1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
|
/* lapack/complex16/ztrexc.f -- translated by f2c (version 20090411).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/* Table of constant values */
static integer c__1 = 1;
/*< SUBROUTINE ZTREXC( COMPQ, N, T, LDT, Q, LDQ, IFST, ILST, INFO ) >*/
/* Subroutine */ int ztrexc_(char *compq, integer *n, doublecomplex *t,
integer *ldt, doublecomplex *q, integer *ldq, integer *ifst, integer *
ilst, integer *info, ftnlen compq_len)
{
/* System generated locals */
integer q_dim1, q_offset, t_dim1, t_offset, i__1, i__2, i__3;
doublecomplex z__1;
/* Builtin functions */
void d_cnjg(doublecomplex *, doublecomplex *);
/* Local variables */
integer k, m1, m2, m3;
doublereal cs;
doublecomplex t11, t22, sn, temp;
extern /* Subroutine */ int zrot_(integer *, doublecomplex *, integer *,
doublecomplex *, integer *, doublereal *, doublecomplex *);
extern logical lsame_(const char *, const char *, ftnlen, ftnlen);
logical wantq;
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen), zlartg_(
doublecomplex *, doublecomplex *, doublereal *, doublecomplex *,
doublecomplex *);
(void)compq_len;
/* -- LAPACK routine (version 3.2) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* November 2006 */
/* .. Scalar Arguments .. */
/*< CHARACTER COMPQ >*/
/*< INTEGER IFST, ILST, INFO, LDQ, LDT, N >*/
/* .. */
/* .. Array Arguments .. */
/*< COMPLEX*16 Q( LDQ, * ), T( LDT, * ) >*/
/* .. */
/* Purpose */
/* ======= */
/* ZTREXC reorders the Schur factorization of a complex matrix */
/* A = Q*T*Q**H, so that the diagonal element of T with row index IFST */
/* is moved to row ILST. */
/* The Schur form T is reordered by a unitary similarity transformation */
/* Z**H*T*Z, and optionally the matrix Q of Schur vectors is updated by */
/* postmultplying it with Z. */
/* Arguments */
/* ========= */
/* COMPQ (input) CHARACTER*1 */
/* = 'V': update the matrix Q of Schur vectors; */
/* = 'N': do not update Q. */
/* N (input) INTEGER */
/* The order of the matrix T. N >= 0. */
/* T (input/output) COMPLEX*16 array, dimension (LDT,N) */
/* On entry, the upper triangular matrix T. */
/* On exit, the reordered upper triangular matrix. */
/* LDT (input) INTEGER */
/* The leading dimension of the array T. LDT >= max(1,N). */
/* Q (input/output) COMPLEX*16 array, dimension (LDQ,N) */
/* On entry, if COMPQ = 'V', the matrix Q of Schur vectors. */
/* On exit, if COMPQ = 'V', Q has been postmultiplied by the */
/* unitary transformation matrix Z which reorders T. */
/* If COMPQ = 'N', Q is not referenced. */
/* LDQ (input) INTEGER */
/* The leading dimension of the array Q. LDQ >= max(1,N). */
/* IFST (input) INTEGER */
/* ILST (input) INTEGER */
/* Specify the reordering of the diagonal elements of T: */
/* The element with row index IFST is moved to row ILST by a */
/* sequence of transpositions between adjacent elements. */
/* 1 <= IFST <= N; 1 <= ILST <= N. */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* ===================================================================== */
/* .. Local Scalars .. */
/*< LOGICAL WANTQ >*/
/*< INTEGER K, M1, M2, M3 >*/
/*< DOUBLE PRECISION CS >*/
/*< COMPLEX*16 SN, T11, T22, TEMP >*/
/* .. */
/* .. External Functions .. */
/*< LOGICAL LSAME >*/
/*< EXTERNAL LSAME >*/
/* .. */
/* .. External Subroutines .. */
