1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
|
/* lapack/complex16/zgecon.f -- translated by f2c (version 20090411).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/* Table of constant values */
static integer c__1 = 1;
/*< >*/
/* Subroutine */ int zgecon_(char *norm, integer *n, doublecomplex *a,
integer *lda, doublereal *anorm, doublereal *rcond, doublecomplex *
work, doublereal *rwork, integer *info, ftnlen norm_len)
{
/* System generated locals */
integer a_dim1, a_offset, i__1;
doublereal d__1, d__2;
/* Builtin functions */
double d_imag(doublecomplex *);
/* Local variables */
doublereal sl;
integer ix;
doublereal su;
integer kase, kase1;
doublereal scale;
extern logical lsame_(const char *, const char *, ftnlen, ftnlen);
integer isave[3];
extern /* Subroutine */ int zlacn2_(integer *, doublecomplex *,
doublecomplex *, doublereal *, integer *, integer *);
extern doublereal dlamch_(char *, ftnlen);
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
doublereal ainvnm;
extern integer izamax_(integer *, doublecomplex *, integer *);
logical onenrm;
extern /* Subroutine */ int zdrscl_(integer *, doublereal *,
doublecomplex *, integer *);
char normin[1];
doublereal smlnum;
extern /* Subroutine */ int zlatrs_(char *, char *, char *, char *,
integer *, doublecomplex *, integer *, doublecomplex *,
doublereal *, doublereal *, integer *, ftnlen, ftnlen, ftnlen,
ftnlen);
(void)norm_len;
/* -- LAPACK routine (version 3.2) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* November 2006 */
/* Modified to call ZLACN2 in place of ZLACON, 10 Feb 03, SJH. */
/* .. Scalar Arguments .. */
/*< CHARACTER NORM >*/
/*< INTEGER INFO, LDA, N >*/
/*< DOUBLE PRECISION ANORM, RCOND >*/
/* .. */
/* .. Array Arguments .. */
/*< DOUBLE PRECISION RWORK( * ) >*/
/*< COMPLEX*16 A( LDA, * ), WORK( * ) >*/
/* .. */
/* Purpose */
/* ======= */
/* ZGECON estimates the reciprocal of the condition number of a general */
/* complex matrix A, in either the 1-norm or the infinity-norm, using */
/* the LU factorization computed by ZGETRF. */
/* An estimate is obtained for norm(inv(A)), and the reciprocal of the */
/* condition number is computed as */
/* RCOND = 1 / ( norm(A) * norm(inv(A)) ). */
/* Arguments */
/* ========= */
/* NORM (input) CHARACTER*1 */
/* Specifies whether the 1-norm condition number or the */
/* infinity-norm condition number is required: */
/* = '1' or 'O': 1-norm; */
/* = 'I': Infinity-norm. */
/* N (input) INTEGER */
/* The order of the matrix A. N >= 0. */
/* A (input) COMPLEX*16 array, dimension (LDA,N) */
/* The factors L and U from the factorization A = P*L*U */
/* as computed by ZGETRF. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,N). */
/* ANORM (input) DOUBLE PRECISION */
/* If NORM = '1' or 'O', the 1-norm of the original matrix A. */
/* If NORM = 'I', the infinity-norm of the original matrix A. */
/* RCOND (output) DOUBLE PRECISION */
/* The reciprocal of the condition number of the matrix A, */
/* computed as RCOND = 1/(norm(A) * norm(inv(A))). */
/* WORK (workspace) COMPLEX*16 array, dimension (2*N) */
/* RWORK (workspace) DOUBLE PRECISION array, dimension (2*N) */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* ===================================================================== */
/* .. Parameters .. */
/*< DOUBLE PRECISION ONE, ZERO >*/
/*< PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) >*/
/* .. */
/* .. Local Scalars .. */
/*< LOGICAL ONENRM >*/
/*< CHARACTER NORMIN >*/
/*< INTEGER IX, KASE, KASE1 >*/
/*< DOUBLE PRECISION AINVNM, SCALE, SL, SMLNUM, SU >*/
/*< COMPLEX*16 ZDUM >*/
/* .. */
/* .. Local Arrays .. */
/*< INTEGER ISAVE( 3 ) >*/
/* .. */
/* .. External Functions .. */
/*< LOGICAL LSAME >*/
/*< INTEGER IZAMAX >*/
/*< DOUBLE PRECISION DLAMCH >*/
/*< EXTERNAL LSAME, IZAMAX, DLAMCH >*/
/* .. */
