1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
|
/* lapack/complex16/zgesc2.f -- translated by f2c (version 20090411).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/* Table of constant values */
static integer c__1 = 1;
static doublecomplex c_b13 = {1.,0.};
static integer c_n1 = -1;
/*< SUBROUTINE ZGESC2( N, A, LDA, RHS, IPIV, JPIV, SCALE ) >*/
/* Subroutine */ int zgesc2_(integer *n, doublecomplex *a, integer *lda,
doublecomplex *rhs, integer *ipiv, integer *jpiv, doublereal *scale)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5, i__6;
doublereal d__1;
doublecomplex z__1, z__2, z__3;
/* Builtin functions */
double z_abs(doublecomplex *);
void z_div(doublecomplex *, doublecomplex *, doublecomplex *);
/* Local variables */
integer i__, j;
doublereal eps;
doublecomplex temp;
extern /* Subroutine */ int zscal_(integer *, doublecomplex *,
doublecomplex *, integer *), dlabad_(doublereal *, doublereal *);
extern doublereal dlamch_(char *, ftnlen);
doublereal bignum;
extern integer izamax_(integer *, doublecomplex *, integer *);
doublereal smlnum;
extern /* Subroutine */ int zlaswp_(integer *, doublecomplex *, integer *,
integer *, integer *, integer *, integer *);
/* -- LAPACK auxiliary routine (version 3.2) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* November 2006 */
/* .. Scalar Arguments .. */
/*< INTEGER LDA, N >*/
/*< DOUBLE PRECISION SCALE >*/
/* .. */
/* .. Array Arguments .. */
/*< INTEGER IPIV( * ), JPIV( * ) >*/
/*< COMPLEX*16 A( LDA, * ), RHS( * ) >*/
/* .. */
/* Purpose */
/* ======= */
/* ZGESC2 solves a system of linear equations */
/* A * X = scale* RHS */
/* with a general N-by-N matrix A using the LU factorization with */
/* complete pivoting computed by ZGETC2. */
/* Arguments */
/* ========= */
/* N (input) INTEGER */
/* The number of columns of the matrix A. */
/* A (input) COMPLEX*16 array, dimension (LDA, N) */
/* On entry, the LU part of the factorization of the n-by-n */
/* matrix A computed by ZGETC2: A = P * L * U * Q */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1, N). */
/* RHS (input/output) COMPLEX*16 array, dimension N. */
/* On entry, the right hand side vector b. */
/* On exit, the solution vector X. */
/* IPIV (input) INTEGER array, dimension (N). */
/* The pivot indices; for 1 <= i <= N, row i of the */
/* matrix has been interchanged with row IPIV(i). */
/* JPIV (input) INTEGER array, dimension (N). */
/* The pivot indices; for 1 <= j <= N, column j of the */
/* matrix has been interchanged with column JPIV(j). */
/* SCALE (output) DOUBLE PRECISION */
/* On exit, SCALE contains the scale factor. SCALE is chosen */
/* 0 <= SCALE <= 1 to prevent owerflow in the solution. */
/* Further Details */
/* =============== */
/* Based on contributions by */
/* Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
/* Umea University, S-901 87 Umea, Sweden. */
/* ===================================================================== */
/* .. Parameters .. */
/*< DOUBLE PRECISION ZERO, ONE, TWO >*/
/*< PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 ) >*/
/* .. */
/* .. Local Scalars .. */
/*< INTEGER I, J >*/
/*< DOUBLE PRECISION BIGNUM, EPS, SMLNUM >*/
/*< COMPLEX*16 TEMP >*/
/* .. */
/* .. External Subroutines .. */
