File: zgesc2.c

package info (click to toggle)
vxl 1.17.0.dfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 153,280 kB
  • ctags: 105,123
  • sloc: cpp: 747,420; ansic: 209,130; fortran: 34,230; lisp: 14,915; sh: 6,187; python: 5,856; makefile: 340; perl: 294; xml: 160
file content (255 lines) | stat: -rw-r--r-- 8,444 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
/* lapack/complex16/zgesc2.f -- translated by f2c (version 20090411).
   You must link the resulting object file with libf2c:
        on Microsoft Windows system, link with libf2c.lib;
        on Linux or Unix systems, link with .../path/to/libf2c.a -lm
        or, if you install libf2c.a in a standard place, with -lf2c -lm
        -- in that order, at the end of the command line, as in
                cc *.o -lf2c -lm
        Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

                http://www.netlib.org/f2c/libf2c.zip
*/

#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"

/* Table of constant values */

static integer c__1 = 1;
static doublecomplex c_b13 = {1.,0.};
static integer c_n1 = -1;

/*<       SUBROUTINE ZGESC2( N, A, LDA, RHS, IPIV, JPIV, SCALE ) >*/
/* Subroutine */ int zgesc2_(integer *n, doublecomplex *a, integer *lda,
        doublecomplex *rhs, integer *ipiv, integer *jpiv, doublereal *scale)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5, i__6;
    doublereal d__1;
    doublecomplex z__1, z__2, z__3;

    /* Builtin functions */
    double z_abs(doublecomplex *);
    void z_div(doublecomplex *, doublecomplex *, doublecomplex *);

    /* Local variables */
    integer i__, j;
    doublereal eps;
    doublecomplex temp;
    extern /* Subroutine */ int zscal_(integer *, doublecomplex *,
            doublecomplex *, integer *), dlabad_(doublereal *, doublereal *);
    extern doublereal dlamch_(char *, ftnlen);
    doublereal bignum;
    extern integer izamax_(integer *, doublecomplex *, integer *);
    doublereal smlnum;
    extern /* Subroutine */ int zlaswp_(integer *, doublecomplex *, integer *,
             integer *, integer *, integer *, integer *);


/*  -- LAPACK auxiliary routine (version 3.2) -- */
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*<       INTEGER            LDA, N >*/
/*<       DOUBLE PRECISION   SCALE >*/
/*     .. */
/*     .. Array Arguments .. */
/*<       INTEGER            IPIV( * ), JPIV( * ) >*/
/*<       COMPLEX*16         A( LDA, * ), RHS( * ) >*/
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZGESC2 solves a system of linear equations */

/*            A * X = scale* RHS */

/*  with a general N-by-N matrix A using the LU factorization with */
/*  complete pivoting computed by ZGETC2. */


/*  Arguments */
/*  ========= */

/*  N       (input) INTEGER */
/*          The number of columns of the matrix A. */

/*  A       (input) COMPLEX*16 array, dimension (LDA, N) */
/*          On entry, the  LU part of the factorization of the n-by-n */
/*          matrix A computed by ZGETC2:  A = P * L * U * Q */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1, N). */

/*  RHS     (input/output) COMPLEX*16 array, dimension N. */
/*          On entry, the right hand side vector b. */
/*          On exit, the solution vector X. */

/*  IPIV    (input) INTEGER array, dimension (N). */
/*          The pivot indices; for 1 <= i <= N, row i of the */
/*          matrix has been interchanged with row IPIV(i). */

/*  JPIV    (input) INTEGER array, dimension (N). */
/*          The pivot indices; for 1 <= j <= N, column j of the */
/*          matrix has been interchanged with column JPIV(j). */

/*  SCALE    (output) DOUBLE PRECISION */
/*           On exit, SCALE contains the scale factor. SCALE is chosen */
/*           0 <= SCALE <= 1 to prevent owerflow in the solution. */

/*  Further Details */
/*  =============== */

/*  Based on contributions by */
/*     Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
/*     Umea University, S-901 87 Umea, Sweden. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*<       DOUBLE PRECISION   ZERO, ONE, TWO >*/
/*<       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 ) >*/
/*     .. */
/*     .. Local Scalars .. */
/*<       INTEGER            I, J >*/
/*<       DOUBLE PRECISION   BIGNUM, EPS, SMLNUM >*/
/*<       COMPLEX*16         TEMP >*/
/*     .. */
/*     .. External Subroutines .. */
/*<       EXTERNAL           ZLASWP, ZSCAL >*/
/*     .. */
/*     .. External Functions .. */
/*<       INTEGER            IZAMAX >*/
/*<       DOUBLE PRECISION   DLAMCH >*/
/*<       EXTERNAL           IZAMAX, DLAMCH >*/
/*     .. */
/*     .. Intrinsic Functions .. */
/*<       INTRINSIC          ABS, DBLE, DCMPLX >*/
/*     .. */
/*     .. Executable Statements .. */

/*     Set constant to control overflow */

/*<       EPS = DLAMCH( 'P' ) >*/
    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --rhs;
    --ipiv;
    --jpiv;

