1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
|
/* lapack/complex16/ztgex2.f -- translated by f2c (version 20090411).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/* Table of constant values */
static integer c__2 = 2;
static integer c__1 = 1;
/*< >*/
/* Subroutine */ int ztgex2_(logical *wantq, logical *wantz, integer *n,
doublecomplex *a, integer *lda, doublecomplex *b, integer *ldb,
doublecomplex *q, integer *ldq, doublecomplex *z__, integer *ldz,
integer *j1, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, z_dim1,
z_offset, i__1, i__2, i__3;
doublereal d__1;
doublecomplex z__1, z__2, z__3;
/* Builtin functions */
double sqrt(doublereal), z_abs(doublecomplex *);
void d_cnjg(doublecomplex *, doublecomplex *);
/* Local variables */
doublecomplex f, g;
integer i__, m;
doublecomplex s[4] /* was [2][2] */, t[4] /* was [2][2] */;
doublereal cq, sa, sb, cz;
doublecomplex sq;
doublereal ss, ws;
doublecomplex sz;
doublereal eps, sum;
logical weak;
doublecomplex cdum, work[8];
extern /* Subroutine */ int zrot_(integer *, doublecomplex *, integer *,
doublecomplex *, integer *, doublereal *, doublecomplex *);
doublereal scale;
extern doublereal dlamch_(char *, ftnlen);
logical dtrong;
doublereal thresh;
extern /* Subroutine */ int zlacpy_(char *, integer *, integer *,
doublecomplex *, integer *, doublecomplex *, integer *, ftnlen),
zlartg_(doublecomplex *, doublecomplex *, doublereal *,
doublecomplex *, doublecomplex *);
doublereal smlnum;
extern /* Subroutine */ int zlassq_(integer *, doublecomplex *, integer *,
doublereal *, doublereal *);
/* -- LAPACK auxiliary routine (version 3.2.2) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* June 2010 */
/* .. Scalar Arguments .. */
/*< LOGICAL WANTQ, WANTZ >*/
/*< INTEGER INFO, J1, LDA, LDB, LDQ, LDZ, N >*/
/* .. */
/* .. Array Arguments .. */
/*< >*/
/* .. */
/* Purpose */
/* ======= */
/* ZTGEX2 swaps adjacent diagonal 1 by 1 blocks (A11,B11) and (A22,B22) */
/* in an upper triangular matrix pair (A, B) by an unitary equivalence */
/* transformation. */
/* (A, B) must be in generalized Schur canonical form, that is, A and */
/* B are both upper triangular. */
/* Optionally, the matrices Q and Z of generalized Schur vectors are */
/* updated. */
/* Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)' */
/* Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)' */
/* Arguments */
/* ========= */
/* WANTQ (input) LOGICAL */
/* .TRUE. : update the left transformation matrix Q; */
/* .FALSE.: do not update Q. */
/* WANTZ (input) LOGICAL */
/* .TRUE. : update the right transformation matrix Z; */
/* .FALSE.: do not update Z. */
/* N (input) INTEGER */
/* The order of the matrices A and B. N >= 0. */
/* A (input/output) COMPLEX*16 arrays, dimensions (LDA,N) */
