1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
|
/* lapack/complex16/zgghrd.f -- translated by f2c (version 20090411).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/* Table of constant values */
static doublecomplex c_b1 = {1.,0.};
static doublecomplex c_b2 = {0.,0.};
static integer c__1 = 1;
/*< >*/
/* Subroutine */ int zgghrd_(char *compq, char *compz, integer *n, integer *
ilo, integer *ihi, doublecomplex *a, integer *lda, doublecomplex *b,
integer *ldb, doublecomplex *q, integer *ldq, doublecomplex *z__,
integer *ldz, integer *info, ftnlen compq_len, ftnlen compz_len)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, z_dim1,
z_offset, i__1, i__2, i__3;
doublecomplex z__1;
/* Builtin functions */
void d_cnjg(doublecomplex *, doublecomplex *);
/* Local variables */
doublereal c__;
doublecomplex s;
logical ilq, ilz;
integer jcol, jrow;
extern /* Subroutine */ int zrot_(integer *, doublecomplex *, integer *,
doublecomplex *, integer *, doublereal *, doublecomplex *);
extern logical lsame_(const char *, const char *, ftnlen, ftnlen);
doublecomplex ctemp;
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
integer icompq, icompz;
extern /* Subroutine */ int zlaset_(char *, integer *, integer *,
doublecomplex *, doublecomplex *, doublecomplex *, integer *,
ftnlen), zlartg_(doublecomplex *, doublecomplex *, doublereal *,
doublecomplex *, doublecomplex *);
(void)compq_len;
(void)compz_len;
/* -- LAPACK routine (version 3.2) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* November 2006 */
/* .. Scalar Arguments .. */
/*< CHARACTER COMPQ, COMPZ >*/
/*< INTEGER IHI, ILO, INFO, LDA, LDB, LDQ, LDZ, N >*/
/* .. */
/* .. Array Arguments .. */
/*< >*/
/* .. */
/* Purpose */
/* ======= */
/* ZGGHRD reduces a pair of complex matrices (A,B) to generalized upper */
/* Hessenberg form using unitary transformations, where A is a */
/* general matrix and B is upper triangular. The form of the */
/* generalized eigenvalue problem is */
/* A*x = lambda*B*x, */
/* and B is typically made upper triangular by computing its QR */
/* factorization and moving the unitary matrix Q to the left side */
/* of the equation. */
/* This subroutine simultaneously reduces A to a Hessenberg matrix H: */
/* Q**H*A*Z = H */
/* and transforms B to another upper triangular matrix T: */
/* Q**H*B*Z = T */
/* in order to reduce the problem to its standard form */
/* H*y = lambda*T*y */
/* where y = Z**H*x. */
/* The unitary matrices Q and Z are determined as products of Givens */
/* rotations. They may either be formed explicitly, or they may be */
/* postmultiplied into input matrices Q1 and Z1, so that */
/* Q1 * A * Z1**H = (Q1*Q) * H * (Z1*Z)**H */
/* Q1 * B * Z1**H = (Q1*Q) * T * (Z1*Z)**H */
/* If Q1 is the unitary matrix from the QR factorization of B in the */
/* original equation A*x = lambda*B*x, then ZGGHRD reduces the original */
