1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
|
/* lapack/complex16/zgees.f -- translated by f2c (version 20090411).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/* Table of constant values */
static integer c__1 = 1;
static integer c__0 = 0;
static integer c_n1 = -1;
/*< >*/
/* Subroutine */ int zgees_(char *jobvs, char *sort,
logical (*select)(doublecomplex*), integer *n,
doublecomplex *a, integer *lda, integer *sdim, doublecomplex *w,
doublecomplex *vs, integer *ldvs, doublecomplex *work, integer *lwork,
doublereal *rwork, logical *bwork, integer *info, ftnlen jobvs_len,
ftnlen sort_len)
{
/* System generated locals */
integer a_dim1, a_offset, vs_dim1, vs_offset, i__1, i__2;
/* Builtin functions */
double sqrt(doublereal);
/* Local variables */
integer i__;
doublereal s;
integer ihi, ilo;
doublereal dum[1], eps, sep;
integer ibal;
doublereal anrm;
integer ierr, itau, iwrk, icond, ieval;
extern logical lsame_(const char *, const char *, ftnlen, ftnlen);
extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *,
doublecomplex *, integer *), dlabad_(doublereal *, doublereal *);
logical scalea;
extern doublereal dlamch_(char *, ftnlen);
doublereal cscale;
extern /* Subroutine */ int zgebak_(char *, char *, integer *, integer *,
integer *, doublereal *, integer *, doublecomplex *, integer *,
integer *, ftnlen, ftnlen), zgebal_(char *, integer *,
doublecomplex *, integer *, integer *, integer *, doublereal *,
integer *, ftnlen), xerbla_(char *, integer *, ftnlen);
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *, ftnlen, ftnlen);
extern doublereal zlange_(char *, integer *, integer *, doublecomplex *,
integer *, doublereal *, ftnlen);
doublereal bignum;
extern /* Subroutine */ int zgehrd_(integer *, integer *, integer *,
doublecomplex *, integer *, doublecomplex *, doublecomplex *,
integer *, integer *), zlascl_(char *, integer *, integer *,
doublereal *, doublereal *, integer *, integer *, doublecomplex *,
integer *, integer *, ftnlen), zlacpy_(char *, integer *,
integer *, doublecomplex *, integer *, doublecomplex *, integer *,
ftnlen);
integer minwrk, maxwrk;
doublereal smlnum;
extern /* Subroutine */ int zhseqr_(char *, char *, integer *, integer *,
integer *, doublecomplex *, integer *, doublecomplex *,
doublecomplex *, integer *, doublecomplex *, integer *, integer *,
ftnlen, ftnlen);
integer hswork;
extern /* Subroutine */ int zunghr_(integer *, integer *, integer *,
doublecomplex *, integer *, doublecomplex *, doublecomplex *,
integer *, integer *);
logical wantst, lquery, wantvs;
extern /* Subroutine */ int ztrsen_(char *, char *, logical *, integer *,
doublecomplex *, integer *, doublecomplex *, integer *,
doublecomplex *, integer *, doublereal *, doublereal *,
doublecomplex *, integer *, integer *, ftnlen, ftnlen);
(void)jobvs_len;
(void)sort_len;
/* -- LAPACK driver routine (version 3.2) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* November 2006 */
/* .. Scalar Arguments .. */
/*< CHARACTER JOBVS, SORT >*/