/* On entry, the matrix A in the pair (A, B). */
/* On exit, the updated matrix A. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,N). */
/* B (input/output) COMPLEX*16 arrays, dimensions (LDB,N) */
/* On entry, the matrix B in the pair (A, B). */
/* On exit, the updated matrix B. */
/* LDB (input) INTEGER */
/* The leading dimension of the array B. LDB >= max(1,N). */
/* Q (input/output) COMPLEX*16 array, dimension (LDZ,N) */
/* If WANTQ = .TRUE, on entry, the unitary matrix Q. On exit, */
/* the updated matrix Q. */
/* Not referenced if WANTQ = .FALSE.. */
/* LDQ (input) INTEGER */
/* The leading dimension of the array Q. LDQ >= 1; */
/* If WANTQ = .TRUE., LDQ >= N. */
/* Z (input/output) COMPLEX*16 array, dimension (LDZ,N) */
/* If WANTZ = .TRUE, on entry, the unitary matrix Z. On exit, */
/* the updated matrix Z. */
/* Not referenced if WANTZ = .FALSE.. */
/* LDZ (input) INTEGER */
/* The leading dimension of the array Z. LDZ >= 1; */
/* If WANTZ = .TRUE., LDZ >= N. */
/* J1 (input) INTEGER */
/* The index to the first block (A11, B11). */
/* INFO (output) INTEGER */
/* =0: Successful exit. */
/* =1: The transformed matrix pair (A, B) would be too far */
/* from generalized Schur form; the problem is ill- */
/* conditioned. */
/* Further Details */
/* =============== */
/* Based on contributions by */
/* Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
/* Umea University, S-901 87 Umea, Sweden. */
/* In the current code both weak and strong stability tests are */
/* performed. The user can omit the strong stability test by changing */
/* the internal logical parameter WANDS to .FALSE.. See ref. [2] for */
/* details. */
/* [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the */
/* Generalized Real Schur Form of a Regular Matrix Pair (A, B), in */
/* M.S. Moonen et al (eds), Linear Algebra for Large Scale and */
/* Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. */
/* [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified */
/* Eigenvalues of a Regular Matrix Pair (A, B) and Condition */
/* Estimation: Theory, Algorithms and Software, Report UMINF-94.04, */
/* Department of Computing Science, Umea University, S-901 87 Umea, */
/* Sweden, 1994. Also as LAPACK Working Note 87. To appear in */
/* Numerical Algorithms, 1996. */
/* ===================================================================== */
/* .. Parameters .. */
/*< COMPLEX*16 CZERO, CONE >*/
/*< >*/
/*< DOUBLE PRECISION TWENTY >*/
/*< PARAMETER ( TWENTY = 2.0D+1 ) >*/
/*< INTEGER LDST >*/
/*< PARAMETER ( LDST = 2 ) >*/
/*< LOGICAL WANDS >*/
/*< PARAMETER ( WANDS = .TRUE. ) >*/
/* .. */
/* .. Local Scalars .. */
/*< LOGICAL DTRONG, WEAK >*/
/*< INTEGER I, M >*/
/*< >*/
/*< COMPLEX*16 CDUM, F, G, SQ, SZ >*/
/* .. */
