File: zlatdf.c

package info (click to toggle)
vxl 1.17.0.dfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 153,280 kB
  • ctags: 105,123
  • sloc: cpp: 747,420; ansic: 209,130; fortran: 34,230; lisp: 14,915; sh: 6,187; python: 5,856; makefile: 340; perl: 294; xml: 160
file content (444 lines) | stat: -rw-r--r-- 17,518 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
/* lapack/complex16/zlatdf.f -- translated by f2c (version 20090411).
   You must link the resulting object file with libf2c:
        on Microsoft Windows system, link with libf2c.lib;
        on Linux or Unix systems, link with .../path/to/libf2c.a -lm
        or, if you install libf2c.a in a standard place, with -lf2c -lm
        -- in that order, at the end of the command line, as in
                cc *.o -lf2c -lm
        Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

                http://www.netlib.org/f2c/libf2c.zip
*/

#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"

/* Table of constant values */

static doublecomplex c_b1 = {1.,0.};
static integer c__1 = 1;
static integer c_n1 = -1;
static doublereal c_b24 = 1.;

/*<    >*/
/* Subroutine */ int zlatdf_(integer *ijob, integer *n, doublecomplex *z__,
        integer *ldz, doublecomplex *rhs, doublereal *rdsum, doublereal *
        rdscal, integer *ipiv, integer *jpiv)
{
    /* System generated locals */
    integer z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5;
    doublecomplex z__1, z__2, z__3;

    /* Builtin functions */
    void z_div(doublecomplex *, doublecomplex *, doublecomplex *);
    double z_abs(doublecomplex *);
    void z_sqrt(doublecomplex *, doublecomplex *);

    /* Local variables */
    integer i__, j, k;
    doublecomplex bm, bp, xm[2], xp[2];
    integer info;
    doublecomplex temp, work[8];
    doublereal scale;
    extern /* Subroutine */ int zscal_(integer *, doublecomplex *,
            doublecomplex *, integer *);
    doublecomplex pmone;
    extern /* Double Complex */ VOID zdotc_(doublecomplex *, integer *,
            doublecomplex *, integer *, doublecomplex *, integer *);
    doublereal rtemp, sminu, rwork[2];
    extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *,
            doublecomplex *, integer *);
    doublereal splus;
    extern /* Subroutine */ int zaxpy_(integer *, doublecomplex *,
            doublecomplex *, integer *, doublecomplex *, integer *), zgesc2_(
            integer *, doublecomplex *, integer *, doublecomplex *, integer *,
             integer *, doublereal *), zgecon_(char *, integer *,
            doublecomplex *, integer *, doublereal *, doublereal *,
            doublecomplex *, doublereal *, integer *, ftnlen);
    extern doublereal dzasum_(integer *, doublecomplex *, integer *);
    extern /* Subroutine */ int zlassq_(integer *, doublecomplex *, integer *,
             doublereal *, doublereal *), zlaswp_(integer *, doublecomplex *,
            integer *, integer *, integer *, integer *, integer *);


/*  -- LAPACK auxiliary routine (version 3.2) -- */
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*<       INTEGER            IJOB, LDZ, N >*/
/*<       DOUBLE PRECISION   RDSCAL, RDSUM >*/
/*     .. */
/*     .. Array Arguments .. */
/*<       INTEGER            IPIV( * ), JPIV( * ) >*/
/*<       COMPLEX*16         RHS( * ), Z( LDZ, * ) >*/
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZLATDF computes the contribution to the reciprocal Dif-estimate */
/*  by solving for x in Z * x = b, where b is chosen such that the norm */
/*  of x is as large as possible. It is assumed that LU decomposition */
/*  of Z has been computed by ZGETC2. On entry RHS = f holds the */
/*  contribution from earlier solved sub-systems, and on return RHS = x. */

/*  The factorization of Z returned by ZGETC2 has the form */
/*  Z = P * L * U * Q, where P and Q are permutation matrices. L is lower */
/*  triangular with unit diagonal elements and U is upper triangular. */

/*  Arguments */
/*  ========= */

/*  IJOB    (input) INTEGER */
/*          IJOB = 2: First compute an approximative null-vector e */
/*              of Z using ZGECON, e is normalized and solve for */
/*              Zx = +-e - f with the sign giving the greater value of */
/*              2-norm(x).  About 5 times as expensive as Default. */
/*          IJOB .ne. 2: Local look ahead strategy where */
/*              all entries of the r.h.s. b is choosen as either +1 or */
/*              -1.  Default. */

