1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
|
/* lapack/complex16/zrot.f -- translated by f2c (version 20090411).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/*< SUBROUTINE ZROT( N, CX, INCX, CY, INCY, C, S ) >*/
/* Subroutine */ int zrot_(integer *n, doublecomplex *cx, integer *incx,
doublecomplex *cy, integer *incy, doublereal *c__, doublecomplex *s)
{
/* System generated locals */
integer i__1, i__2, i__3, i__4;
doublecomplex z__1, z__2, z__3, z__4;
/* Builtin functions */
void d_cnjg(doublecomplex *, doublecomplex *);
/* Local variables */
integer i__, ix, iy;
doublecomplex stemp;
/* -- LAPACK auxiliary routine (version 3.2) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* November 2006 */
/* .. Scalar Arguments .. */
/*< INTEGER INCX, INCY, N >*/
/*< DOUBLE PRECISION C >*/
/*< COMPLEX*16 S >*/
/* .. */
/* .. Array Arguments .. */
/*< COMPLEX*16 CX( * ), CY( * ) >*/
/* .. */
/* Purpose */
/* ======= */
/* ZROT applies a plane rotation, where the cos (C) is real and the */
/* sin (S) is complex, and the vectors CX and CY are complex. */
/* Arguments */
/* ========= */
/* N (input) INTEGER */
/* The number of elements in the vectors CX and CY. */
/* CX (input/output) COMPLEX*16 array, dimension (N) */
/* On input, the vector X. */
/* On output, CX is overwritten with C*X + S*Y. */
/* INCX (input) INTEGER */
/* The increment between successive values of CY. INCX <> 0. */
/* CY (input/output) COMPLEX*16 array, dimension (N) */
/* On input, the vector Y. */
/* On output, CY is overwritten with -CONJG(S)*X + C*Y. */
/* INCY (input) INTEGER */
/* The increment between successive values of CY. INCX <> 0. */
/* C (input) DOUBLE PRECISION */
/* S (input) COMPLEX*16 */
/* C and S define a rotation */
/* [ C S ] */
/* [ -conjg(S) C ] */
/* where C*C + S*CONJG(S) = 1.0. */
/* ===================================================================== */
/* .. Local Scalars .. */
/*< INTEGER I, IX, IY >*/
/*< COMPLEX*16 STEMP >*/
/* .. */
/* .. Intrinsic Functions .. */
/*< INTRINSIC DCONJG >*/
/* .. */
/* .. Executable Statements .. */
/*< >*/
/* Parameter adjustments */
--cy;
--cx;
/* Function Body */
if (*n <= 0) {
return 0;
}
/*< >*/
if (*incx == 1 && *incy == 1) {
goto L20;
}
/* Code for unequal increments or equal increments not equal to 1 */
/*< IX = 1 >*/
ix = 1;
/*< IY = 1 >*/
iy = 1;
/*< >*/
if (*incx < 0) {
ix = (-(*n) + 1) * *incx + 1;
}
/*< >*/
if (*incy < 0) {
iy = (-(*n) + 1) * *incy + 1;
}
/*< DO 10 I = 1, N >*/
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
/*< STEMP = C*CX( IX ) + S*CY( IY ) >*/
i__2 = ix;
z__2.r = *c__ * cx[i__2].r, z__2.i = *c__ * cx[i__2].i;
i__3 = iy;
z__3.r = s->r * cy[i__3].r - s->i * cy[i__3].i, z__3.i = s->r * cy[
i__3].i + s->i * cy[i__3].r;
z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
stemp.r = z__1.r, stemp.i = z__1.i;
/*< CY( IY ) = C*CY( IY ) - DCONJG( S )*CX( IX ) >*/
i__2 = iy;
i__3 = iy;
z__2.r = *c__ * cy[i__3].r, z__2.i = *c__ * cy[i__3].i;
d_cnjg(&z__4, s);
i__4 = ix;
z__3.r = z__4.r * cx[i__4].r - z__4.i * cx[i__4].i, z__3.i = z__4.r *
cx[i__4].i + z__4.i * cx[i__4].r;
z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i;
cy[i__2].r = z__1.r, cy[i__2].i = z__1.i;
/*< CX( IX ) = STEMP >*/
i__2 = ix;
cx[i__2].r = stemp.r, cx[i__2].i = stemp.i;
/*< IX = IX + INCX >*/
ix += *incx;
/*< IY = IY + INCY >*/
iy += *incy;
/*< 10 CONTINUE >*/
/* L10: */
}
/*< RETURN >*/
return 0;
/* Code for both increments equal to 1 */
/*< 20 CONTINUE >*/
L20:
/*< DO 30 I = 1, N >*/
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
/*< STEMP = C*CX( I ) + S*CY( I ) >*/
i__2 = i__;
z__2.r = *c__ * cx[i__2].r, z__2.i = *c__ * cx[i__2].i;
i__3 = i__;
z__3.r = s->r * cy[i__3].r - s->i * cy[i__3].i, z__3.i = s->r * cy[
i__3].i + s->i * cy[i__3].r;
z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
stemp.r = z__1.r, stemp.i = z__1.i;
/*< CY( I ) = C*CY( I ) - DCONJG( S )*CX( I ) >*/
i__2 = i__;
i__3 = i__;
z__2.r = *c__ * cy[i__3].r, z__2.i = *c__ * cy[i__3].i;
d_cnjg(&z__4, s);
i__4 = i__;
z__3.r = z__4.r * cx[i__4].r - z__4.i * cx[i__4].i, z__3.i = z__4.r *
cx[i__4].i + z__4.i * cx[i__4].r;
z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i;
cy[i__2].r = z__1.r, cy[i__2].i = z__1.i;
/*< CX( I ) = STEMP >*/
i__2 = i__;
cx[i__2].r = stemp.r, cx[i__2].i = stemp.i;
/*< 30 CONTINUE >*/
/* L30: */
}
/*< RETURN >*/
return 0;
/*< END >*/
} /* zrot_ */
#ifdef __cplusplus
}
#endif
|