1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
|
/* lapack/complex16/zlatdf.f -- translated by f2c (version 20090411).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/* Table of constant values */
static doublecomplex c_b1 = {1.,0.};
static integer c__1 = 1;
static integer c_n1 = -1;
static doublereal c_b24 = 1.;
/*< >*/
/* Subroutine */ int zlatdf_(integer *ijob, integer *n, doublecomplex *z__,
integer *ldz, doublecomplex *rhs, doublereal *rdsum, doublereal *
rdscal, integer *ipiv, integer *jpiv)
{
/* System generated locals */
integer z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5;
doublecomplex z__1, z__2, z__3;
/* Builtin functions */
void z_div(doublecomplex *, doublecomplex *, doublecomplex *);
double z_abs(doublecomplex *);
void z_sqrt(doublecomplex *, doublecomplex *);
/* Local variables */
integer i__, j, k;
doublecomplex bm, bp, xm[2], xp[2];
integer info;
doublecomplex temp, work[8];
doublereal scale;
extern /* Subroutine */ int zscal_(integer *, doublecomplex *,
doublecomplex *, integer *);
doublecomplex pmone;
extern /* Double Complex */ VOID zdotc_(doublecomplex *, integer *,
doublecomplex *, integer *, doublecomplex *, integer *);
doublereal rtemp, sminu, rwork[2];
extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *,
doublecomplex *, integer *);
doublereal splus;
extern /* Subroutine */ int zaxpy_(integer *, doublecomplex *,
doublecomplex *, integer *, doublecomplex *, integer *), zgesc2_(
integer *, doublecomplex *, integer *, doublecomplex *, integer *,
integer *, doublereal *), zgecon_(char *, integer *,
doublecomplex *, integer *, doublereal *, doublereal *,
doublecomplex *, doublereal *, integer *, ftnlen);
extern doublereal dzasum_(integer *, doublecomplex *, integer *);
extern /* Subroutine */ int zlassq_(integer *, doublecomplex *, integer *,
doublereal *, doublereal *), zlaswp_(integer *, doublecomplex *,
integer *, integer *, integer *, integer *, integer *);
/* -- LAPACK auxiliary routine (version 3.2) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* November 2006 */
/* .. Scalar Arguments .. */
/*< INTEGER IJOB, LDZ, N >*/
/*< DOUBLE PRECISION RDSCAL, RDSUM >*/
/* .. */
/* .. Array Arguments .. */
/*< INTEGER IPIV( * ), JPIV( * ) >*/
/*< COMPLEX*16 RHS( * ), Z( LDZ, * ) >*/
/* .. */
/* Purpose */
/* ======= */
/* ZLATDF computes the contribution to the reciprocal Dif-estimate */
/* by solving for x in Z * x = b, where b is chosen such that the norm */
/* of x is as large as possible. It is assumed that LU decomposition */
/* of Z has been computed by ZGETC2. On entry RHS = f holds the */
/* contribution from earlier solved sub-systems, and on return RHS = x. */
/* The factorization of Z returned by ZGETC2 has the form */