/* .. Local Arrays .. */
/*< COMPLEX*16 S( LDST, LDST ), T( LDST, LDST ), WORK( 8 ) >*/
/* .. */
/* .. External Functions .. */
/*< DOUBLE PRECISION DLAMCH >*/
/*< EXTERNAL DLAMCH >*/
/* .. */
/* .. External Subroutines .. */
/*< EXTERNAL ZLACPY, ZLARTG, ZLASSQ, ZROT >*/
/* .. */
/* .. Intrinsic Functions .. */
/*< INTRINSIC ABS, DBLE, DCONJG, MAX, SQRT >*/
/* .. */
/* .. Executable Statements .. */
/*< INFO = 0 >*/
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1;
b -= b_offset;
q_dim1 = *ldq;
q_offset = 1 + q_dim1;
q -= q_offset;
z_dim1 = *ldz;
z_offset = 1 + z_dim1;
z__ -= z_offset;
/* Function Body */
*info = 0;
/* Quick return if possible */
/*< >*/
if (*n <= 1) {
return 0;
}
/*< M = LDST >*/
m = 2;
/*< WEAK = .FALSE. >*/
weak = FALSE_;
/*< DTRONG = .FALSE. >*/
dtrong = FALSE_;
/* Make a local copy of selected block in (A, B) */
/*< CALL ZLACPY( 'Full', M, M, A( J1, J1 ), LDA, S, LDST ) >*/
zlacpy_("Full", &m, &m, &a[*j1 + *j1 * a_dim1], lda, s, &c__2, (ftnlen)4);
/*< CALL ZLACPY( 'Full', M, M, B( J1, J1 ), LDB, T, LDST ) >*/
zlacpy_("Full", &m, &m, &b[*j1 + *j1 * b_dim1], ldb, t, &c__2, (ftnlen)4);
/* Compute the threshold for testing the acceptance of swapping. */
/*< EPS = DLAMCH( 'P' ) >*/
eps = dlamch_("P", (ftnlen)1);
/*< SMLNUM = DLAMCH( 'S' ) / EPS >*/
smlnum = dlamch_("S", (ftnlen)1) / eps;
/*< SCALE = DBLE( CZERO ) >*/
scale = 0.;
/*< SUM = DBLE( CONE ) >*/
sum = 1.;
/*< CALL ZLACPY( 'Full', M, M, S, LDST, WORK, M ) >*/
zlacpy_("Full", &m, &m, s, &c__2, work, &m, (ftnlen)4);
/*< CALL ZLACPY( 'Full', M, M, T, LDST, WORK( M*M+1 ), M ) >*/
zlacpy_("Full", &m, &m, t, &c__2, &work[m * m], &m, (ftnlen)4);
/*< CALL ZLASSQ( 2*M*M, WORK, 1, SCALE, SUM ) >*/
i__1 = (m << 1) * m;
zlassq_(&i__1, work, &c__1, &scale, &sum);
/*< SA = SCALE*SQRT( SUM ) >*/
sa = scale * sqrt(sum);
/* THRES has been changed from */
/* THRESH = MAX( TEN*EPS*SA, SMLNUM ) */
/* to */
/* THRESH = MAX( TWENTY*EPS*SA, SMLNUM ) */
/* on 04/01/10. */
/* "Bug" reported by Ondra Kamenik, confirmed by Julie Langou, fixed by */
/* Jim Demmel and Guillaume Revy. See forum post 1783. */
/*< THRESH = MAX( TWENTY*EPS*SA, SMLNUM ) >*/
/* Computing MAX */
d__1 = eps * 20. * sa;
thresh = max(d__1,smlnum);
/* Compute unitary QL and RQ that swap 1-by-1 and 1-by-1 blocks */
/* using Givens rotations and perform the swap tentatively. */
/*< F = S( 2, 2 )*T( 1, 1 ) - T( 2, 2 )*S( 1, 1 ) >*/
z__2.r = s[3].r * t[0].r - s[3].i * t[0].i, z__2.i = s[3].r * t[0].i + s[
3].i * t[0].r;
z__3.r = t[3].r * s[0].r - t[3].i * s[0].i, z__3.i = t[3].r * s[0].i + t[
3].i * s[0].r;
z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i;
f.r = z__1.r, f.i = z__1.i;
/*< G = S( 2, 2 )*T( 1, 2 ) - T( 2, 2 )*S( 1, 2 ) >*/
z__2.r = s[3].r * t[2].r - s[3].i * t[2].i, z__2.i = s[3].r * t[2].i + s[