/* problem to generalized Hessenberg form. */
/* Arguments */
/* ========= */
/* COMPQ (input) CHARACTER*1 */
/* = 'N': do not compute Q; */
/* = 'I': Q is initialized to the unit matrix, and the */
/* unitary matrix Q is returned; */
/* = 'V': Q must contain a unitary matrix Q1 on entry, */
/* and the product Q1*Q is returned. */
/* COMPZ (input) CHARACTER*1 */
/* = 'N': do not compute Q; */
/* = 'I': Q is initialized to the unit matrix, and the */
/* unitary matrix Q is returned; */
/* = 'V': Q must contain a unitary matrix Q1 on entry, */
/* and the product Q1*Q is returned. */
/* N (input) INTEGER */
/* The order of the matrices A and B. N >= 0. */
/* ILO (input) INTEGER */
/* IHI (input) INTEGER */
/* ILO and IHI mark the rows and columns of A which are to be */
/* reduced. It is assumed that A is already upper triangular */
/* in rows and columns 1:ILO-1 and IHI+1:N. ILO and IHI are */
/* normally set by a previous call to ZGGBAL; otherwise they */
/* should be set to 1 and N respectively. */
/* 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0. */
/* A (input/output) COMPLEX*16 array, dimension (LDA, N) */
/* On entry, the N-by-N general matrix to be reduced. */
/* On exit, the upper triangle and the first subdiagonal of A */
/* are overwritten with the upper Hessenberg matrix H, and the */
/* rest is set to zero. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,N). */
/* B (input/output) COMPLEX*16 array, dimension (LDB, N) */
/* On entry, the N-by-N upper triangular matrix B. */
/* On exit, the upper triangular matrix T = Q**H B Z. The */
/* elements below the diagonal are set to zero. */
/* LDB (input) INTEGER */
/* The leading dimension of the array B. LDB >= max(1,N). */
/* Q (input/output) COMPLEX*16 array, dimension (LDQ, N) */
/* On entry, if COMPQ = 'V', the unitary matrix Q1, typically */
/* from the QR factorization of B. */
/* On exit, if COMPQ='I', the unitary matrix Q, and if */
/* COMPQ = 'V', the product Q1*Q. */
/* Not referenced if COMPQ='N'. */
/* LDQ (input) INTEGER */
/* The leading dimension of the array Q. */
/* LDQ >= N if COMPQ='V' or 'I'; LDQ >= 1 otherwise. */
/* Z (input/output) COMPLEX*16 array, dimension (LDZ, N) */
/* On entry, if COMPZ = 'V', the unitary matrix Z1. */
/* On exit, if COMPZ='I', the unitary matrix Z, and if */
/* COMPZ = 'V', the product Z1*Z. */
/* Not referenced if COMPZ='N'. */
/* LDZ (input) INTEGER */
/* The leading dimension of the array Z. */
/* LDZ >= N if COMPZ='V' or 'I'; LDZ >= 1 otherwise. */
/* INFO (output) INTEGER */
/* = 0: successful exit. */
/* < 0: if INFO = -i, the i-th argument had an illegal value. */
/* Further Details */
/* =============== */
/* This routine reduces A to Hessenberg and B to triangular form by */
/* an unblocked reduction, as described in _Matrix_Computations_, */