/* Z = P * L * U * Q, where P and Q are permutation matrices. L is lower */
/* triangular with unit diagonal elements and U is upper triangular. */
/* Arguments */
/* ========= */
/* IJOB (input) INTEGER */
/* IJOB = 2: First compute an approximative null-vector e */
/* of Z using ZGECON, e is normalized and solve for */
/* Zx = +-e - f with the sign giving the greater value of */
/* 2-norm(x). About 5 times as expensive as Default. */
/* IJOB .ne. 2: Local look ahead strategy where */
/* all entries of the r.h.s. b is choosen as either +1 or */
/* -1. Default. */
/* N (input) INTEGER */
/* The number of columns of the matrix Z. */
/* Z (input) DOUBLE PRECISION array, dimension (LDZ, N) */
/* On entry, the LU part of the factorization of the n-by-n */
/* matrix Z computed by ZGETC2: Z = P * L * U * Q */
/* LDZ (input) INTEGER */
/* The leading dimension of the array Z. LDA >= max(1, N). */
/* RHS (input/output) DOUBLE PRECISION array, dimension (N). */
/* On entry, RHS contains contributions from other subsystems. */
/* On exit, RHS contains the solution of the subsystem with */
/* entries according to the value of IJOB (see above). */
/* RDSUM (input/output) DOUBLE PRECISION */
/* On entry, the sum of squares of computed contributions to */
/* the Dif-estimate under computation by ZTGSYL, where the */
/* scaling factor RDSCAL (see below) has been factored out. */
/* On exit, the corresponding sum of squares updated with the */
/* contributions from the current sub-system. */
/* If TRANS = 'T' RDSUM is not touched. */
/* NOTE: RDSUM only makes sense when ZTGSY2 is called by CTGSYL. */
/* RDSCAL (input/output) DOUBLE PRECISION */
/* On entry, scaling factor used to prevent overflow in RDSUM. */
/* On exit, RDSCAL is updated w.r.t. the current contributions */
/* in RDSUM. */
/* If TRANS = 'T', RDSCAL is not touched. */
/* NOTE: RDSCAL only makes sense when ZTGSY2 is called by */
/* ZTGSYL. */
/* IPIV (input) INTEGER array, dimension (N). */
/* The pivot indices; for 1 <= i <= N, row i of the */
/* matrix has been interchanged with row IPIV(i). */
/* JPIV (input) INTEGER array, dimension (N). */
/* The pivot indices; for 1 <= j <= N, column j of the */
/* matrix has been interchanged with column JPIV(j). */
/* Further Details */
/* =============== */
/* Based on contributions by */
/* Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
/* Umea University, S-901 87 Umea, Sweden. */
/* This routine is a further developed implementation of algorithm */
/* BSOLVE in [1] using complete pivoting in the LU factorization. */
/* [1] Bo Kagstrom and Lars Westin, */
/* Generalized Schur Methods with Condition Estimators for */
/* Solving the Generalized Sylvester Equation, IEEE Transactions */
