File: zgees.c

package info (click to toggle)
vxl 1.17.0.dfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 153,280 kB
  • ctags: 105,123
  • sloc: cpp: 747,420; ansic: 209,130; fortran: 34,230; lisp: 14,915; sh: 6,187; python: 5,856; makefile: 340; perl: 294; xml: 160
file content (537 lines) | stat: -rw-r--r-- 19,070 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
/* lapack/complex16/zgees.f -- translated by f2c (version 20090411).
   You must link the resulting object file with libf2c:
        on Microsoft Windows system, link with libf2c.lib;
        on Linux or Unix systems, link with .../path/to/libf2c.a -lm
        or, if you install libf2c.a in a standard place, with -lf2c -lm
        -- in that order, at the end of the command line, as in
                cc *.o -lf2c -lm
        Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

                http://www.netlib.org/f2c/libf2c.zip
*/

#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"

/* Table of constant values */

static integer c__1 = 1;
static integer c__0 = 0;
static integer c_n1 = -1;

/*<    >*/
/* Subroutine */ int zgees_(char *jobvs, char *sort,
        logical (*select)(doublecomplex*), integer *n,
        doublecomplex *a, integer *lda, integer *sdim, doublecomplex *w,
        doublecomplex *vs, integer *ldvs, doublecomplex *work, integer *lwork,
        doublereal *rwork, logical *bwork, integer *info, ftnlen jobvs_len,
        ftnlen sort_len)
{
    /* System generated locals */
    integer a_dim1, a_offset, vs_dim1, vs_offset, i__1, i__2;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    integer i__;
    doublereal s;
    integer ihi, ilo;
    doublereal dum[1], eps, sep;
    integer ibal;
    doublereal anrm;
    integer ierr, itau, iwrk, icond, ieval;
    extern logical lsame_(const char *, const char *, ftnlen, ftnlen);
    extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *,
            doublecomplex *, integer *), dlabad_(doublereal *, doublereal *);
    logical scalea;
    extern doublereal dlamch_(char *, ftnlen);
    doublereal cscale;
    extern /* Subroutine */ int zgebak_(char *, char *, integer *, integer *,
            integer *, doublereal *, integer *, doublecomplex *, integer *,
            integer *, ftnlen, ftnlen), zgebal_(char *, integer *,
            doublecomplex *, integer *, integer *, integer *, doublereal *,
            integer *, ftnlen), xerbla_(char *, integer *, ftnlen);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
            integer *, integer *, ftnlen, ftnlen);
    extern doublereal zlange_(char *, integer *, integer *, doublecomplex *,
            integer *, doublereal *, ftnlen);
    doublereal bignum;
    extern /* Subroutine */ int zgehrd_(integer *, integer *, integer *,
            doublecomplex *, integer *, doublecomplex *, doublecomplex *,
            integer *, integer *), zlascl_(char *, integer *, integer *,
            doublereal *, doublereal *, integer *, integer *, doublecomplex *,
             integer *, integer *, ftnlen), zlacpy_(char *, integer *,
            integer *, doublecomplex *, integer *, doublecomplex *, integer *,
             ftnlen);
    integer minwrk, maxwrk;
    doublereal smlnum;
    extern /* Subroutine */ int zhseqr_(char *, char *, integer *, integer *,
            integer *, doublecomplex *, integer *, doublecomplex *,
            doublecomplex *, integer *, doublecomplex *, integer *, integer *,
             ftnlen, ftnlen);
    integer hswork;
    extern /* Subroutine */ int zunghr_(integer *, integer *, integer *,
            doublecomplex *, integer *, doublecomplex *, doublecomplex *,
            integer *, integer *);
    logical wantst, lquery, wantvs;
    extern /* Subroutine */ int ztrsen_(char *, char *, logical *, integer *,
            doublecomplex *, integer *, doublecomplex *, integer *,
            doublecomplex *, integer *, doublereal *, doublereal *,
            doublecomplex *, integer *, integer *, ftnlen, ftnlen);
    (void)jobvs_len;
    (void)sort_len;