/* by Golub and van Loan (Johns Hopkins Press). */
/* ===================================================================== */
/* .. Parameters .. */
/*< COMPLEX*16 CONE, CZERO >*/
/*< >*/
/* .. */
/* .. Local Scalars .. */
/*< LOGICAL ILQ, ILZ >*/
/*< INTEGER ICOMPQ, ICOMPZ, JCOL, JROW >*/
/*< DOUBLE PRECISION C >*/
/*< COMPLEX*16 CTEMP, S >*/
/* .. */
/* .. External Functions .. */
/*< LOGICAL LSAME >*/
/*< EXTERNAL LSAME >*/
/* .. */
/* .. External Subroutines .. */
/*< EXTERNAL XERBLA, ZLARTG, ZLASET, ZROT >*/
/* .. */
/* .. Intrinsic Functions .. */
/*< INTRINSIC DCONJG, MAX >*/
/* .. */
/* .. Executable Statements .. */
/* Decode COMPQ */
/*< IF( LSAME( COMPQ, 'N' ) ) THEN >*/
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1;
b -= b_offset;
q_dim1 = *ldq;
q_offset = 1 + q_dim1;
q -= q_offset;
z_dim1 = *ldz;
z_offset = 1 + z_dim1;
z__ -= z_offset;
/* Function Body */
if (lsame_(compq, "N", (ftnlen)1, (ftnlen)1)) {
/*< ILQ = .FALSE. >*/
ilq = FALSE_;
/*< ICOMPQ = 1 >*/
icompq = 1;
/*< ELSE IF( LSAME( COMPQ, 'V' ) ) THEN >*/
} else if (lsame_(compq, "V", (ftnlen)1, (ftnlen)1)) {
/*< ILQ = .TRUE. >*/
ilq = TRUE_;
/*< ICOMPQ = 2 >*/
icompq = 2;
/*< ELSE IF( LSAME( COMPQ, 'I' ) ) THEN >*/
} else if (lsame_(compq, "I", (ftnlen)1, (ftnlen)1)) {
/*< ILQ = .TRUE. >*/
ilq = TRUE_;
/*< ICOMPQ = 3 >*/
icompq = 3;
/*< ELSE >*/
} else {
/*< ICOMPQ = 0 >*/
icompq = 0;
/*< END IF >*/
}
/* Decode COMPZ */
/*< IF( LSAME( COMPZ, 'N' ) ) THEN >*/
if (lsame_(compz, "N", (ftnlen)1, (ftnlen)1)) {
/*< ILZ = .FALSE. >*/
ilz = FALSE_;
/*< ICOMPZ = 1 >*/
icompz = 1;
/*< ELSE IF( LSAME( COMPZ, 'V' ) ) THEN >*/
} else if (lsame_(compz, "V", (ftnlen)1, (ftnlen)1)) {
/*< ILZ = .TRUE. >*/
ilz = TRUE_;
/*< ICOMPZ = 2 >*/
icompz = 2;
/*< ELSE IF( LSAME( COMPZ, 'I' ) ) THEN >*/
} else if (lsame_(compz, "I", (ftnlen)1, (ftnlen)1)) {
/*< ILZ = .TRUE. >*/
ilz = TRUE_;
/*< ICOMPZ = 3 >*/
icompz = 3;
/*< ELSE >*/
} else {
/*< ICOMPZ = 0 >*/
icompz = 0;
/*< END IF >*/
}
/* Test the input parameters. */
/*< INFO = 0 >*/
*info = 0;
/*< IF( ICOMPQ.LE.0 ) THEN >*/
if (icompq <= 0) {
/*< INFO = -1 >*/
*info = -1;
/*< ELSE IF( ICOMPZ.LE.0 ) THEN >*/
} else if (icompz <= 0) {
/*< INFO = -2 >*/
*info = -2;
/*< ELSE IF( N.LT.0 ) THEN >*/
} else if (*n < 0) {
/*< INFO = -3 >*/
*info = -3;
/*< ELSE IF( ILO.LT.1 ) THEN >*/
} else if (*ilo < 1) {
/*< INFO = -4 >*/
*info = -4;
/*< ELSE IF( IHI.GT.N .OR. IHI.LT.ILO-1 ) THEN >*/
} else if (*ihi > *n || *ihi < *ilo - 1) {
/*< INFO = -5 >*/
*info = -5;
/*< ELSE IF( LDA.LT.MAX( 1, N ) ) THEN >*/
} else if (*lda < max(1,*n)) {
/*< INFO = -7 >*/
*info = -7;
/*< ELSE IF( LDB.LT.MAX( 1, N ) ) THEN >*/
} else if (*ldb < max(1,*n)) {
/*< INFO = -9 >*/
*info = -9;
/*< ELSE IF( ( ILQ .AND. LDQ.LT.N ) .OR. LDQ.LT.1 ) THEN >*/
} else if ((ilq && *ldq < *n) || *ldq < 1) {
/*< INFO = -11 >*/
*info = -11;
