ordering of the lambda. We'll use them again for | */
/*        |  Ritz vector purification.                                  | */
/*        %-------------------------------------------------------------% */

/*<          call dcopy (nconv, workl(ihd), 1, d, 1) >*/
        dcopy_(&nconv, &workl[ihd], &c__1, &d__[1], &c__1);
/*<          call dsortr ('LA', .true., nconv, workl(ihd), workl(iw)) >*/
        dsortr_("LA", &c_true, &nconv, &workl[ihd], &workl[iw], (ftnlen)2);
/*<          if (rvec) then >*/
        if (*rvec) {
/*<             call dsesrt ('LA', rvec , nconv, d, ncv, workl(iq), ldq) >*/
            dsesrt_("LA", rvec, &nconv, &d__[1], ncv, &workl[iq], &ldq, (
                    ftnlen)2);
/*<          else >*/
        } else {
/*<             call dcopy (ncv, workl(bounds), 1, workl(ihb), 1) >*/
            dcopy_(ncv, &workl[bounds], &c__1, &workl[ihb], &c__1);
/*<             call dscal (ncv, bnorm2/rnorm, workl(ihb), 1) >*/
            d__1 = bnorm2 / rnorm;
            dscal_(ncv, &d__1, &workl[ihb], &c__1);
/*<             call dsortr ('LA', .true., nconv, d, workl(ihb)) >*/
            dsortr_("LA", &c_true, &nconv, &d__[1], &workl[ihb], (ftnlen)2);
/*<          end if >*/
        }

/*<       end if  >*/
    }

/*     %------------------------------------------------% */
/*     | Compute the Ritz vectors. Transform the wanted | */
/*     | eigenvectors of the symmetric tridiagonal H by | */
/*     | the Lanczos basis matrix V.                    | */
/*     %------------------------------------------------% */

/*<       if (rvec .and. howmny .eq. 'A') then >*/
    if (*rvec && *(unsigned char *)howmny == 'A') {

/*        %----------------------------------------------------------% */
/*        | Compute the QR factorization of the matrix representing  | */
/*        | the wanted invariant subspace located in the first NCONV | */
/*        | columns of workl(iq,ldq).                                | */
/*        %----------------------------------------------------------% */

/*<        >*/
        dgeqr2_(ncv, &nconv, &workl[iq], &ldq, &workl[iw + *ncv], &workl[ihb],
                 &ierr);


/*        %--------------------------------------------------------% */
/*        | * Postmultiply V by Q.                                 | */
/*        | * Copy the first NCONV columns of VQ into Z.           | */
/*        | The N by NCONV matrix Z is now a matrix representation | */
/*        | of the approximate invariant subspace associated with  | */
/*        | the Ritz values in workl(ihd).                         | */
/*        %--------------------------------------------------------% */

/*<        >*/
        dorm2r_("Right", "Notranspose", n, ncv, &nconv, &workl[iq], &ldq, &
                workl[iw + *ncv], &v[v_offset], ldv, &workd[*n + 1], &ierr, (
                ftnlen)5, (ftnlen)11);
/*<          call dlacpy ('All', n, nconv, v, ldv, z, ldz) >*/
        dlacpy_("All", n, &nconv, &v[v_offset], ldv, &z__[z_offset], ldz, (
                ftnlen)3);

/*        %-----------------------------------------------------% */
/*        | In order to compute the Ritz estimates for the Ritz | */
/*        | values in both systems, need the last row of the    | */
/*        | eigenvector matrix. Remember, it's in factored form | */
/*        %-----------------------------------------------------% */

/*<          do 65 j = 1, ncv-1 >*/
        i__1 = *ncv - 1;
        for (j = 1; j <= i__1; ++j) {
/*<             workl(ihb+j-1) = zero  >*/
            workl[ihb + j - 1] = 0.;
/*<   65     continue >*/
/* L65: */
        }
/*<          workl(ihb+ncv-1) = one >*/
        workl[ihb + *ncv - 1] = 1.;
/*<        >*/
        dorm2r_("Left", "Transpose", ncv, &c__1, &nconv, &workl[iq], &ldq, &
                workl[iw + *ncv], &workl[ihb], ncv, &temp, &ierr, (ftnlen)4, (
                ftnlen)9);

/*<       else if (rvec .and. howmny .eq. 'S') then >*/
    } else if (*rvec && *(unsigned char *)howmny == 'S') {

/*     Not yet implemented. See remark 2 above. */

/*<       end if >*/
    }

/*<       if (type .eq. 'REGULR' .and. rvec) then >*/
    if (s_cmp(type__, "REGULR", (ftnlen)6, (ftnlen)6) == 0 && *rvec) {

/*<             do 70 j=1, ncv >*/
        i__1 = *ncv;
        for (j = 1; j <= i__1; ++j) {
/*<                workl(ihb+j-1) = rnorm * abs( workl(ihb+j-1) ) >*/
            workl[ihb + j - 1] = rnorm * (d__1 = workl[ihb + j - 1], abs(d__1)
                    );
/*<  70         continue >*/
/* L70: */
        }

/*<       else if (type .ne. 'REGULR' .and. rvec) then >*/
    } else if (s_cmp(type__, "REGULR", (ftnlen)6, (ftnlen)6) != 0 && *rvec) {