/*  -- LAPACK driver routine (version 3.2) -- */
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*<       CHARACTER          JOBVS, SORT >*/
/*<       INTEGER            INFO, LDA, LDVS, LWORK, N, SDIM >*/
/*     .. */
/*     .. Array Arguments .. */
/*<       LOGICAL            BWORK( * ) >*/
/*<       DOUBLE PRECISION   RWORK( * ) >*/
/*<       COMPLEX*16         A( LDA, * ), VS( LDVS, * ), W( * ), WORK( * ) >*/
/*     .. */
/*     .. Function Arguments .. */
/*<       LOGICAL            SELECT >*/
/*<       EXTERNAL           SELECT >*/
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZGEES computes for an N-by-N complex nonsymmetric matrix A, the */
/*  eigenvalues, the Schur form T, and, optionally, the matrix of Schur */
/*  vectors Z.  This gives the Schur factorization A = Z*T*(Z**H). */

/*  Optionally, it also orders the eigenvalues on the diagonal of the */
/*  Schur form so that selected eigenvalues are at the top left. */
/*  The leading columns of Z then form an orthonormal basis for the */
/*  invariant subspace corresponding to the selected eigenvalues. */

/*  A complex matrix is in Schur form if it is upper triangular. */

/*  Arguments */
/*  ========= */

/*  JOBVS   (input) CHARACTER*1 */
/*          = 'N': Schur vectors are not computed; */
/*          = 'V': Schur vectors are computed. */

/*  SORT    (input) CHARACTER*1 */
/*          Specifies whether or not to order the eigenvalues on the */
/*          diagonal of the Schur form. */
/*          = 'N': Eigenvalues are not ordered: */
/*          = 'S': Eigenvalues are ordered (see SELECT). */

/*  SELECT  (external procedure) LOGICAL FUNCTION of one COMPLEX*16 argument */
/*          SELECT must be declared EXTERNAL in the calling subroutine. */
/*          If SORT = 'S', SELECT is used to select eigenvalues to order */
/*          to the top left of the Schur form. */
/*          IF SORT = 'N', SELECT is not referenced. */
/*          The eigenvalue W(j) is selected if SELECT(W(j)) is true. */

/*  N       (input) INTEGER */
/*          The order of the matrix A. N >= 0. */

/*  A       (input/output) COMPLEX*16 array, dimension (LDA,N) */
/*          On entry, the N-by-N matrix A. */
/*          On exit, A has been overwritten by its Schur form T. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,N). */

/*  SDIM    (output) INTEGER */
/*          If SORT = 'N', SDIM = 0. */
/*          If SORT = 'S', SDIM = number of eigenvalues for which */
/*                         SELECT is true. */

/*  W       (output) COMPLEX*16 array, dimension (N) */
/*          W contains the computed eigenvalues, in the same order that */
/*          they appear on the diagonal of the output Schur form T. */

/*  VS      (output) COMPLEX*16 array, dimension (LDVS,N) */
/*          If JOBVS = 'V', VS contains the unitary matrix Z of Schur */
/*          vectors. */
/*          If JOBVS = 'N', VS is not referenced. */

/*  LDVS    (input) INTEGER */
/*          The leading dimension of the array VS.  LDVS >= 1; if */
/*          JOBVS = 'V', LDVS >= N. */

/*  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) */
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The dimension of the array WORK.  LWORK >= max(1,2*N). */
/*          For good performance, LWORK must generally be larger. */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal size of the WORK array, returns */
/*          this value as the first entry of the WORK array, and no error */
/*          message related to LWORK is issued by XERBLA. */

/*  RWORK   (workspace) DOUBLE PRECISION array, dimension (N) */

/*  BWORK   (workspace) LOGICAL array, dimension (N) */
/*          Not referenced if SORT = 'N'. */