/* on Automatic Control, Vol. 34, No. 7, July 1989, pp 745-751. */
/* [2] Peter Poromaa, */
/* On Efficient and Robust Estimators for the Separation */
/* between two Regular Matrix Pairs with Applications in */
/* Condition Estimation. Report UMINF-95.05, Department of */
/* Computing Science, Umea University, S-901 87 Umea, Sweden, */
/* 1995. */
/* ===================================================================== */
/* .. Parameters .. */
/*< INTEGER MAXDIM >*/
/*< PARAMETER ( MAXDIM = 2 ) >*/
/*< DOUBLE PRECISION ZERO, ONE >*/
/*< PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) >*/
/*< COMPLEX*16 CONE >*/
/*< PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ) ) >*/
/* .. */
/* .. Local Scalars .. */
/*< INTEGER I, INFO, J, K >*/
/*< DOUBLE PRECISION RTEMP, SCALE, SMINU, SPLUS >*/
/*< COMPLEX*16 BM, BP, PMONE, TEMP >*/
/* .. */
/* .. Local Arrays .. */
/*< DOUBLE PRECISION RWORK( MAXDIM ) >*/
/*< COMPLEX*16 WORK( 4*MAXDIM ), XM( MAXDIM ), XP( MAXDIM ) >*/
/* .. */
/* .. External Subroutines .. */
/*< >*/
/* .. */
/* .. External Functions .. */
/*< DOUBLE PRECISION DZASUM >*/
/*< COMPLEX*16 ZDOTC >*/
/*< EXTERNAL DZASUM, ZDOTC >*/
/* .. */
/* .. Intrinsic Functions .. */
/*< INTRINSIC ABS, DBLE, SQRT >*/
/* .. */
/* .. Executable Statements .. */
/*< IF( IJOB.NE.2 ) THEN >*/
/* Parameter adjustments */
z_dim1 = *ldz;
z_offset = 1 + z_dim1;
z__ -= z_offset;
--rhs;
--ipiv;
--jpiv;
/* Function Body */
if (*ijob != 2) {
/* Apply permutations IPIV to RHS */
/*< CALL ZLASWP( 1, RHS, LDZ, 1, N-1, IPIV, 1 ) >*/
i__1 = *n - 1;
zlaswp_(&c__1, &rhs[1], ldz, &c__1, &i__1, &ipiv[1], &c__1);
/* Solve for L-part choosing RHS either to +1 or -1. */
/*< PMONE = -CONE >*/
z__1.r = -1., z__1.i = -0.;
pmone.r = z__1.r, pmone.i = z__1.i;
/*< DO 10 J = 1, N - 1 >*/
i__1 = *n - 1;
for (j = 1; j <= i__1; ++j) {
/*< BP = RHS( J ) + CONE >*/
i__2 = j;
z__1.r = rhs[i__2].r + 1., z__1.i = rhs[i__2].i + 0.;
bp.r = z__1.r, bp.i = z__1.i;
/*< BM = RHS( J ) - CONE >*/
i__2 = j;
z__1.r = rhs[i__2].r - 1., z__1.i = rhs[i__2].i - 0.;
bm.r = z__1.r, bm.i = z__1.i;
/*< SPLUS = ONE >*/
splus = 1.;
/* Lockahead for L- part RHS(1:N-1) = +-1 */
/* SPLUS and SMIN computed more efficiently than in BSOLVE[1]. */
/*< >*/
i__2 = *n - j;
zdotc_(&z__1, &i__2, &z__[j + 1 + j * z_dim1], &c__1, &z__[j + 1
+ j * z_dim1], &c__1);
splus += z__1.r;
/*< SMINU = DBLE( ZDOTC( N-J, Z( J+1, J ), 1, RHS( J+1 ), 1 ) ) >*/
i__2 = *n - j;
zdotc_(&z__1, &i__2, &z__[j + 1 + j * z_dim1], &c__1, &rhs[j + 1],
&c__1);
sminu = z__1.r;
/*< SPLUS = SPLUS*DBLE( RHS( J ) ) >*/
i__2 = j;
splus *= rhs[i__2].r;
/*< IF( SPLUS.GT.SMINU ) THEN >*/
if (splus > sminu) {
/*< RHS( J ) = BP >*/
i__2 = j;
rhs[i__2].r = bp.r, rhs[i__2].i = bp.i;
/*< ELSE IF( SMINU.GT.SPLUS ) THEN >*/