/*        %-------------------------------------------------% */
/*        | *  Determine Ritz estimates of the theta.       | */
/*        |    If RVEC = .true. then compute Ritz estimates | */
/*        |               of the theta.                     | */
/*        |    If RVEC = .false. then copy Ritz estimates   | */
/*        |              as computed by dsaupd.             | */
/*        | *  Determine Ritz estimates of the lambda.      | */
/*        %-------------------------------------------------% */

/*<          call dscal (ncv, bnorm2, workl(ihb), 1) >*/
        dscal_(ncv, &bnorm2, &workl[ihb], &c__1);
/*<          if (type .eq. 'SHIFTI') then  >*/
        if (s_cmp(type__, "SHIFTI", (ftnlen)6, (ftnlen)6) == 0) {

/*<             do 80 k=1, ncv >*/
            i__1 = *ncv;
            for (k = 1; k <= i__1; ++k) {
/*<                workl(ihb+k-1) = abs( workl(ihb+k-1) ) / workl(iw+k-1)**2 >*/
/* Computing 2nd power */
                d__2 = workl[iw + k - 1];
                workl[ihb + k - 1] = (d__1 = workl[ihb + k - 1], abs(d__1)) /
                        (d__2 * d__2);
/*<  80         continue >*/
/* L80: */
            }

/*<          else if (type .eq. 'BUCKLE') then >*/
        } else if (s_cmp(type__, "BUCKLE", (ftnlen)6, (ftnlen)6) == 0) {

/*<             do 90 k=1, ncv >*/
            i__1 = *ncv;
            for (k = 1; k <= i__1; ++k) {
/*<        >*/
/* Computing 2nd power */
                d__2 = workl[iw + k - 1] - 1.;
                workl[ihb + k - 1] = *sigma * (d__1 = workl[ihb + k - 1], abs(
                        d__1)) / (d__2 * d__2);
/*<  90         continue >*/
/* L90: */
            }

/*<          else if (type .eq. 'CAYLEY') then >*/
        } else if (s_cmp(type__, "CAYLEY", (ftnlen)6, (ftnlen)6) == 0) {

/*<             do 100 k=1, ncv >*/
            i__1 = *ncv;
            for (k = 1; k <= i__1; ++k) {
/*<        >*/
                workl[ihb + k - 1] = (d__1 = workl[ihb + k - 1] / workl[iw +
                        k - 1] * (workl[iw + k - 1] - 1.), abs(d__1));
/*<  100        continue >*/
/* L100: */
            }

/*<          end if >*/
        }

/*<       end if >*/
    }

/*      if (type .ne. 'REGULR' .and. msglvl .gt. 1) then */
/*         call dvout (logfil, nconv, d, ndigit, */
/*     &          '_seupd: Untransformed converged Ritz values') */
/*         call dvout (logfil, nconv, workl(ihb), ndigit, */
/*     &     '_seupd: Ritz estimates of the untransformed Ritz values') */
/*      else if (msglvl .gt. 1) then */
/*         call dvout (logfil, nconv, d, ndigit, */
/*     &          '_seupd: Converged Ritz values') */
/*         call dvout (logfil, nconv, workl(ihb), ndigit, */
/*     &     '_seupd: Associated Ritz estimates') */
/*      end if */

/*     %-------------------------------------------------% */
/*     | Ritz vector purification step. Formally perform | */
/*     | one of inverse subspace iteration. Only used    | */
/*     | for MODE = 3,4,5. See reference 7               | */
/*     %-------------------------------------------------% */

/*<       if (rvec .and. (type .eq. 'SHIFTI' .or. type .eq. 'CAYLEY')) then >*/
    if (*rvec && (s_cmp(type__, "SHIFTI", (ftnlen)6, (ftnlen)6) == 0 || s_cmp(
            type__, "CAYLEY", (ftnlen)6, (ftnlen)6) == 0)) {

/*<          do 110 k=0, nconv-1 >*/
        i__1 = nconv - 1;
        for (k = 0; k <= i__1; ++k) {
/*<             workl(iw+k) = workl(iq+k*ldq+ncv-1) / workl(iw+k) >*/
            workl[iw + k] = workl[iq + k * ldq + *ncv - 1] / workl[iw + k];
/*<  110     continue >*/
/* L110: */
        }

/*<       else if (rvec .and. type .eq. 'BUCKLE') then >*/
    } else if (*rvec && s_cmp(type__, "BUCKLE", (ftnlen)6, (ftnlen)6) == 0) {

/*<          do 120 k=0, nconv-1 >*/
        i__1 = nconv - 1;
        for (k = 0; k <= i__1; ++k) {
/*<             workl(iw+k) = workl(iq+k*ldq+ncv-1) / (workl(iw+k)-one) >*/
            workl[iw + k] = workl[iq + k * ldq + *ncv - 1] / (workl[iw + k] -
                    1.);
/*<  120     continue >*/
/* L120: */
        }

/*<       end if  >*/
    }

/*<        >*/
    if (s_cmp(type__, "REGULR", (ftnlen)6, (ftnlen)6) != 0) {
        dger_(n, &nconv, &c_b103, &resid[1], &c__1, &workl[iw], &c__1, &z__[
                z_offset], ldz);
    }

/*<  9000 continue >*/
L9000:

/*<       return >*/
    return 0;

/*     %---------------% */
/*     | End of dseupd | */
/*     %---------------% */

/*<       end >*/
} /* dseupd_ */

#ifdef __cplusplus
        }
#endif