    /* Function Body */
    eps = dlamch_("P", (ftnlen)1);
/*<       SMLNUM = DLAMCH( 'S' ) / EPS >*/
    smlnum = dlamch_("S", (ftnlen)1) / eps;
/*<       BIGNUM = ONE / SMLNUM >*/
    bignum = 1. / smlnum;
/*<       CALL DLABAD( SMLNUM, BIGNUM ) >*/
    dlabad_(&smlnum, &bignum);

/*     Apply permutations IPIV to RHS */

/*<       CALL ZLASWP( 1, RHS, LDA, 1, N-1, IPIV, 1 ) >*/
    i__1 = *n - 1;
    zlaswp_(&c__1, &rhs[1], lda, &c__1, &i__1, &ipiv[1], &c__1);

/*     Solve for L part */

/*<       DO 20 I = 1, N - 1 >*/
    i__1 = *n - 1;
    for (i__ = 1; i__ <= i__1; ++i__) {
/*<          DO 10 J = I + 1, N >*/
        i__2 = *n;
        for (j = i__ + 1; j <= i__2; ++j) {
/*<             RHS( J ) = RHS( J ) - A( J, I )*RHS( I ) >*/
            i__3 = j;
            i__4 = j;
            i__5 = j + i__ * a_dim1;
            i__6 = i__;
            z__2.r = a[i__5].r * rhs[i__6].r - a[i__5].i * rhs[i__6].i,
                    z__2.i = a[i__5].r * rhs[i__6].i + a[i__5].i * rhs[i__6]
                    .r;
            z__1.r = rhs[i__4].r - z__2.r, z__1.i = rhs[i__4].i - z__2.i;
            rhs[i__3].r = z__1.r, rhs[i__3].i = z__1.i;
/*<    10    CONTINUE >*/
/* L10: */
        }
/*<    20 CONTINUE >*/
/* L20: */
    }

/*     Solve for U part */

/*<       SCALE = ONE >*/
    *scale = 1.;

/*     Check for scaling */

/*<       I = IZAMAX( N, RHS, 1 ) >*/
    i__ = izamax_(n, &rhs[1], &c__1);
/*<       IF( TWO*SMLNUM*ABS( RHS( I ) ).GT.ABS( A( N, N ) ) ) THEN >*/
    if (smlnum * 2. * z_abs(&rhs[i__]) > z_abs(&a[*n + *n * a_dim1])) {
/*<          TEMP = DCMPLX( ONE / TWO, ZERO ) / ABS( RHS( I ) ) >*/
        d__1 = z_abs(&rhs[i__]);
        z__1.r = .5 / d__1, z__1.i = 0. / d__1;
        temp.r = z__1.r, temp.i = z__1.i;
/*<          CALL ZSCAL( N, TEMP, RHS( 1 ), 1 ) >*/
        zscal_(n, &temp, &rhs[1], &c__1);
/*<          SCALE = SCALE*DBLE( TEMP ) >*/
        *scale *= temp.r;
/*<       END IF >*/
    }
/*<       DO 40 I = N, 1, -1 >*/
    for (i__ = *n; i__ >= 1; --i__) {
/*<          TEMP = DCMPLX( ONE, ZERO ) / A( I, I ) >*/
        z_div(&z__1, &c_b13, &a[i__ + i__ * a_dim1]);
        temp.r = z__1.r, temp.i = z__1.i;
/*<          RHS( I ) = RHS( I )*TEMP >*/
        i__1 = i__;
        i__2 = i__;
        z__1.r = rhs[i__2].r * temp.r - rhs[i__2].i * temp.i, z__1.i = rhs[
                i__2].r * temp.i + rhs[i__2].i * temp.r;
        rhs[i__1].r = z__1.r, rhs[i__1].i = z__1.i;
/*<          DO 30 J = I + 1, N >*/
        i__1 = *n;
        for (j = i__ + 1; j <= i__1; ++j) {
/*<             RHS( I ) = RHS( I ) - RHS( J )*( A( I, J )*TEMP ) >*/
            i__2 = i__;
            i__3 = i__;
            i__4 = j;
            i__5 = i__ + j * a_dim1;
            z__3.r = a[i__5].r * temp.r - a[i__5].i * temp.i, z__3.i = a[i__5]
                    .r * temp.i + a[i__5].i * temp.r;
            z__2.r = rhs[i__4].r * z__3.r - rhs[i__4].i * z__3.i, z__2.i =
                    rhs[i__4].r * z__3.i + rhs[i__4].i * z__3.r;
            z__1.r = rhs[i__3].r - z__2.r, z__1.i = rhs[i__3].i - z__2.i;
            rhs[i__2].r = z__1.r, rhs[i__2].i = z__1.i;
/*<    30    CONTINUE >*/
/* L30: */
        }
/*<    40 CONTINUE >*/
/* L40: */
    }

/*     Apply permutations JPIV to the solution (RHS) */

/*<       CALL ZLASWP( 1, RHS, LDA, 1, N-1, JPIV, -1 ) >*/
    i__1 = *n - 1;
    zlaswp_(&c__1, &rhs[1], lda, &c__1, &i__1, &jpiv[1], &c_n1);
/*<       RETURN >*/
    return 0;

/*     End of ZGESC2 */

/*<       END >*/
} /* zgesc2_ */

#ifdef __cplusplus
        }
#endif