/*< EXTERNAL ZLASWP, ZSCAL >*/
/* .. */
/* .. External Functions .. */
/*< INTEGER IZAMAX >*/
/*< DOUBLE PRECISION DLAMCH >*/
/*< EXTERNAL IZAMAX, DLAMCH >*/
/* .. */
/* .. Intrinsic Functions .. */
/*< INTRINSIC ABS, DBLE, DCMPLX >*/
/* .. */
/* .. Executable Statements .. */
/* Set constant to control overflow */
/*< EPS = DLAMCH( 'P' ) >*/
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--rhs;
--ipiv;
--jpiv;
/* Function Body */
eps = dlamch_("P", (ftnlen)1);
/*< SMLNUM = DLAMCH( 'S' ) / EPS >*/
smlnum = dlamch_("S", (ftnlen)1) / eps;
/*< BIGNUM = ONE / SMLNUM >*/
bignum = 1. / smlnum;
/*< CALL DLABAD( SMLNUM, BIGNUM ) >*/
dlabad_(&smlnum, &bignum);
/* Apply permutations IPIV to RHS */
/*< CALL ZLASWP( 1, RHS, LDA, 1, N-1, IPIV, 1 ) >*/
i__1 = *n - 1;
zlaswp_(&c__1, &rhs[1], lda, &c__1, &i__1, &ipiv[1], &c__1);
/* Solve for L part */
/*< DO 20 I = 1, N - 1 >*/
i__1 = *n - 1;
for (i__ = 1; i__ <= i__1; ++i__) {
/*< DO 10 J = I + 1, N >*/
i__2 = *n;
for (j = i__ + 1; j <= i__2; ++j) {
/*< RHS( J ) = RHS( J ) - A( J, I )*RHS( I ) >*/
i__3 = j;
i__4 = j;
i__5 = j + i__ * a_dim1;
i__6 = i__;
z__2.r = a[i__5].r * rhs[i__6].r - a[i__5].i * rhs[i__6].i,
z__2.i = a[i__5].r * rhs[i__6].i + a[i__5].i * rhs[i__6]
.r;
z__1.r = rhs[i__4].r - z__2.r, z__1.i = rhs[i__4].i - z__2.i;
rhs[i__3].r = z__1.r, rhs[i__3].i = z__1.i;
/*< 10 CONTINUE >*/
/* L10: */
}
/*< 20 CONTINUE >*/
/* L20: */
}
/* Solve for U part */
/*< SCALE = ONE >*/
*scale = 1.;
/* Check for scaling */
/*< I = IZAMAX( N, RHS, 1 ) >*/
i__ = izamax_(n, &rhs[1], &c__1);
/*< IF( TWO*SMLNUM*ABS( RHS( I ) ).GT.ABS( A( N, N ) ) ) THEN >*/
if (smlnum * 2. * z_abs(&rhs[i__]) > z_abs(&a[*n + *n * a_dim1])) {
/*< TEMP = DCMPLX( ONE / TWO, ZERO ) / ABS( RHS( I ) ) >*/
d__1 = z_abs(&rhs[i__]);
z__1.r = .5 / d__1, z__1.i = 0. / d__1;
temp.r = z__1.r, temp.i = z__1.i;
/*< CALL ZSCAL( N, TEMP, RHS( 1 ), 1 ) >*/
zscal_(n, &temp, &rhs[1], &c__1);
/*< SCALE = SCALE*DBLE( TEMP ) >*/
*scale *= temp.r;
/*< END IF >*/
}
/*< DO 40 I = N, 1, -1 >*/
for (i__ = *n; i__ >= 1; --i__) {
/*< TEMP = DCMPLX( ONE, ZERO ) / A( I, I ) >*/
z_div(&z__1, &c_b13, &a[i__ + i__ * a_dim1]);
temp.r = z__1.r, temp.i = z__1.i;
/*< RHS( I ) = RHS( I )*TEMP >*/
i__1 = i__;
i__2 = i__;
z__1.r = rhs[i__2].r * temp.r - rhs[i__2].i * temp.i, z__1.i = rhs[
i__2].r * temp.i + rhs[i__2].i * temp.r;
rhs[i__1].r = z__1.r, rhs[i__1].i = z__1.i;
/*< DO 30 J = I + 1, N >*/
i__1 = *n;
for (j = i__ + 1; j <= i__1; ++j) {
/*< RHS( I ) = RHS( I ) - RHS( J )*( A( I, J )*TEMP ) >*/
i__2 = i__;
i__3 = i__;
i__4 = j;
i__5 = i__ + j * a_dim1;
z__3.r = a[i__5].r * temp.r - a[i__5].i * temp.i, z__3.i = a[i__5]
.r * temp.i + a[i__5].i * temp.r;
z__2.r = rhs[i__4].r * z__3.r - rhs[i__4].i * z__3.i, z__2.i =
rhs[i__4].r * z__3.i + rhs[i__4].i * z__3.r;
z__1.r = rhs[i__3].r - z__2.r, z__1.i = rhs[i__3].i - z__2.i;
rhs[i__2].r = z__1.r, rhs[i__2].i = z__1.i;
/*< 30 CONTINUE >*/
/* L30: */
}
/*< 40 CONTINUE >*/
/* L40: */
}
/* Apply permutations JPIV to the solution (RHS) */
/*< CALL ZLASWP( 1, RHS, LDA, 1, N-1, JPIV, -1 ) >*/
i__1 = *n - 1;
zlaswp_(&c__1, &rhs[1], lda, &c__1, &i__1, &jpiv[1], &c_n1);
/*< RETURN >*/
return 0;
/* End of ZGESC2 */
/*< END >*/
} /* zgesc2_ */
#ifdef __cplusplus
}
#endif
|