} else if (sminu > splus) {
/*< RHS( J ) = BM >*/
i__2 = j;
rhs[i__2].r = bm.r, rhs[i__2].i = bm.i;
/*< ELSE >*/
} else {
/* In this case the updating sums are equal and we can */
/* choose RHS(J) +1 or -1. The first time this happens we */
/* choose -1, thereafter +1. This is a simple way to get */
/* good estimates of matrices like Byers well-known example */
/* (see [1]). (Not done in BSOLVE.) */
/*< RHS( J ) = RHS( J ) + PMONE >*/
i__2 = j;
i__3 = j;
z__1.r = rhs[i__3].r + pmone.r, z__1.i = rhs[i__3].i +
pmone.i;
rhs[i__2].r = z__1.r, rhs[i__2].i = z__1.i;
/*< PMONE = CONE >*/
pmone.r = 1., pmone.i = 0.;
/*< END IF >*/
}
/* Compute the remaining r.h.s. */
/*< TEMP = -RHS( J ) >*/
i__2 = j;
z__1.r = -rhs[i__2].r, z__1.i = -rhs[i__2].i;
temp.r = z__1.r, temp.i = z__1.i;
/*< CALL ZAXPY( N-J, TEMP, Z( J+1, J ), 1, RHS( J+1 ), 1 ) >*/
i__2 = *n - j;
zaxpy_(&i__2, &temp, &z__[j + 1 + j * z_dim1], &c__1, &rhs[j + 1],
&c__1);
/*< 10 CONTINUE >*/
/* L10: */
}
/* Solve for U- part, lockahead for RHS(N) = +-1. This is not done */
/* In BSOLVE and will hopefully give us a better estimate because */
/* any ill-conditioning of the original matrix is transfered to U */
/* and not to L. U(N, N) is an approximation to sigma_min(LU). */
/*< CALL ZCOPY( N-1, RHS, 1, WORK, 1 ) >*/
i__1 = *n - 1;
zcopy_(&i__1, &rhs[1], &c__1, work, &c__1);
/*< WORK( N ) = RHS( N ) + CONE >*/
i__1 = *n - 1;
i__2 = *n;
z__1.r = rhs[i__2].r + 1., z__1.i = rhs[i__2].i + 0.;
work[i__1].r = z__1.r, work[i__1].i = z__1.i;
/*< RHS( N ) = RHS( N ) - CONE >*/
i__1 = *n;
i__2 = *n;
z__1.r = rhs[i__2].r - 1., z__1.i = rhs[i__2].i - 0.;
rhs[i__1].r = z__1.r, rhs[i__1].i = z__1.i;
/*< SPLUS = ZERO >*/
splus = 0.;
/*< SMINU = ZERO >*/
sminu = 0.;
/*< DO 30 I = N, 1, -1 >*/
for (i__ = *n; i__ >= 1; --i__) {
/*< TEMP = CONE / Z( I, I ) >*/
z_div(&z__1, &c_b1, &z__[i__ + i__ * z_dim1]);
temp.r = z__1.r, temp.i = z__1.i;
/*< WORK( I ) = WORK( I )*TEMP >*/
i__1 = i__ - 1;
i__2 = i__ - 1;
z__1.r = work[i__2].r * temp.r - work[i__2].i * temp.i, z__1.i =
work[i__2].r * temp.i + work[i__2].i * temp.r;
work[i__1].r = z__1.r, work[i__1].i = z__1.i;
/*< RHS( I ) = RHS( I )*TEMP >*/
i__1 = i__;
i__2 = i__;
z__1.r = rhs[i__2].r * temp.r - rhs[i__2].i * temp.i, z__1.i =
rhs[i__2].r * temp.i + rhs[i__2].i * temp.r;
rhs[i__1].r = z__1.r, rhs[i__1].i = z__1.i;
/*< DO 20 K = I + 1, N >*/
i__1 = *n;
for (k = i__ + 1; k <= i__1; ++k) {
/*< WORK( I ) = WORK( I ) - WORK( K )*( Z( I, K )*TEMP ) >*/
i__2 = i__ - 1;
i__3 = i__ - 1;
i__4 = k - 1;
i__5 = i__ + k * z_dim1;
z__3.r = z__[i__5].r * temp.r - z__[i__5].i * temp.i, z__3.i =
z__[i__5].r * temp.i + z__[i__5].i * temp.r;
z__2.r = work[i__4].r * z__3.r - work[i__4].i * z__3.i,
z__2.i = work[i__4].r * z__3.i + work[i__4].i *