/*  N       (input) INTEGER */
/*          The number of columns of the matrix Z. */

/*  Z       (input) DOUBLE PRECISION array, dimension (LDZ, N) */
/*          On entry, the LU part of the factorization of the n-by-n */
/*          matrix Z computed by ZGETC2:  Z = P * L * U * Q */

/*  LDZ     (input) INTEGER */
/*          The leading dimension of the array Z.  LDA >= max(1, N). */

/*  RHS     (input/output) DOUBLE PRECISION array, dimension (N). */
/*          On entry, RHS contains contributions from other subsystems. */
/*          On exit, RHS contains the solution of the subsystem with */
/*          entries according to the value of IJOB (see above). */

/*  RDSUM   (input/output) DOUBLE PRECISION */
/*          On entry, the sum of squares of computed contributions to */
/*          the Dif-estimate under computation by ZTGSYL, where the */
/*          scaling factor RDSCAL (see below) has been factored out. */
/*          On exit, the corresponding sum of squares updated with the */
/*          contributions from the current sub-system. */
/*          If TRANS = 'T' RDSUM is not touched. */
/*          NOTE: RDSUM only makes sense when ZTGSY2 is called by CTGSYL. */

/*  RDSCAL  (input/output) DOUBLE PRECISION */
/*          On entry, scaling factor used to prevent overflow in RDSUM. */
/*          On exit, RDSCAL is updated w.r.t. the current contributions */
/*          in RDSUM. */
/*          If TRANS = 'T', RDSCAL is not touched. */
/*          NOTE: RDSCAL only makes sense when ZTGSY2 is called by */
/*          ZTGSYL. */

/*  IPIV    (input) INTEGER array, dimension (N). */
/*          The pivot indices; for 1 <= i <= N, row i of the */
/*          matrix has been interchanged with row IPIV(i). */

/*  JPIV    (input) INTEGER array, dimension (N). */
/*          The pivot indices; for 1 <= j <= N, column j of the */
/*          matrix has been interchanged with column JPIV(j). */

/*  Further Details */
/*  =============== */

/*  Based on contributions by */
/*     Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
/*     Umea University, S-901 87 Umea, Sweden. */

/*  This routine is a further developed implementation of algorithm */
/*  BSOLVE in [1] using complete pivoting in the LU factorization. */

/*   [1]   Bo Kagstrom and Lars Westin, */
/*         Generalized Schur Methods with Condition Estimators for */
/*         Solving the Generalized Sylvester Equation, IEEE Transactions */
/*         on Automatic Control, Vol. 34, No. 7, July 1989, pp 745-751. */

/*   [2]   Peter Poromaa, */
/*         On Efficient and Robust Estimators for the Separation */
/*         between two Regular Matrix Pairs with Applications in */
/*         Condition Estimation. Report UMINF-95.05, Department of */
/*         Computing Science, Umea University, S-901 87 Umea, Sweden, */
/*         1995. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*<       INTEGER            MAXDIM >*/
/*<       PARAMETER          ( MAXDIM = 2 ) >*/
/*<       DOUBLE PRECISION   ZERO, ONE >*/
/*<       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 ) >*/
/*<       COMPLEX*16         CONE >*/
/*<       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) ) >*/
/*     .. */
/*     .. Local Scalars .. */
/*<       INTEGER            I, INFO, J, K >*/
/*<       DOUBLE PRECISION   RTEMP, SCALE, SMINU, SPLUS >*/
/*<       COMPLEX*16         BM, BP, PMONE, TEMP >*/
/*     .. */
/*     .. Local Arrays .. */
/*<       DOUBLE PRECISION   RWORK( MAXDIM ) >*/
/*<       COMPLEX*16         WORK( 4*MAXDIM ), XM( MAXDIM ), XP( MAXDIM ) >*/
/*     .. */
/*     .. External Subroutines .. */
/*<    >*/
/*     .. */
/*     .. External Functions .. */
/*<       DOUBLE PRECISION   DZASUM >*/
/*<       COMPLEX*16         ZDOTC >*/
/*<       EXTERNAL           DZASUM, ZDOTC >*/
/*     .. */
/*     .. Intrinsic Functions .. */
/*<       INTRINSIC          ABS, DBLE, SQRT >*/
/*     .. */
/*     .. Executable Statements .. */