/*< ELSE IF( ( ILZ .AND. LDZ.LT.N ) .OR. LDZ.LT.1 ) THEN >*/
} else if ((ilz && *ldz < *n) || *ldz < 1) {
/*< INFO = -13 >*/
*info = -13;
/*< END IF >*/
}
/*< IF( INFO.NE.0 ) THEN >*/
if (*info != 0) {
/*< CALL XERBLA( 'ZGGHRD', -INFO ) >*/
i__1 = -(*info);
xerbla_("ZGGHRD", &i__1, (ftnlen)6);
/*< RETURN >*/
return 0;
/*< END IF >*/
}
/* Initialize Q and Z if desired. */
/*< >*/
if (icompq == 3) {
zlaset_("Full", n, n, &c_b2, &c_b1, &q[q_offset], ldq, (ftnlen)4);
}
/*< >*/
if (icompz == 3) {
zlaset_("Full", n, n, &c_b2, &c_b1, &z__[z_offset], ldz, (ftnlen)4);
}
/* Quick return if possible */
/*< >*/
if (*n <= 1) {
return 0;
}
/* Zero out lower triangle of B */
/*< DO 20 JCOL = 1, N - 1 >*/
i__1 = *n - 1;
for (jcol = 1; jcol <= i__1; ++jcol) {
/*< DO 10 JROW = JCOL + 1, N >*/
i__2 = *n;
for (jrow = jcol + 1; jrow <= i__2; ++jrow) {
/*< B( JROW, JCOL ) = CZERO >*/
i__3 = jrow + jcol * b_dim1;
b[i__3].r = 0., b[i__3].i = 0.;
/*< 10 CONTINUE >*/
/* L10: */
}
/*< 20 CONTINUE >*/
/* L20: */
}
/* Reduce A and B */
/*< DO 40 JCOL = ILO, IHI - 2 >*/
i__1 = *ihi - 2;
for (jcol = *ilo; jcol <= i__1; ++jcol) {
/*< DO 30 JROW = IHI, JCOL + 2, -1 >*/
i__2 = jcol + 2;
for (jrow = *ihi; jrow >= i__2; --jrow) {
/* Step 1: rotate rows JROW-1, JROW to kill A(JROW,JCOL) */
/*< CTEMP = A( JROW-1, JCOL ) >*/
i__3 = jrow - 1 + jcol * a_dim1;
ctemp.r = a[i__3].r, ctemp.i = a[i__3].i;
/*< >*/
zlartg_(&ctemp, &a[jrow + jcol * a_dim1], &c__, &s, &a[jrow - 1 +
jcol * a_dim1]);
/*< A( JROW, JCOL ) = CZERO >*/
i__3 = jrow + jcol * a_dim1;
a[i__3].r = 0., a[i__3].i = 0.;
/*< >*/
i__3 = *n - jcol;
zrot_(&i__3, &a[jrow - 1 + (jcol + 1) * a_dim1], lda, &a[jrow + (
jcol + 1) * a_dim1], lda, &c__, &s);
/*< >*/
i__3 = *n + 2 - jrow;
zrot_(&i__3, &b[jrow - 1 + (jrow - 1) * b_dim1], ldb, &b[jrow + (
jrow - 1) * b_dim1], ldb, &c__, &s);
/*< >*/
if (ilq) {
d_cnjg(&z__1, &s);
zrot_(n, &q[(jrow - 1) * q_dim1 + 1], &c__1, &q[jrow * q_dim1
+ 1], &c__1, &c__, &z__1);
}
/* Step 2: rotate columns JROW, JROW-1 to kill B(JROW,JROW-1) */
/*< CTEMP = B( JROW, JROW ) >*/
i__3 = jrow + jrow * b_dim1;
ctemp.r = b[i__3].r, ctemp.i = b[i__3].i;
/*< >*/
zlartg_(&ctemp, &b[jrow + (jrow - 1) * b_dim1], &c__, &s, &b[jrow
+ jrow * b_dim1]);
/*< B( JROW, JROW-1 ) = CZERO >*/
i__3 = jrow + (jrow - 1) * b_dim1;
b[i__3].r = 0., b[i__3].i = 0.;
/*< CALL ZROT( IHI, A( 1, JROW ), 1, A( 1, JROW-1 ), 1, C, S ) >*/
zrot_(ihi, &a[jrow * a_dim1 + 1], &c__1, &a[(jrow - 1) * a_dim1 +
1], &c__1, &c__, &s);
/*< >*/
i__3 = jrow - 1;
zrot_(&i__3, &b[jrow * b_dim1 + 1], &c__1, &b[(jrow - 1) * b_dim1
+ 1], &c__1, &c__, &s);
/*< >*/
if (ilz) {
zrot_(n, &z__[jrow * z_dim1 + 1], &c__1, &z__[(jrow - 1) *
z_dim1 + 1], &c__1, &c__, &s);
}
/*< 30 CONTINUE >*/
/* L30: */
}
/*< 40 CONTINUE >*/
/* L40: */
}
/*< RETURN >*/
return 0;
/* End of ZGGHRD */
/*< END >*/
} /* zgghrd_ */
#ifdef __cplusplus
}
#endif
|