/*  INFO    (output) INTEGER */
/*          = 0: successful exit */
/*          < 0: if INFO = -i, the i-th argument had an illegal value. */
/*          > 0: if INFO = i, and i is */
/*               <= N:  the QR algorithm failed to compute all the */
/*                      eigenvalues; elements 1:ILO-1 and i+1:N of W */
/*                      contain those eigenvalues which have converged; */
/*                      if JOBVS = 'V', VS contains the matrix which */
/*                      reduces A to its partially converged Schur form. */
/*               = N+1: the eigenvalues could not be reordered because */
/*                      some eigenvalues were too close to separate (the */
/*                      problem is very ill-conditioned); */
/*               = N+2: after reordering, roundoff changed values of */
/*                      some complex eigenvalues so that leading */
/*                      eigenvalues in the Schur form no longer satisfy */
/*                      SELECT = .TRUE..  This could also be caused by */
/*                      underflow due to scaling. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*<       DOUBLE PRECISION   ZERO, ONE >*/
/*<       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 ) >*/
/*     .. */
/*     .. Local Scalars .. */
/*<       LOGICAL            LQUERY, SCALEA, WANTST, WANTVS >*/
/*<    >*/
/*<       DOUBLE PRECISION   ANRM, BIGNUM, CSCALE, EPS, S, SEP, SMLNUM >*/
/*     .. */
/*     .. Local Arrays .. */
/*<       DOUBLE PRECISION   DUM( 1 ) >*/
/*     .. */
/*     .. External Subroutines .. */
/*<    >*/
/*     .. */
/*     .. External Functions .. */
/*<       LOGICAL            LSAME >*/
/*<       INTEGER            ILAENV >*/
/*<       DOUBLE PRECISION   DLAMCH, ZLANGE >*/
/*<       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANGE >*/
/*     .. */
/*     .. Intrinsic Functions .. */
/*<       INTRINSIC          MAX, SQRT >*/
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input arguments */

/*<       INFO = 0 >*/
    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --w;
    vs_dim1 = *ldvs;
    vs_offset = 1 + vs_dim1;
    vs -= vs_offset;
    --work;
    --rwork;
    --bwork;

    /* Function Body */
    *info = 0;
/*<       LQUERY = ( LWORK.EQ.-1 ) >*/
    lquery = *lwork == -1;
/*<       WANTVS = LSAME( JOBVS, 'V' ) >*/
    wantvs = lsame_(jobvs, "V", (ftnlen)1, (ftnlen)1);
/*<       WANTST = LSAME( SORT, 'S' ) >*/
    wantst = lsame_(sort, "S", (ftnlen)1, (ftnlen)1);
/*<       IF( ( .NOT.WANTVS ) .AND. ( .NOT.LSAME( JOBVS, 'N' ) ) ) THEN >*/
    if (! wantvs && ! lsame_(jobvs, "N", (ftnlen)1, (ftnlen)1)) {
/*<          INFO = -1 >*/
        *info = -1;
/*<       ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN >*/
    } else if (! wantst && ! lsame_(sort, "N", (ftnlen)1, (ftnlen)1)) {
/*<          INFO = -2 >*/
        *info = -2;
/*<       ELSE IF( N.LT.0 ) THEN >*/
    } else if (*n < 0) {
/*<          INFO = -4 >*/
        *info = -4;
/*<       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN >*/
    } else if (*lda < max(1,*n)) {
/*<          INFO = -6 >*/
        *info = -6;
/*<       ELSE IF( LDVS.LT.1 .OR. ( WANTVS .AND. LDVS.LT.N ) ) THEN >*/
    } else if (*ldvs < 1 || (wantvs && *ldvs < *n)) {
/*<          INFO = -10 >*/
        *info = -10;
/*<       END IF >*/
    }

/*     Compute workspace */
/*      (Note: Comments in the code beginning "Workspace:" describe the */
/*       minimal amount of workspace needed at that point in the code, */
/*       as well as the preferred amount for good performance. */
/*       CWorkspace refers to complex workspace, and RWorkspace to real */
/*       workspace. NB refers to the optimal block size for the */
/*       immediately following subroutine, as returned by ILAENV. */
/*       HSWORK refers to the workspace preferred by ZHSEQR, as */
/*       calculated below. HSWORK is computed assuming ILO=1 and IHI=N, */
/*       the worst case.) */

/*<       IF( INFO.EQ.0 ) THEN >*/
    if (*info == 0) {
/*<          IF( N.EQ.0 ) THEN >*/
        if (*n == 0) {
/*<             MINWRK = 1 >*/
            minwrk = 1;
/*<             MAXWRK = 1 >*/
            maxwrk = 1;
/*<          ELSE >*/
        } else {
/*<             MAXWRK = N + N*ILAENV( 1, 'ZGEHRD', ' ', N, 1, N, 0 ) >*/
            maxwrk = *n + *n * ilaenv_(&c__1, "ZGEHRD", " ", n, &c__1, n, &
                    c__0, (ftnlen)6, (ftnlen)1);
/*<             MINWRK = 2*N >*/
            minwrk = *n << 1;

/*<    >*/
            zhseqr_("S", jobvs, n, &c__1, n, &a[a_offset], lda, &w[1], &vs[
                    vs_offset], ldvs, &work[1], &c_n1, &ieval, (ftnlen)1, (
                    ftnlen)1);
/*<             HSWORK = WORK( 1 ) >*/
            hswork = (integer) work[1].r;