/*<       IF( IJOB.NE.2 ) THEN >*/
    /* Parameter adjustments */
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --rhs;
    --ipiv;
    --jpiv;

    /* Function Body */
    if (*ijob != 2) {

/*        Apply permutations IPIV to RHS */

/*<          CALL ZLASWP( 1, RHS, LDZ, 1, N-1, IPIV, 1 ) >*/
        i__1 = *n - 1;
        zlaswp_(&c__1, &rhs[1], ldz, &c__1, &i__1, &ipiv[1], &c__1);

/*        Solve for L-part choosing RHS either to +1 or -1. */

/*<          PMONE = -CONE >*/
        z__1.r = -1., z__1.i = -0.;
        pmone.r = z__1.r, pmone.i = z__1.i;
/*<          DO 10 J = 1, N - 1 >*/
        i__1 = *n - 1;
        for (j = 1; j <= i__1; ++j) {
/*<             BP = RHS( J ) + CONE >*/
            i__2 = j;
            z__1.r = rhs[i__2].r + 1., z__1.i = rhs[i__2].i + 0.;
            bp.r = z__1.r, bp.i = z__1.i;
/*<             BM = RHS( J ) - CONE >*/
            i__2 = j;
            z__1.r = rhs[i__2].r - 1., z__1.i = rhs[i__2].i - 0.;
            bm.r = z__1.r, bm.i = z__1.i;
/*<             SPLUS = ONE >*/
            splus = 1.;

/*           Lockahead for L- part RHS(1:N-1) = +-1 */
/*           SPLUS and SMIN computed more efficiently than in BSOLVE[1]. */

/*<    >*/
            i__2 = *n - j;
            zdotc_(&z__1, &i__2, &z__[j + 1 + j * z_dim1], &c__1, &z__[j + 1
                    + j * z_dim1], &c__1);
            splus += z__1.r;
/*<             SMINU = DBLE( ZDOTC( N-J, Z( J+1, J ), 1, RHS( J+1 ), 1 ) ) >*/
            i__2 = *n - j;
            zdotc_(&z__1, &i__2, &z__[j + 1 + j * z_dim1], &c__1, &rhs[j + 1],
                     &c__1);
            sminu = z__1.r;
/*<             SPLUS = SPLUS*DBLE( RHS( J ) ) >*/
            i__2 = j;
            splus *= rhs[i__2].r;
/*<             IF( SPLUS.GT.SMINU ) THEN >*/
            if (splus > sminu) {
/*<                RHS( J ) = BP >*/
                i__2 = j;
                rhs[i__2].r = bp.r, rhs[i__2].i = bp.i;
/*<             ELSE IF( SMINU.GT.SPLUS ) THEN >*/
            } else if (sminu > splus) {
/*<                RHS( J ) = BM >*/
                i__2 = j;
                rhs[i__2].r = bm.r, rhs[i__2].i = bm.i;
/*<             ELSE >*/
            } else {

/*              In this case the updating sums are equal and we can */
/*              choose RHS(J) +1 or -1. The first time this happens we */
/*              choose -1, thereafter +1. This is a simple way to get */
/*              good estimates of matrices like Byers well-known example */
/*              (see [1]). (Not done in BSOLVE.) */

/*<                RHS( J ) = RHS( J ) + PMONE >*/
                i__2 = j;
                i__3 = j;
                z__1.r = rhs[i__3].r + pmone.r, z__1.i = rhs[i__3].i +
                        pmone.i;
                rhs[i__2].r = z__1.r, rhs[i__2].i = z__1.i;
/*<                PMONE = CONE >*/
                pmone.r = 1., pmone.i = 0.;
/*<             END IF >*/
            }

/*           Compute the remaining r.h.s. */

/*<             TEMP = -RHS( J ) >*/
            i__2 = j;
            z__1.r = -rhs[i__2].r, z__1.i = -rhs[i__2].i;
            temp.r = z__1.r, temp.i = z__1.i;
/*<             CALL ZAXPY( N-J, TEMP, Z( J+1, J ), 1, RHS( J+1 ), 1 ) >*/
            i__2 = *n - j;
            zaxpy_(&i__2, &temp, &z__[j + 1 + j * z_dim1], &c__1, &rhs[j + 1],
                     &c__1);
/*<    10    CONTINUE >*/
/* L10: */
        }