/*< EXTERNAL XERBLA, ZLARTG, ZROT >*/
/* .. */
/* .. Intrinsic Functions .. */
/*< INTRINSIC DCONJG, MAX >*/
/* .. */
/* .. Executable Statements .. */
/* Decode and test the input parameters. */
/*< INFO = 0 >*/
/* Parameter adjustments */
t_dim1 = *ldt;
t_offset = 1 + t_dim1;
t -= t_offset;
q_dim1 = *ldq;
q_offset = 1 + q_dim1;
q -= q_offset;
/* Function Body */
*info = 0;
/*< WANTQ = LSAME( COMPQ, 'V' ) >*/
wantq = lsame_(compq, "V", (ftnlen)1, (ftnlen)1);
/*< IF( .NOT.LSAME( COMPQ, 'N' ) .AND. .NOT.WANTQ ) THEN >*/
if (! lsame_(compq, "N", (ftnlen)1, (ftnlen)1) && ! wantq) {
/*< INFO = -1 >*/
*info = -1;
/*< ELSE IF( N.LT.0 ) THEN >*/
} else if (*n < 0) {
/*< INFO = -2 >*/
*info = -2;
/*< ELSE IF( LDT.LT.MAX( 1, N ) ) THEN >*/
} else if (*ldt < max(1,*n)) {
/*< INFO = -4 >*/
*info = -4;
/*< ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.MAX( 1, N ) ) ) THEN >*/
} else if (*ldq < 1 || (wantq && *ldq < max(1,*n))) {
/*< INFO = -6 >*/
*info = -6;
/*< ELSE IF( IFST.LT.1 .OR. IFST.GT.N ) THEN >*/
} else if (*ifst < 1 || *ifst > *n) {
/*< INFO = -7 >*/
*info = -7;
/*< ELSE IF( ILST.LT.1 .OR. ILST.GT.N ) THEN >*/
} else if (*ilst < 1 || *ilst > *n) {
/*< INFO = -8 >*/
*info = -8;
/*< END IF >*/
}
/*< IF( INFO.NE.0 ) THEN >*/
if (*info != 0) {
/*< CALL XERBLA( 'ZTREXC', -INFO ) >*/
i__1 = -(*info);
xerbla_("ZTREXC", &i__1, (ftnlen)6);
/*< RETURN >*/
return 0;
/*< END IF >*/
}
/* Quick return if possible */
/*< >*/
if (*n == 1 || *ifst == *ilst) {
return 0;
}
/*< IF( IFST.LT.ILST ) THEN >*/
if (*ifst < *ilst) {
/* Move the IFST-th diagonal element forward down the diagonal. */
/*< M1 = 0 >*/
m1 = 0;
/*< M2 = -1 >*/
m2 = -1;
/*< M3 = 1 >*/
m3 = 1;
/*< ELSE >*/
} else {
/* Move the IFST-th diagonal element backward up the diagonal. */
/*< M1 = -1 >*/
m1 = -1;
/*< M2 = 0 >*/
m2 = 0;
/*< M3 = -1 >*/
m3 = -1;
/*< END IF >*/
}
/*< DO 10 K = IFST + M1, ILST + M2, M3 >*/
i__1 = *ilst + m2;
i__2 = m3;
for (k = *ifst + m1; i__2 < 0 ? k >= i__1 : k <= i__1; k += i__2) {
/* Interchange the k-th and (k+1)-th diagonal elements. */
/*< T11 = T( K, K ) >*/
i__3 = k + k * t_dim1;
t11.r = t[i__3].r, t11.i = t[i__3].i;
/*< T22 = T( K+1, K+1 ) >*/
i__3 = k + 1 + (k + 1) * t_dim1;
t22.r = t[i__3].r, t22.i = t[i__3].i;
/* Determine the transformation to perform the interchange. */
/*< CALL ZLARTG( T( K, K+1 ), T22-T11, CS, SN, TEMP ) >*/
z__1.r = t22.r - t11.r, z__1.i = t22.i - t11.i;
zlartg_(&t[k + (k + 1) * t_dim1], &z__1, &cs, &sn, &temp);
/* Apply transformation to the matrix T. */
/*< >*/
if (k + 2 <= *n) {
i__3 = *n - k - 1;
zrot_(&i__3, &t[k + (k + 2) * t_dim1], ldt, &t[k + 1 + (k + 2) *
t_dim1], ldt, &cs, &sn);
}
/*< >*/
i__3 = k - 1;
d_cnjg(&z__1, &sn);
zrot_(&i__3, &t[k * t_dim1 + 1], &c__1, &t[(k + 1) * t_dim1 + 1], &
c__1, &cs, &z__1);
/*< T( K, K ) = T22 >*/
i__3 = k + k * t_dim1;
t[i__3].r = t22.r, t[i__3].i = t22.i;
/*< T( K+1, K+1 ) = T11 >*/
i__3 = k + 1 + (k + 1) * t_dim1;
t[i__3].r = t11.r, t[i__3].i = t11.i;
/*< IF( WANTQ ) THEN >*/
if (wantq) {
/* Accumulate transformation in the matrix Q. */
/*< >*/
d_cnjg(&z__1, &sn);
zrot_(n, &q[k * q_dim1 + 1], &c__1, &q[(k + 1) * q_dim1 + 1], &
c__1, &cs, &z__1);
/*< END IF >*/
}
/*< 10 CONTINUE >*/
/* L10: */
}
/*< RETURN >*/
return 0;
/* End of ZTREXC */
/*< END >*/
} /* ztrexc_ */
#ifdef __cplusplus
}
#endif
|