1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
|
/* lapack/complex16/zgeqr2.f -- translated by f2c (version 20090411).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/* Table of constant values */
static integer c__1 = 1;
/*< SUBROUTINE ZGEQR2( M, N, A, LDA, TAU, WORK, INFO ) >*/
/* Subroutine */ int zgeqr2_(integer *m, integer *n, doublecomplex *a,
integer *lda, doublecomplex *tau, doublecomplex *work, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3;
doublecomplex z__1;
/* Builtin functions */
void d_cnjg(doublecomplex *, doublecomplex *);
/* Local variables */
integer i__, k;
doublecomplex alpha;
extern /* Subroutine */ int zlarf_(char *, integer *, integer *,
doublecomplex *, integer *, doublecomplex *, doublecomplex *,
integer *, doublecomplex *, ftnlen), xerbla_(char *, integer *,
ftnlen), zlarfg_(integer *, doublecomplex *, doublecomplex *,
integer *, doublecomplex *);
/* -- LAPACK routine (version 3.2.2) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* June 2010 */
/* .. Scalar Arguments .. */
/*< INTEGER INFO, LDA, M, N >*/
/* .. */
/* .. Array Arguments .. */
/*< COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * ) >*/
/* .. */
/* Purpose */
/* ======= */
/* ZGEQR2 computes a QR factorization of a complex m by n matrix A: */
/* A = Q * R. */
/* Arguments */
/* ========= */
/* M (input) INTEGER */
/* The number of rows of the matrix A. M >= 0. */
/* N (input) INTEGER */
/* The number of columns of the matrix A. N >= 0. */
/* A (input/output) COMPLEX*16 array, dimension (LDA,N) */
/* On entry, the m by n matrix A. */
/* On exit, the elements on and above the diagonal of the array */
/* contain the min(m,n) by n upper trapezoidal matrix R (R is */
/* upper triangular if m >= n); the elements below the diagonal, */
/* with the array TAU, represent the unitary matrix Q as a */
/* product of elementary reflectors (see Further Details). */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,M). */
/* TAU (output) COMPLEX*16 array, dimension (min(M,N)) */
/* The scalar factors of the elementary reflectors (see Further */
/* Details). */
/* WORK (workspace) COMPLEX*16 array, dimension (N) */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* Further Details */
/* =============== */
/* The matrix Q is represented as a product of elementary reflectors */
/* Q = H(1) H(2) . . . H(k), where k = min(m,n). */
/* Each H(i) has the form */
/* H(i) = I - tau * v * v' */
/* where tau is a complex scalar, and v is a complex vector with */
/* v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), */
/* and tau in TAU(i). */
/* ===================================================================== */
/* .. Parameters .. */
/*< COMPLEX*16 ONE >*/
/*< PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) ) >*/
/* .. */
/* .. Local Scalars .. */
/*< INTEGER I, K >*/
/*< COMPLEX*16 ALPHA >*/
/* .. */
/* .. External Subroutines .. */
/*< EXTERNAL XERBLA, ZLARF, ZLARFG >*/
/* .. */
/* .. Intrinsic Functions .. */
/*< INTRINSIC DCONJG, MAX, MIN >*/
/* .. */
/* .. Executable Statements .. */
/* Test the input arguments */
/*< INFO = 0 >*/
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--tau;
--work;
/* Function Body */
*info = 0;
/*< IF( M.LT.0 ) THEN >*/
if (*m < 0) {
/*< INFO = -1 >*/
*info = -1;
/*< ELSE IF( N.LT.0 ) THEN >*/
} else if (*n < 0) {
/*< INFO = -2 >*/
*info = -2;
/*< ELSE IF( LDA.LT.MAX( 1, M ) ) THEN >*/
} else if (*lda < max(1,*m)) {
/*< INFO = -4 >*/
*info = -4;
/*< END IF >*/
}
/*< IF( INFO.NE.0 ) THEN >*/
if (*info != 0) {
/*< CALL XERBLA( 'ZGEQR2', -INFO ) >*/
i__1 = -(*info);
xerbla_("ZGEQR2", &i__1, (ftnlen)6);
/*< RETURN >*/
return 0;
/*< END IF >*/
}
/*< K = MIN( M, N ) >*/
k = min(*m,*n);
/*< DO 10 I = 1, K >*/
i__1 = k;
for (i__ = 1; i__ <= i__1; ++i__) {
/* Generate elementary reflector H(i) to annihilate A(i+1:m,i) */
/*< >*/
i__2 = *m - i__ + 1;
/* Computing MIN */
i__3 = i__ + 1;
zlarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[min(i__3,*m) + i__ * a_dim1]
, &c__1, &tau[i__]);
/*< IF( I.LT.N ) THEN >*/
if (i__ < *n) {
/* Apply H(i)' to A(i:m,i+1:n) from the left */
/*< ALPHA = A( I, I ) >*/
i__2 = i__ + i__ * a_dim1;
alpha.r = a[i__2].r, alpha.i = a[i__2].i;
/*< A( I, I ) = ONE >*/
i__2 = i__ + i__ * a_dim1;
a[i__2].r = 1., a[i__2].i = 0.;
/*< >*/
i__2 = *m - i__ + 1;
i__3 = *n - i__;
d_cnjg(&z__1, &tau[i__]);
zlarf_("Left", &i__2, &i__3, &a[i__ + i__ * a_dim1], &c__1, &z__1,
&a[i__ + (i__ + 1) * a_dim1], lda, &work[1], (ftnlen)4);
/*< A( I, I ) = ALPHA >*/
i__2 = i__ + i__ * a_dim1;
a[i__2].r = alpha.r, a[i__2].i = alpha.i;
/*< END IF >*/
}
/*< 10 CONTINUE >*/
/* L10: */
}
/*< RETURN >*/
return 0;
/* End of ZGEQR2 */
/*< END >*/
} /* zgeqr2_ */
#ifdef __cplusplus
}
#endif
|