z__3.r;
z__1.r = work[i__3].r - z__2.r, z__1.i = work[i__3].i -
z__2.i;
work[i__2].r = z__1.r, work[i__2].i = z__1.i;
/*< RHS( I ) = RHS( I ) - RHS( K )*( Z( I, K )*TEMP ) >*/
i__2 = i__;
i__3 = i__;
i__4 = k;
i__5 = i__ + k * z_dim1;
z__3.r = z__[i__5].r * temp.r - z__[i__5].i * temp.i, z__3.i =
z__[i__5].r * temp.i + z__[i__5].i * temp.r;
z__2.r = rhs[i__4].r * z__3.r - rhs[i__4].i * z__3.i, z__2.i =
rhs[i__4].r * z__3.i + rhs[i__4].i * z__3.r;
z__1.r = rhs[i__3].r - z__2.r, z__1.i = rhs[i__3].i - z__2.i;
rhs[i__2].r = z__1.r, rhs[i__2].i = z__1.i;
/*< 20 CONTINUE >*/
/* L20: */
}
/*< SPLUS = SPLUS + ABS( WORK( I ) ) >*/
splus += z_abs(&work[i__ - 1]);
/*< SMINU = SMINU + ABS( RHS( I ) ) >*/
sminu += z_abs(&rhs[i__]);
/*< 30 CONTINUE >*/
/* L30: */
}
/*< >*/
if (splus > sminu) {
zcopy_(n, work, &c__1, &rhs[1], &c__1);
}
/* Apply the permutations JPIV to the computed solution (RHS) */
/*< CALL ZLASWP( 1, RHS, LDZ, 1, N-1, JPIV, -1 ) >*/
i__1 = *n - 1;
zlaswp_(&c__1, &rhs[1], ldz, &c__1, &i__1, &jpiv[1], &c_n1);
/* Compute the sum of squares */
/*< CALL ZLASSQ( N, RHS, 1, RDSCAL, RDSUM ) >*/
zlassq_(n, &rhs[1], &c__1, rdscal, rdsum);
/*< RETURN >*/
return 0;
/*< END IF >*/
}
/* ENTRY IJOB = 2 */
/* Compute approximate nullvector XM of Z */
/*< CALL ZGECON( 'I', N, Z, LDZ, ONE, RTEMP, WORK, RWORK, INFO ) >*/
zgecon_("I", n, &z__[z_offset], ldz, &c_b24, &rtemp, work, rwork, &info, (
ftnlen)1);
/*< CALL ZCOPY( N, WORK( N+1 ), 1, XM, 1 ) >*/
zcopy_(n, &work[*n], &c__1, xm, &c__1);
/* Compute RHS */
/*< CALL ZLASWP( 1, XM, LDZ, 1, N-1, IPIV, -1 ) >*/
i__1 = *n - 1;
zlaswp_(&c__1, xm, ldz, &c__1, &i__1, &ipiv[1], &c_n1);
/*< TEMP = CONE / SQRT( ZDOTC( N, XM, 1, XM, 1 ) ) >*/
zdotc_(&z__3, n, xm, &c__1, xm, &c__1);
z_sqrt(&z__2, &z__3);
z_div(&z__1, &c_b1, &z__2);
temp.r = z__1.r, temp.i = z__1.i;
/*< CALL ZSCAL( N, TEMP, XM, 1 ) >*/
zscal_(n, &temp, xm, &c__1);
/*< CALL ZCOPY( N, XM, 1, XP, 1 ) >*/
zcopy_(n, xm, &c__1, xp, &c__1);
/*< CALL ZAXPY( N, CONE, RHS, 1, XP, 1 ) >*/
zaxpy_(n, &c_b1, &rhs[1], &c__1, xp, &c__1);
/*< CALL ZAXPY( N, -CONE, XM, 1, RHS, 1 ) >*/
z__1.r = -1., z__1.i = -0.;
zaxpy_(n, &z__1, xm, &c__1, &rhs[1], &c__1);
/*< CALL ZGESC2( N, Z, LDZ, RHS, IPIV, JPIV, SCALE ) >*/
zgesc2_(n, &z__[z_offset], ldz, &rhs[1], &ipiv[1], &jpiv[1], &scale);
/*< CALL ZGESC2( N, Z, LDZ, XP, IPIV, JPIV, SCALE ) >*/
zgesc2_(n, &z__[z_offset], ldz, xp, &ipiv[1], &jpiv[1], &scale);
/*< >*/
if (dzasum_(n, xp, &c__1) > dzasum_(n, &rhs[1], &c__1)) {
zcopy_(n, xp, &c__1, &rhs[1], &c__1);
}
/* Compute the sum of squares */
/*< CALL ZLASSQ( N, RHS, 1, RDSCAL, RDSUM ) >*/
zlassq_(n, &rhs[1], &c__1, rdscal, rdsum);
/*< RETURN >*/
return 0;
/* End of ZLATDF */
/*< END >*/
} /* zlatdf_ */
#ifdef __cplusplus
}
#endif
|