/*< INTEGER INFO, LDA, LDVS, LWORK, N, SDIM >*/
/* .. */
/* .. Array Arguments .. */
/*< LOGICAL BWORK( * ) >*/
/*< DOUBLE PRECISION RWORK( * ) >*/
/*< COMPLEX*16 A( LDA, * ), VS( LDVS, * ), W( * ), WORK( * ) >*/
/* .. */
/* .. Function Arguments .. */
/*< LOGICAL SELECT >*/
/*< EXTERNAL SELECT >*/
/* .. */
/* Purpose */
/* ======= */
/* ZGEES computes for an N-by-N complex nonsymmetric matrix A, the */
/* eigenvalues, the Schur form T, and, optionally, the matrix of Schur */
/* vectors Z. This gives the Schur factorization A = Z*T*(Z**H). */
/* Optionally, it also orders the eigenvalues on the diagonal of the */
/* Schur form so that selected eigenvalues are at the top left. */
/* The leading columns of Z then form an orthonormal basis for the */
/* invariant subspace corresponding to the selected eigenvalues. */
/* A complex matrix is in Schur form if it is upper triangular. */
/* Arguments */
/* ========= */
/* JOBVS (input) CHARACTER*1 */
/* = 'N': Schur vectors are not computed; */
/* = 'V': Schur vectors are computed. */
/* SORT (input) CHARACTER*1 */
/* Specifies whether or not to order the eigenvalues on the */
/* diagonal of the Schur form. */
/* = 'N': Eigenvalues are not ordered: */
/* = 'S': Eigenvalues are ordered (see SELECT). */
/* SELECT (external procedure) LOGICAL FUNCTION of one COMPLEX*16 argument */
/* SELECT must be declared EXTERNAL in the calling subroutine. */
/* If SORT = 'S', SELECT is used to select eigenvalues to order */
/* to the top left of the Schur form. */
/* IF SORT = 'N', SELECT is not referenced. */
/* The eigenvalue W(j) is selected if SELECT(W(j)) is true. */
/* N (input) INTEGER */
/* The order of the matrix A. N >= 0. */
/* A (input/output) COMPLEX*16 array, dimension (LDA,N) */
/* On entry, the N-by-N matrix A. */
/* On exit, A has been overwritten by its Schur form T. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,N). */
/* SDIM (output) INTEGER */
/* If SORT = 'N', SDIM = 0. */
/* If SORT = 'S', SDIM = number of eigenvalues for which */
/* SELECT is true. */
/* W (output) COMPLEX*16 array, dimension (N) */
/* W contains the computed eigenvalues, in the same order that */
/* they appear on the diagonal of the output Schur form T. */
/* VS (output) COMPLEX*16 array, dimension (LDVS,N) */
/* If JOBVS = 'V', VS contains the unitary matrix Z of Schur */
/* vectors. */
/* If JOBVS = 'N', VS is not referenced. */
/* LDVS (input) INTEGER */
/* The leading dimension of the array VS. LDVS >= 1; if */
/* JOBVS = 'V', LDVS >= N. */
/* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) */
/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
/* LWORK (input) INTEGER */
/* The dimension of the array WORK. LWORK >= max(1,2*N). */
/* For good performance, LWORK must generally be larger. */
/* If LWORK = -1, then a workspace query is assumed; the routine */
/* only calculates the optimal size of the WORK array, returns */
/* this value as the first entry of the WORK array, and no error */