/* .. External Subroutines .. */
/*< EXTERNAL XERBLA, ZDRSCL, ZLACN2, ZLATRS >*/
/* .. */
/* .. Intrinsic Functions .. */
/*< INTRINSIC ABS, DBLE, DIMAG, MAX >*/
/* .. */
/* .. Statement Functions .. */
/*< DOUBLE PRECISION CABS1 >*/
/* .. */
/* .. Statement Function definitions .. */
/*< CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) ) >*/
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/*< INFO = 0 >*/
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--work;
--rwork;
/* Function Body */
*info = 0;
/*< ONENRM = NORM.EQ.'1' .OR. LSAME( NORM, 'O' ) >*/
onenrm = *(unsigned char *)norm == '1' || lsame_(norm, "O", (ftnlen)1, (
ftnlen)1);
/*< IF( .NOT.ONENRM .AND. .NOT.LSAME( NORM, 'I' ) ) THEN >*/
if (! onenrm && ! lsame_(norm, "I", (ftnlen)1, (ftnlen)1)) {
/*< INFO = -1 >*/
*info = -1;
/*< ELSE IF( N.LT.0 ) THEN >*/
} else if (*n < 0) {
/*< INFO = -2 >*/
*info = -2;
/*< ELSE IF( LDA.LT.MAX( 1, N ) ) THEN >*/
} else if (*lda < max(1,*n)) {
/*< INFO = -4 >*/
*info = -4;
/*< ELSE IF( ANORM.LT.ZERO ) THEN >*/
} else if (*anorm < 0.) {
/*< INFO = -5 >*/
*info = -5;
/*< END IF >*/
}
/*< IF( INFO.NE.0 ) THEN >*/
if (*info != 0) {
/*< CALL XERBLA( 'ZGECON', -INFO ) >*/
i__1 = -(*info);
xerbla_("ZGECON", &i__1, (ftnlen)6);
/*< RETURN >*/
return 0;
/*< END IF >*/
}
/* Quick return if possible */
/*< RCOND = ZERO >*/
*rcond = 0.;
/*< IF( N.EQ.0 ) THEN >*/
if (*n == 0) {
/*< RCOND = ONE >*/
*rcond = 1.;
/*< RETURN >*/
return 0;
/*< ELSE IF( ANORM.EQ.ZERO ) THEN >*/
} else if (*anorm == 0.) {
/*< RETURN >*/
return 0;
/*< END IF >*/
}
/*< SMLNUM = DLAMCH( 'Safe minimum' ) >*/
smlnum = dlamch_("Safe minimum", (ftnlen)12);
/* Estimate the norm of inv(A). */
/*< AINVNM = ZERO >*/
ainvnm = 0.;
/*< NORMIN = 'N' >*/
*(unsigned char *)normin = 'N';
/*< IF( ONENRM ) THEN >*/
if (onenrm) {
/*< KASE1 = 1 >*/
kase1 = 1;
/*< ELSE >*/
} else {
/*< KASE1 = 2 >*/
kase1 = 2;
/*< END IF >*/
}
/*< KASE = 0 >*/
kase = 0;
/*< 10 CONTINUE >*/
L10:
/*< CALL ZLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE ) >*/
zlacn2_(n, &work[*n + 1], &work[1], &ainvnm, &kase, isave);
/*< IF( KASE.NE.0 ) THEN >*/
if (kase != 0) {
/*< IF( KASE.EQ.KASE1 ) THEN >*/
if (kase == kase1) {
/* Multiply by inv(L). */
/*< >*/
zlatrs_("Lower", "No transpose", "Unit", normin, n, &a[a_offset],
lda, &work[1], &sl, &rwork[1], info, (ftnlen)5, (ftnlen)
12, (ftnlen)4, (ftnlen)1);
/* Multiply by inv(U). */
/*< >*/
zlatrs_("Upper", "No transpose", "Non-unit", normin, n, &a[
a_offset], lda, &work[1], &su, &rwork[*n + 1], info, (
ftnlen)5, (ftnlen)12, (ftnlen)8, (ftnlen)1);
/*< ELSE >*/
} else {
/* Multiply by inv(U'). */
/*< >*/
zlatrs_("Upper", "Conjugate transpose", "Non-unit", normin, n, &a[
a_offset], lda, &work[1], &su, &rwork[*n + 1], info, (
ftnlen)5, (ftnlen)19, (ftnlen)8, (ftnlen)1);
/* Multiply by inv(L'). */
/*< >*/
zlatrs_("Lower", "Conjugate transpose", "Unit", normin, n, &a[
a_offset], lda, &work[1], &sl, &rwork[1], info, (ftnlen)5,
(ftnlen)19, (ftnlen)4, (ftnlen)1);
/*< END IF >*/
}
/* Divide X by 1/(SL*SU) if doing so will not cause overflow. */
/*< SCALE = SL*SU >*/
scale = sl * su;
/*< NORMIN = 'Y' >*/
*(unsigned char *)normin = 'Y';
/*< IF( SCALE.NE.ONE ) THEN >*/
if (scale != 1.) {
/*< IX = IZAMAX( N, WORK, 1 ) >*/
ix = izamax_(n, &work[1], &c__1);
/*< >*/
i__1 = ix;
if (scale < ((d__1 = work[i__1].r, abs(d__1)) + (d__2 = d_imag(&
work[ix]), abs(d__2))) * smlnum || scale == 0.) {
goto L20;
}
/*< CALL ZDRSCL( N, SCALE, WORK, 1 ) >*/
zdrscl_(n, &scale, &work[1], &c__1);
/*< END IF >*/
}
/*< GO TO 10 >*/
goto L10;
/*< END IF >*/
}
/* Compute the estimate of the reciprocal condition number. */
/*< >*/
if (ainvnm != 0.) {
*rcond = 1. / ainvnm / *anorm;
}
/*< 20 CONTINUE >*/
L20:
/*< RETURN >*/
return 0;
/* End of ZGECON */
/*< END >*/
} /* zgecon_ */
#ifdef __cplusplus
}
#endif
|