/*<             IF( .NOT.WANTVS ) THEN >*/
            if (! wantvs) {
/*<                MAXWRK = MAX( MAXWRK, HSWORK ) >*/
                maxwrk = max(maxwrk,hswork);
/*<             ELSE >*/
            } else {
/*<    >*/
/* Computing MAX */
                i__1 = maxwrk, i__2 = *n + (*n - 1) * ilaenv_(&c__1, "ZUNGHR",
                         " ", n, &c__1, n, &c_n1, (ftnlen)6, (ftnlen)1);
                maxwrk = max(i__1,i__2);
/*<                MAXWRK = MAX( MAXWRK, HSWORK ) >*/
                maxwrk = max(maxwrk,hswork);
/*<             END IF >*/
            }
/*<          END IF >*/
        }
/*<          WORK( 1 ) = MAXWRK >*/
        work[1].r = (doublereal) maxwrk, work[1].i = 0.;

/*<          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN >*/
        if (*lwork < minwrk && ! lquery) {
/*<             INFO = -12 >*/
            *info = -12;
/*<          END IF >*/
        }
/*<       END IF >*/
    }

/*<       IF( INFO.NE.0 ) THEN >*/
    if (*info != 0) {
/*<          CALL XERBLA( 'ZGEES ', -INFO ) >*/
        i__1 = -(*info);
        xerbla_("ZGEES ", &i__1, (ftnlen)6);
/*<          RETURN >*/
        return 0;
/*<       ELSE IF( LQUERY ) THEN >*/
    } else if (lquery) {
/*<          RETURN >*/
        return 0;
/*<       END IF >*/
    }

/*     Quick return if possible */

/*<       IF( N.EQ.0 ) THEN >*/
    if (*n == 0) {
/*<          SDIM = 0 >*/
        *sdim = 0;
/*<          RETURN >*/
        return 0;
/*<       END IF >*/
    }

/*     Get machine constants */

/*<       EPS = DLAMCH( 'P' ) >*/
    eps = dlamch_("P", (ftnlen)1);
/*<       SMLNUM = DLAMCH( 'S' ) >*/
    smlnum = dlamch_("S", (ftnlen)1);
/*<       BIGNUM = ONE / SMLNUM >*/
    bignum = 1. / smlnum;
/*<       CALL DLABAD( SMLNUM, BIGNUM ) >*/
    dlabad_(&smlnum, &bignum);
/*<       SMLNUM = SQRT( SMLNUM ) / EPS >*/
    smlnum = sqrt(smlnum) / eps;
/*<       BIGNUM = ONE / SMLNUM >*/
    bignum = 1. / smlnum;

/*     Scale A if max element outside range [SMLNUM,BIGNUM] */

/*<       ANRM = ZLANGE( 'M', N, N, A, LDA, DUM ) >*/
    anrm = zlange_("M", n, n, &a[a_offset], lda, dum, (ftnlen)1);
/*<       SCALEA = .FALSE. >*/
    scalea = FALSE_;
/*<       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN >*/
    if (anrm > 0. && anrm < smlnum) {
/*<          SCALEA = .TRUE. >*/
        scalea = TRUE_;
/*<          CSCALE = SMLNUM >*/
        cscale = smlnum;
/*<       ELSE IF( ANRM.GT.BIGNUM ) THEN >*/
    } else if (anrm > bignum) {
/*<          SCALEA = .TRUE. >*/
        scalea = TRUE_;
/*<          CSCALE = BIGNUM >*/
        cscale = bignum;
/*<       END IF >*/
    }
/*<    >*/
    if (scalea) {
        zlascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, &
                ierr, (ftnlen)1);
    }

/*     Permute the matrix to make it more nearly triangular */
/*     (CWorkspace: none) */
/*     (RWorkspace: need N) */

/*<       IBAL = 1 >*/
    ibal = 1;
/*<       CALL ZGEBAL( 'P', N, A, LDA, ILO, IHI, RWORK( IBAL ), IERR ) >*/
    zgebal_("P", n, &a[a_offset], lda, &ilo, &ihi, &rwork[ibal], &ierr, (
            ftnlen)1);

/*     Reduce to upper Hessenberg form */
/*     (CWorkspace: need 2*N, prefer N+N*NB) */
/*     (RWorkspace: none) */