/*        Solve for U- part, lockahead for RHS(N) = +-1. This is not done */
/*        In BSOLVE and will hopefully give us a better estimate because */
/*        any ill-conditioning of the original matrix is transfered to U */
/*        and not to L. U(N, N) is an approximation to sigma_min(LU). */

/*<          CALL ZCOPY( N-1, RHS, 1, WORK, 1 ) >*/
        i__1 = *n - 1;
        zcopy_(&i__1, &rhs[1], &c__1, work, &c__1);
/*<          WORK( N ) = RHS( N ) + CONE >*/
        i__1 = *n - 1;
        i__2 = *n;
        z__1.r = rhs[i__2].r + 1., z__1.i = rhs[i__2].i + 0.;
        work[i__1].r = z__1.r, work[i__1].i = z__1.i;
/*<          RHS( N ) = RHS( N ) - CONE >*/
        i__1 = *n;
        i__2 = *n;
        z__1.r = rhs[i__2].r - 1., z__1.i = rhs[i__2].i - 0.;
        rhs[i__1].r = z__1.r, rhs[i__1].i = z__1.i;
/*<          SPLUS = ZERO >*/
        splus = 0.;
/*<          SMINU = ZERO >*/
        sminu = 0.;
/*<          DO 30 I = N, 1, -1 >*/
        for (i__ = *n; i__ >= 1; --i__) {
/*<             TEMP = CONE / Z( I, I ) >*/
            z_div(&z__1, &c_b1, &z__[i__ + i__ * z_dim1]);
            temp.r = z__1.r, temp.i = z__1.i;
/*<             WORK( I ) = WORK( I )*TEMP >*/
            i__1 = i__ - 1;
            i__2 = i__ - 1;
            z__1.r = work[i__2].r * temp.r - work[i__2].i * temp.i, z__1.i =
                    work[i__2].r * temp.i + work[i__2].i * temp.r;
            work[i__1].r = z__1.r, work[i__1].i = z__1.i;
/*<             RHS( I ) = RHS( I )*TEMP >*/
            i__1 = i__;
            i__2 = i__;
            z__1.r = rhs[i__2].r * temp.r - rhs[i__2].i * temp.i, z__1.i =
                    rhs[i__2].r * temp.i + rhs[i__2].i * temp.r;
            rhs[i__1].r = z__1.r, rhs[i__1].i = z__1.i;
/*<             DO 20 K = I + 1, N >*/
            i__1 = *n;
            for (k = i__ + 1; k <= i__1; ++k) {
/*<                WORK( I ) = WORK( I ) - WORK( K )*( Z( I, K )*TEMP ) >*/
                i__2 = i__ - 1;
                i__3 = i__ - 1;
                i__4 = k - 1;
                i__5 = i__ + k * z_dim1;
                z__3.r = z__[i__5].r * temp.r - z__[i__5].i * temp.i, z__3.i =
                         z__[i__5].r * temp.i + z__[i__5].i * temp.r;
                z__2.r = work[i__4].r * z__3.r - work[i__4].i * z__3.i,
                        z__2.i = work[i__4].r * z__3.i + work[i__4].i *
                        z__3.r;
                z__1.r = work[i__3].r - z__2.r, z__1.i = work[i__3].i -
                        z__2.i;
                work[i__2].r = z__1.r, work[i__2].i = z__1.i;
/*<                RHS( I ) = RHS( I ) - RHS( K )*( Z( I, K )*TEMP ) >*/
                i__2 = i__;
                i__3 = i__;
                i__4 = k;
                i__5 = i__ + k * z_dim1;
                z__3.r = z__[i__5].r * temp.r - z__[i__5].i * temp.i, z__3.i =
                         z__[i__5].r * temp.i + z__[i__5].i * temp.r;
                z__2.r = rhs[i__4].r * z__3.r - rhs[i__4].i * z__3.i, z__2.i =
                         rhs[i__4].r * z__3.i + rhs[i__4].i * z__3.r;
                z__1.r = rhs[i__3].r - z__2.r, z__1.i = rhs[i__3].i - z__2.i;
                rhs[i__2].r = z__1.r, rhs[i__2].i = z__1.i;
/*<    20       CONTINUE >*/
/* L20: */
            }
/*<             SPLUS = SPLUS + ABS( WORK( I ) ) >*/
            splus += z_abs(&work[i__ - 1]);
/*<             SMINU = SMINU + ABS( RHS( I ) ) >*/
            sminu += z_abs(&rhs[i__]);
/*<    30    CONTINUE >*/
/* L30: */
        }
/*<    >*/
        if (splus > sminu) {
            zcopy_(n, work, &c__1, &rhs[1], &c__1);
        }