3].i * t[2].r;
z__3.r = t[3].r * s[2].r - t[3].i * s[2].i, z__3.i = t[3].r * s[2].i + t[
3].i * s[2].r;
z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i;
g.r = z__1.r, g.i = z__1.i;
/*< SA = ABS( S( 2, 2 ) ) >*/
sa = z_abs(&s[3]);
/*< SB = ABS( T( 2, 2 ) ) >*/
sb = z_abs(&t[3]);
/*< CALL ZLARTG( G, F, CZ, SZ, CDUM ) >*/
zlartg_(&g, &f, &cz, &sz, &cdum);
/*< SZ = -SZ >*/
z__1.r = -sz.r, z__1.i = -sz.i;
sz.r = z__1.r, sz.i = z__1.i;
/*< CALL ZROT( 2, S( 1, 1 ), 1, S( 1, 2 ), 1, CZ, DCONJG( SZ ) ) >*/
d_cnjg(&z__1, &sz);
zrot_(&c__2, s, &c__1, &s[2], &c__1, &cz, &z__1);
/*< CALL ZROT( 2, T( 1, 1 ), 1, T( 1, 2 ), 1, CZ, DCONJG( SZ ) ) >*/
d_cnjg(&z__1, &sz);
zrot_(&c__2, t, &c__1, &t[2], &c__1, &cz, &z__1);
/*< IF( SA.GE.SB ) THEN >*/
if (sa >= sb) {
/*< CALL ZLARTG( S( 1, 1 ), S( 2, 1 ), CQ, SQ, CDUM ) >*/
zlartg_(s, &s[1], &cq, &sq, &cdum);
/*< ELSE >*/
} else {
/*< CALL ZLARTG( T( 1, 1 ), T( 2, 1 ), CQ, SQ, CDUM ) >*/
zlartg_(t, &t[1], &cq, &sq, &cdum);
/*< END IF >*/
}
/*< CALL ZROT( 2, S( 1, 1 ), LDST, S( 2, 1 ), LDST, CQ, SQ ) >*/
zrot_(&c__2, s, &c__2, &s[1], &c__2, &cq, &sq);
/*< CALL ZROT( 2, T( 1, 1 ), LDST, T( 2, 1 ), LDST, CQ, SQ ) >*/
zrot_(&c__2, t, &c__2, &t[1], &c__2, &cq, &sq);
/* Weak stability test: |S21| + |T21| <= O(EPS F-norm((S, T))) */
/*< WS = ABS( S( 2, 1 ) ) + ABS( T( 2, 1 ) ) >*/
ws = z_abs(&s[1]) + z_abs(&t[1]);
/*< WEAK = WS.LE.THRESH >*/
weak = ws <= thresh;
/*< >*/
if (! weak) {
goto L20;
}
/*< IF( WANDS ) THEN >*/
if (TRUE_) {
/* Strong stability test: */
/* F-norm((A-QL'*S*QR, B-QL'*T*QR)) <= O(EPS*F-norm((A, B))) */
/*< CALL ZLACPY( 'Full', M, M, S, LDST, WORK, M ) >*/
zlacpy_("Full", &m, &m, s, &c__2, work, &m, (ftnlen)4);
/*< CALL ZLACPY( 'Full', M, M, T, LDST, WORK( M*M+1 ), M ) >*/
zlacpy_("Full", &m, &m, t, &c__2, &work[m * m], &m, (ftnlen)4);
/*< CALL ZROT( 2, WORK, 1, WORK( 3 ), 1, CZ, -DCONJG( SZ ) ) >*/
d_cnjg(&z__2, &sz);
z__1.r = -z__2.r, z__1.i = -z__2.i;
zrot_(&c__2, work, &c__1, &work[2], &c__1, &cz, &z__1);
/*< CALL ZROT( 2, WORK( 5 ), 1, WORK( 7 ), 1, CZ, -DCONJG( SZ ) ) >*/
d_cnjg(&z__2, &sz);
z__1.r = -z__2.r, z__1.i = -z__2.i;
zrot_(&c__2, &work[4], &c__1, &work[6], &c__1, &cz, &z__1);
/*< CALL ZROT( 2, WORK, 2, WORK( 2 ), 2, CQ, -SQ ) >*/
z__1.r = -sq.r, z__1.i = -sq.i;
zrot_(&c__2, work, &c__2, &work[1], &c__2, &cq, &z__1);
/*< CALL ZROT( 2, WORK( 5 ), 2, WORK( 6 ), 2, CQ, -SQ ) >*/
z__1.r = -sq.r, z__1.i = -sq.i;
zrot_(&c__2, &work[4], &c__2, &work[5], &c__2, &cq, &z__1);
/*< DO 10 I = 1, 2 >*/
for (i__ = 1; i__ <= 2; ++i__) {
/*< WORK( I ) = WORK( I ) - A( J1+I-1, J1 ) >*/
i__1 = i__ - 1;
i__2 = i__ - 1;
i__3 = *j1 + i__ - 1 + *j1 * a_dim1;
z__1.r = work[i__2].r - a[i__3].r, z__1.i = work[i__2].i - a[i__3]
.i;