/* message related to LWORK is issued by XERBLA. */
/* RWORK (workspace) DOUBLE PRECISION array, dimension (N) */
/* BWORK (workspace) LOGICAL array, dimension (N) */
/* Not referenced if SORT = 'N'. */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value. */
/* > 0: if INFO = i, and i is */
/* <= N: the QR algorithm failed to compute all the */
/* eigenvalues; elements 1:ILO-1 and i+1:N of W */
/* contain those eigenvalues which have converged; */
/* if JOBVS = 'V', VS contains the matrix which */
/* reduces A to its partially converged Schur form. */
/* = N+1: the eigenvalues could not be reordered because */
/* some eigenvalues were too close to separate (the */
/* problem is very ill-conditioned); */
/* = N+2: after reordering, roundoff changed values of */
/* some complex eigenvalues so that leading */
/* eigenvalues in the Schur form no longer satisfy */
/* SELECT = .TRUE.. This could also be caused by */
/* underflow due to scaling. */
/* ===================================================================== */
/* .. Parameters .. */
/*< DOUBLE PRECISION ZERO, ONE >*/
/*< PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 ) >*/
/* .. */
/* .. Local Scalars .. */
/*< LOGICAL LQUERY, SCALEA, WANTST, WANTVS >*/
/*< >*/
/*< DOUBLE PRECISION ANRM, BIGNUM, CSCALE, EPS, S, SEP, SMLNUM >*/
/* .. */
/* .. Local Arrays .. */
/*< DOUBLE PRECISION DUM( 1 ) >*/
/* .. */
/* .. External Subroutines .. */
/*< >*/
/* .. */
/* .. External Functions .. */
/*< LOGICAL LSAME >*/
/*< INTEGER ILAENV >*/
/*< DOUBLE PRECISION DLAMCH, ZLANGE >*/
/*< EXTERNAL LSAME, ILAENV, DLAMCH, ZLANGE >*/
/* .. */
/* .. Intrinsic Functions .. */
/*< INTRINSIC MAX, SQRT >*/
/* .. */
/* .. Executable Statements .. */
/* Test the input arguments */
/*< INFO = 0 >*/
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--w;
vs_dim1 = *ldvs;
vs_offset = 1 + vs_dim1;
vs -= vs_offset;
--work;
--rwork;
--bwork;
/* Function Body */
*info = 0;
/*< LQUERY = ( LWORK.EQ.-1 ) >*/
lquery = *lwork == -1;
/*< WANTVS = LSAME( JOBVS, 'V' ) >*/
wantvs = lsame_(jobvs, "V", (ftnlen)1, (ftnlen)1);
/*< WANTST = LSAME( SORT, 'S' ) >*/
wantst = lsame_(sort, "S", (ftnlen)1, (ftnlen)1);
/*< IF( ( .NOT.WANTVS ) .AND. ( .NOT.LSAME( JOBVS, 'N' ) ) ) THEN >*/
if (! wantvs && ! lsame_(jobvs, "N", (ftnlen)1, (ftnlen)1)) {
/*< INFO = -1 >*/
*info = -1;
/*< ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN >*/
} else if (! wantst && ! lsame_(sort, "N", (ftnlen)1, (ftnlen)1)) {
/*< INFO = -2 >*/
*info = -2;
/*< ELSE IF( N.LT.0 ) THEN >*/
} else if (*n < 0) {
/*< INFO = -4 >*/
*info = -4;
/*< ELSE IF( LDA.LT.MAX( 1, N ) ) THEN >*/
} else if (*lda < max(1,*n)) {
/*< INFO = -6 >*/
*info = -6;
/*< ELSE IF( LDVS.LT.1 .OR. ( WANTVS .AND. LDVS.LT.N ) ) THEN >*/
} else if (*ldvs < 1 || (wantvs && *ldvs < *n)) {
/*< INFO = -10 >*/
*info = -10;
/*< END IF >*/
}
/* Compute workspace */
/* (Note: Comments in the code beginning "Workspace:" describe the */
/* minimal amount of workspace needed at that point in the code, */