/*        Apply the permutations JPIV to the computed solution (RHS) */

/*<          CALL ZLASWP( 1, RHS, LDZ, 1, N-1, JPIV, -1 ) >*/
        i__1 = *n - 1;
        zlaswp_(&c__1, &rhs[1], ldz, &c__1, &i__1, &jpiv[1], &c_n1);

/*        Compute the sum of squares */

/*<          CALL ZLASSQ( N, RHS, 1, RDSCAL, RDSUM ) >*/
        zlassq_(n, &rhs[1], &c__1, rdscal, rdsum);
/*<          RETURN >*/
        return 0;
/*<       END IF >*/
    }

/*     ENTRY IJOB = 2 */

/*     Compute approximate nullvector XM of Z */

/*<       CALL ZGECON( 'I', N, Z, LDZ, ONE, RTEMP, WORK, RWORK, INFO ) >*/
    zgecon_("I", n, &z__[z_offset], ldz, &c_b24, &rtemp, work, rwork, &info, (
            ftnlen)1);
/*<       CALL ZCOPY( N, WORK( N+1 ), 1, XM, 1 ) >*/
    zcopy_(n, &work[*n], &c__1, xm, &c__1);

/*     Compute RHS */

/*<       CALL ZLASWP( 1, XM, LDZ, 1, N-1, IPIV, -1 ) >*/
    i__1 = *n - 1;
    zlaswp_(&c__1, xm, ldz, &c__1, &i__1, &ipiv[1], &c_n1);
/*<       TEMP = CONE / SQRT( ZDOTC( N, XM, 1, XM, 1 ) ) >*/
    zdotc_(&z__3, n, xm, &c__1, xm, &c__1);
    z_sqrt(&z__2, &z__3);
    z_div(&z__1, &c_b1, &z__2);
    temp.r = z__1.r, temp.i = z__1.i;
/*<       CALL ZSCAL( N, TEMP, XM, 1 ) >*/
    zscal_(n, &temp, xm, &c__1);
/*<       CALL ZCOPY( N, XM, 1, XP, 1 ) >*/
    zcopy_(n, xm, &c__1, xp, &c__1);
/*<       CALL ZAXPY( N, CONE, RHS, 1, XP, 1 ) >*/
    zaxpy_(n, &c_b1, &rhs[1], &c__1, xp, &c__1);
/*<       CALL ZAXPY( N, -CONE, XM, 1, RHS, 1 ) >*/
    z__1.r = -1., z__1.i = -0.;
    zaxpy_(n, &z__1, xm, &c__1, &rhs[1], &c__1);
/*<       CALL ZGESC2( N, Z, LDZ, RHS, IPIV, JPIV, SCALE ) >*/
    zgesc2_(n, &z__[z_offset], ldz, &rhs[1], &ipiv[1], &jpiv[1], &scale);
/*<       CALL ZGESC2( N, Z, LDZ, XP, IPIV, JPIV, SCALE ) >*/
    zgesc2_(n, &z__[z_offset], ldz, xp, &ipiv[1], &jpiv[1], &scale);
/*<    >*/
    if (dzasum_(n, xp, &c__1) > dzasum_(n, &rhs[1], &c__1)) {
        zcopy_(n, xp, &c__1, &rhs[1], &c__1);
    }

/*     Compute the sum of squares */

/*<       CALL ZLASSQ( N, RHS, 1, RDSCAL, RDSUM ) >*/
    zlassq_(n, &rhs[1], &c__1, rdscal, rdsum);
/*<       RETURN >*/
    return 0;

/*     End of ZLATDF */

/*<       END >*/
} /* zlatdf_ */

#ifdef __cplusplus
        }
#endif