work[i__1].r = z__1.r, work[i__1].i = z__1.i;
/*< WORK( I+2 ) = WORK( I+2 ) - A( J1+I-1, J1+1 ) >*/
i__1 = i__ + 1;
i__2 = i__ + 1;
i__3 = *j1 + i__ - 1 + (*j1 + 1) * a_dim1;
z__1.r = work[i__2].r - a[i__3].r, z__1.i = work[i__2].i - a[i__3]
.i;
work[i__1].r = z__1.r, work[i__1].i = z__1.i;
/*< WORK( I+4 ) = WORK( I+4 ) - B( J1+I-1, J1 ) >*/
i__1 = i__ + 3;
i__2 = i__ + 3;
i__3 = *j1 + i__ - 1 + *j1 * b_dim1;
z__1.r = work[i__2].r - b[i__3].r, z__1.i = work[i__2].i - b[i__3]
.i;
work[i__1].r = z__1.r, work[i__1].i = z__1.i;
/*< WORK( I+6 ) = WORK( I+6 ) - B( J1+I-1, J1+1 ) >*/
i__1 = i__ + 5;
i__2 = i__ + 5;
i__3 = *j1 + i__ - 1 + (*j1 + 1) * b_dim1;
z__1.r = work[i__2].r - b[i__3].r, z__1.i = work[i__2].i - b[i__3]
.i;
work[i__1].r = z__1.r, work[i__1].i = z__1.i;
/*< 10 CONTINUE >*/
/* L10: */
}
/*< SCALE = DBLE( CZERO ) >*/
scale = 0.;
/*< SUM = DBLE( CONE ) >*/
sum = 1.;
/*< CALL ZLASSQ( 2*M*M, WORK, 1, SCALE, SUM ) >*/
i__1 = (m << 1) * m;
zlassq_(&i__1, work, &c__1, &scale, &sum);
/*< SS = SCALE*SQRT( SUM ) >*/
ss = scale * sqrt(sum);
/*< DTRONG = SS.LE.THRESH >*/
dtrong = ss <= thresh;
/*< >*/
if (! dtrong) {
goto L20;
}
/*< END IF >*/
}
/* If the swap is accepted ("weakly" and "strongly"), apply the */
/* equivalence transformations to the original matrix pair (A,B) */
/*< >*/
i__1 = *j1 + 1;
d_cnjg(&z__1, &sz);
zrot_(&i__1, &a[*j1 * a_dim1 + 1], &c__1, &a[(*j1 + 1) * a_dim1 + 1], &
c__1, &cz, &z__1);
/*< >*/
i__1 = *j1 + 1;
d_cnjg(&z__1, &sz);
zrot_(&i__1, &b[*j1 * b_dim1 + 1], &c__1, &b[(*j1 + 1) * b_dim1 + 1], &
c__1, &cz, &z__1);
/*< CALL ZROT( N-J1+1, A( J1, J1 ), LDA, A( J1+1, J1 ), LDA, CQ, SQ ) >*/
i__1 = *n - *j1 + 1;
zrot_(&i__1, &a[*j1 + *j1 * a_dim1], lda, &a[*j1 + 1 + *j1 * a_dim1], lda,
&cq, &sq);
/*< CALL ZROT( N-J1+1, B( J1, J1 ), LDB, B( J1+1, J1 ), LDB, CQ, SQ ) >*/
i__1 = *n - *j1 + 1;
zrot_(&i__1, &b[*j1 + *j1 * b_dim1], ldb, &b[*j1 + 1 + *j1 * b_dim1], ldb,
&cq, &sq);
/* Set N1 by N2 (2,1) blocks to 0 */
/*< A( J1+1, J1 ) = CZERO >*/
i__1 = *j1 + 1 + *j1 * a_dim1;
a[i__1].r = 0., a[i__1].i = 0.;
/*< B( J1+1, J1 ) = CZERO >*/
i__1 = *j1 + 1 + *j1 * b_dim1;
b[i__1].r = 0., b[i__1].i = 0.;
/* Accumulate transformations into Q and Z if requested. */
/*< >*/
if (*wantz) {
d_cnjg(&z__1, &sz);
zrot_(n, &z__[*j1 * z_dim1 + 1], &c__1, &z__[(*j1 + 1) * z_dim1 + 1],
&c__1, &cz, &z__1);
}
/*< >*/
if (*wantq) {
d_cnjg(&z__1, &sq);
zrot_(n, &q[*j1 * q_dim1 + 1], &c__1, &q[(*j1 + 1) * q_dim1 + 1], &
c__1, &cq, &z__1);
}
/* Exit with INFO = 0 if swap was successfully performed. */
/*< RETURN >*/
return 0;
/* Exit with INFO = 1 if swap was rejected. */
/*< 20 CONTINUE >*/
L20:
/*< INFO = 1 >*/
*info = 1;
/*< RETURN >*/
return 0;
/* End of ZTGEX2 */
/*< END >*/
} /* ztgex2_ */
#ifdef __cplusplus
}
#endif
|