/* as well as the preferred amount for good performance. */
/* CWorkspace refers to complex workspace, and RWorkspace to real */
/* workspace. NB refers to the optimal block size for the */
/* immediately following subroutine, as returned by ILAENV. */
/* HSWORK refers to the workspace preferred by ZHSEQR, as */
/* calculated below. HSWORK is computed assuming ILO=1 and IHI=N, */
/* the worst case.) */
/*< IF( INFO.EQ.0 ) THEN >*/
if (*info == 0) {
/*< IF( N.EQ.0 ) THEN >*/
if (*n == 0) {
/*< MINWRK = 1 >*/
minwrk = 1;
/*< MAXWRK = 1 >*/
maxwrk = 1;
/*< ELSE >*/
} else {
/*< MAXWRK = N + N*ILAENV( 1, 'ZGEHRD', ' ', N, 1, N, 0 ) >*/
maxwrk = *n + *n * ilaenv_(&c__1, "ZGEHRD", " ", n, &c__1, n, &
c__0, (ftnlen)6, (ftnlen)1);
/*< MINWRK = 2*N >*/
minwrk = *n << 1;
/*< >*/
zhseqr_("S", jobvs, n, &c__1, n, &a[a_offset], lda, &w[1], &vs[
vs_offset], ldvs, &work[1], &c_n1, &ieval, (ftnlen)1, (
ftnlen)1);
/*< HSWORK = WORK( 1 ) >*/
hswork = (integer) work[1].r;
/*< IF( .NOT.WANTVS ) THEN >*/
if (! wantvs) {
/*< MAXWRK = MAX( MAXWRK, HSWORK ) >*/
maxwrk = max(maxwrk,hswork);
/*< ELSE >*/
} else {
/*< >*/
/* Computing MAX */
i__1 = maxwrk, i__2 = *n + (*n - 1) * ilaenv_(&c__1, "ZUNGHR",
" ", n, &c__1, n, &c_n1, (ftnlen)6, (ftnlen)1);
maxwrk = max(i__1,i__2);
/*< MAXWRK = MAX( MAXWRK, HSWORK ) >*/
maxwrk = max(maxwrk,hswork);
/*< END IF >*/
}
/*< END IF >*/
}
/*< WORK( 1 ) = MAXWRK >*/
work[1].r = (doublereal) maxwrk, work[1].i = 0.;
/*< IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN >*/
if (*lwork < minwrk && ! lquery) {
/*< INFO = -12 >*/
*info = -12;
/*< END IF >*/
}
/*< END IF >*/
}
/*< IF( INFO.NE.0 ) THEN >*/
if (*info != 0) {
/*< CALL XERBLA( 'ZGEES ', -INFO ) >*/
i__1 = -(*info);
xerbla_("ZGEES ", &i__1, (ftnlen)6);
/*< RETURN >*/
return 0;
/*< ELSE IF( LQUERY ) THEN >*/
} else if (lquery) {
/*< RETURN >*/
return 0;
/*< END IF >*/
}
/* Quick return if possible */
/*< IF( N.EQ.0 ) THEN >*/
if (*n == 0) {
/*< SDIM = 0 >*/
*sdim = 0;
/*< RETURN >*/
return 0;
/*< END IF >*/
}
/* Get machine constants */
/*< EPS = DLAMCH( 'P' ) >*/
eps = dlamch_("P", (ftnlen)1);
/*< SMLNUM = DLAMCH( 'S' ) >*/
smlnum = dlamch_("S", (ftnlen)1);
/*< BIGNUM = ONE / SMLNUM >*/
bignum = 1. / smlnum;
/*< CALL DLABAD( SMLNUM, BIGNUM ) >*/
dlabad_(&smlnum, &bignum);
/*< SMLNUM = SQRT( SMLNUM ) / EPS >*/
smlnum = sqrt(smlnum) / eps;
/*< BIGNUM = ONE / SMLNUM >*/
bignum = 1. / smlnum;
/* Scale A if max element outside range [SMLNUM,BIGNUM] */
/*< ANRM = ZLANGE( 'M', N, N, A, LDA, DUM ) >*/
anrm = zlange_("M", n, n, &a[a_offset], lda, dum, (ftnlen)1);
/*< SCALEA = .FALSE. >*/
scalea = FALSE_;
/*< IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN >*/
if (anrm > 0. && anrm < smlnum) {
/*< SCALEA = .TRUE. >*/
scalea = TRUE_;
/*< CSCALE = SMLNUM >*/
cscale = smlnum;
/*< ELSE IF( ANRM.GT.BIGNUM ) THEN >*/
} else if (anrm > bignum) {
/*< SCALEA = .TRUE. >*/
scalea = TRUE_;
/*< CSCALE = BIGNUM >*/
cscale = bignum;
/*< END IF >*/
}
/*< >*/
if (scalea) {
zlascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, &
ierr, (ftnlen)1);
}
/* Permute the matrix to make it more nearly triangular */
/* (CWorkspace: none) */
/* (RWorkspace: need N) */
/*< IBAL = 1 >*/
ibal = 1;
/*< CALL ZGEBAL( 'P', N, A, LDA, ILO, IHI, RWORK( IBAL ), IERR ) >*/
zgebal_("P", n, &a[a_offset], lda, &ilo, &ihi, &rwork[ibal], &ierr, (
ftnlen)1);
/* Reduce to upper Hessenberg form */
/* (CWorkspace: need 2*N, prefer N+N*NB) */
/* (RWorkspace: none) */
/*< ITAU = 1 >*/
itau = 1;
/*< IWRK = N + ITAU >*/
iwrk = *n + itau;
/*< >*/
i__1 = *lwork - iwrk + 1;
zgehrd_(n, &ilo, &ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1,
&ierr);
/*< IF( WANTVS ) THEN >*/
if (wantvs) {
/* Copy Householder vectors to VS */
/*< CALL ZLACPY( 'L', N, N, A, LDA, VS, LDVS ) >*/
zlacpy_("L", n, n, &a[a_offset], lda, &vs[vs_offset], ldvs, (ftnlen)1)
;
/* Generate unitary matrix in VS */
/* (CWorkspace: need 2*N-1, prefer N+(N-1)*NB) */
/* (RWorkspace: none) */
/*< >*/
i__1 = *lwork - iwrk + 1;
zunghr_(n, &ilo, &ihi, &vs[vs_offset], ldvs, &work[itau], &work[iwrk],
&i__1, &ierr);
/*< END IF >*/
}
/*< SDIM = 0 >*/
*sdim = 0;
/* Perform QR iteration, accumulating Schur vectors in VS if desired */
/* (CWorkspace: need 1, prefer HSWORK (see comments) ) */
/* (RWorkspace: none) */
/*< IWRK = ITAU >*/
iwrk = itau;
/*< >*/
i__1 = *lwork - iwrk + 1;
zhseqr_("S", jobvs, n, &ilo, &ihi, &a[a_offset], lda, &w[1], &vs[
vs_offset], ldvs, &work[iwrk], &i__1, &ieval, (ftnlen)1, (ftnlen)
1);
/*< >*/
if (ieval > 0) {
*info = ieval;
}
/* Sort eigenvalues if desired */
/*< IF( WANTST .AND. INFO.EQ.0 ) THEN >*/
if (wantst && *info == 0) {
/*< >*/
if (scalea) {
zlascl_("G", &c__0, &c__0, &cscale, &anrm, n, &c__1, &w[1], n, &
ierr, (ftnlen)1);
}
/*< DO 10 I = 1, N >*/
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
/*< BWORK( I ) = SELECT( W( I ) ) >*/
bwork[i__] = (*select)(&w[i__]);
/*< 10 CONTINUE >*/
/* L10: */
}
/* Reorder eigenvalues and transform Schur vectors */
/* (CWorkspace: none) */
/* (RWorkspace: none) */
/*< >*/
i__1 = *lwork - iwrk + 1;
ztrsen_("N", jobvs, &bwork[1], n, &a[a_offset], lda, &vs[vs_offset],
ldvs, &w[1], sdim, &s, &sep, &work[iwrk], &i__1, &icond, (
ftnlen)1, (ftnlen)1);
/*< END IF >*/
}
/*< IF( WANTVS ) THEN >*/
if (wantvs) {
/* Undo balancing */
/* (CWorkspace: none) */
/* (RWorkspace: need N) */
/*< >*/
zgebak_("P", "R", n, &ilo, &ihi, &rwork[ibal], n, &vs[vs_offset],
ldvs, &ierr, (ftnlen)1, (ftnlen)1);
/*< END IF >*/
}
/*< IF( SCALEA ) THEN >*/
if (scalea) {
/* Undo scaling for the Schur form of A */
/*< CALL ZLASCL( 'U', 0, 0, CSCALE, ANRM, N, N, A, LDA, IERR ) >*/
zlascl_("U", &c__0, &c__0, &cscale, &anrm, n, n, &a[a_offset], lda, &
ierr, (ftnlen)1);
/*< CALL ZCOPY( N, A, LDA+1, W, 1 ) >*/
i__1 = *lda + 1;
zcopy_(n, &a[a_offset], &i__1, &w[1], &c__1);
/*< END IF >*/
}
/*< WORK( 1 ) = MAXWRK >*/
work[1].r = (doublereal) maxwrk, work[1].i = 0.;
/*< RETURN >*/
return 0;
/* End of ZGEES */
/*< END >*/
} /* zgees_ */
#ifdef __cplusplus
}
#endif
|