/*<       ITAU = 1 >*/
    itau = 1;
/*<       IWRK = N + ITAU >*/
    iwrk = *n + itau;
/*<    >*/
    i__1 = *lwork - iwrk + 1;
    zgehrd_(n, &ilo, &ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1,
             &ierr);

/*<       IF( WANTVS ) THEN >*/
    if (wantvs) {

/*        Copy Householder vectors to VS */

/*<          CALL ZLACPY( 'L', N, N, A, LDA, VS, LDVS ) >*/
        zlacpy_("L", n, n, &a[a_offset], lda, &vs[vs_offset], ldvs, (ftnlen)1)
                ;

/*        Generate unitary matrix in VS */
/*        (CWorkspace: need 2*N-1, prefer N+(N-1)*NB) */
/*        (RWorkspace: none) */

/*<    >*/
        i__1 = *lwork - iwrk + 1;
        zunghr_(n, &ilo, &ihi, &vs[vs_offset], ldvs, &work[itau], &work[iwrk],
                 &i__1, &ierr);
/*<       END IF >*/
    }

/*<       SDIM = 0 >*/
    *sdim = 0;

/*     Perform QR iteration, accumulating Schur vectors in VS if desired */
/*     (CWorkspace: need 1, prefer HSWORK (see comments) ) */
/*     (RWorkspace: none) */

/*<       IWRK = ITAU >*/
    iwrk = itau;
/*<    >*/
    i__1 = *lwork - iwrk + 1;
    zhseqr_("S", jobvs, n, &ilo, &ihi, &a[a_offset], lda, &w[1], &vs[
            vs_offset], ldvs, &work[iwrk], &i__1, &ieval, (ftnlen)1, (ftnlen)
            1);
/*<    >*/
    if (ieval > 0) {
        *info = ieval;
    }

/*     Sort eigenvalues if desired */

/*<       IF( WANTST .AND. INFO.EQ.0 ) THEN >*/
    if (wantst && *info == 0) {
/*<    >*/
        if (scalea) {
            zlascl_("G", &c__0, &c__0, &cscale, &anrm, n, &c__1, &w[1], n, &
                    ierr, (ftnlen)1);
        }
/*<          DO 10 I = 1, N >*/
        i__1 = *n;
        for (i__ = 1; i__ <= i__1; ++i__) {
/*<             BWORK( I ) = SELECT( W( I ) ) >*/
            bwork[i__] = (*select)(&w[i__]);
/*<    10    CONTINUE >*/
/* L10: */
        }

/*        Reorder eigenvalues and transform Schur vectors */
/*        (CWorkspace: none) */
/*        (RWorkspace: none) */

/*<    >*/
        i__1 = *lwork - iwrk + 1;
        ztrsen_("N", jobvs, &bwork[1], n, &a[a_offset], lda, &vs[vs_offset],
                ldvs, &w[1], sdim, &s, &sep, &work[iwrk], &i__1, &icond, (
                ftnlen)1, (ftnlen)1);
/*<       END IF >*/
    }

/*<       IF( WANTVS ) THEN >*/
    if (wantvs) {

/*        Undo balancing */
/*        (CWorkspace: none) */
/*        (RWorkspace: need N) */

/*<    >*/
        zgebak_("P", "R", n, &ilo, &ihi, &rwork[ibal], n, &vs[vs_offset],
                ldvs, &ierr, (ftnlen)1, (ftnlen)1);
/*<       END IF >*/
    }

/*<       IF( SCALEA ) THEN >*/
    if (scalea) {

/*        Undo scaling for the Schur form of A */

/*<          CALL ZLASCL( 'U', 0, 0, CSCALE, ANRM, N, N, A, LDA, IERR ) >*/
        zlascl_("U", &c__0, &c__0, &cscale, &anrm, n, n, &a[a_offset], lda, &
                ierr, (ftnlen)1);
/*<          CALL ZCOPY( N, A, LDA+1, W, 1 ) >*/
        i__1 = *lda + 1;
        zcopy_(n, &a[a_offset], &i__1, &w[1], &c__1);
/*<       END IF >*/
    }

/*<       WORK( 1 ) = MAXWRK >*/
    work[1].r = (doublereal) maxwrk, work[1].i = 0.;
/*<       RETURN >*/
    return 0;

/*     End of ZGEES */

/*<       END >*/
} /* zgees_ */

#ifdef __cplusplus
        }
#endif