1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
|
/* lapack/complex16/ztrsen.f -- translated by f2c (version 20090411).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/* Table of constant values */
static integer c_n1 = -1;
/*< >*/
/* Subroutine */ int ztrsen_(char *job, char *compq, logical *select, integer
*n, doublecomplex *t, integer *ldt, doublecomplex *q, integer *ldq,
doublecomplex *w, integer *m, doublereal *s, doublereal *sep,
doublecomplex *work, integer *lwork, integer *info, ftnlen job_len,
ftnlen compq_len)
{
/* System generated locals */
integer q_dim1, q_offset, t_dim1, t_offset, i__1, i__2, i__3;
/* Builtin functions */
double sqrt(doublereal);
/* Local variables */
integer k, n1, n2, nn, ks;
doublereal est;
integer kase, ierr;
doublereal scale;
extern logical lsame_(const char *, const char *, ftnlen, ftnlen);
integer isave[3], lwmin;
logical wantq, wants;
doublereal rnorm, rwork[1];
extern /* Subroutine */ int zlacn2_(integer *, doublecomplex *,
doublecomplex *, doublereal *, integer *, integer *), xerbla_(
char *, integer *, ftnlen);
extern doublereal zlange_(char *, integer *, integer *, doublecomplex *,
integer *, doublereal *, ftnlen);
logical wantbh;
extern /* Subroutine */ int zlacpy_(char *, integer *, integer *,
doublecomplex *, integer *, doublecomplex *, integer *, ftnlen);
logical wantsp;
extern /* Subroutine */ int ztrexc_(char *, integer *, doublecomplex *,
integer *, doublecomplex *, integer *, integer *, integer *,
integer *, ftnlen);
logical lquery;
extern /* Subroutine */ int ztrsyl_(char *, char *, integer *, integer *,
integer *, doublecomplex *, integer *, doublecomplex *, integer *,
doublecomplex *, integer *, doublereal *, integer *, ftnlen,
ftnlen);
(void)job_len;
(void)compq_len;
/* -- LAPACK routine (version 3.2) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* November 2006 */
/* Modified to call ZLACN2 in place of ZLACON, 10 Feb 03, SJH. */
/* .. Scalar Arguments .. */
/*< CHARACTER COMPQ, JOB >*/
/*< INTEGER INFO, LDQ, LDT, LWORK, M, N >*/
/*< DOUBLE PRECISION S, SEP >*/
/* .. */
/* .. Array Arguments .. */
/*< LOGICAL SELECT( * ) >*/
/*< COMPLEX*16 Q( LDQ, * ), T( LDT, * ), W( * ), WORK( * ) >*/
/* .. */
/* Purpose */
/* ======= */
/* ZTRSEN reorders the Schur factorization of a complex matrix */
/* A = Q*T*Q**H, so that a selected cluster of eigenvalues appears in */
/* the leading positions on the diagonal of the upper triangular matrix */
/* T, and the leading columns of Q form an orthonormal basis of the */
/* corresponding right invariant subspace. */
/* Optionally the routine computes the reciprocal condition numbers of */
/* the cluster of eigenvalues and/or the invariant subspace. */
/* Arguments */
/* ========= */
/* JOB (input) CHARACTER*1 */
/* Specifies whether condition numbers are required for the */
/* cluster of eigenvalues (S) or the invariant subspace (SEP): */
/* = 'N': none; */
/* = 'E': for eigenvalues only (S); */
/* = 'V': for invariant subspace only (SEP); */
/* = 'B': for both eigenvalues and invariant subspace (S and */
/* SEP). */
/* COMPQ (input) CHARACTER*1 */
/* = 'V': update the matrix Q of Schur vectors; */
/* = 'N': do not update Q. */
/* SELECT (input) LOGICAL array, dimension (N) */
/* SELECT specifies the eigenvalues in the selected cluster. To */
/* select the j-th eigenvalue, SELECT(j) must be set to .TRUE.. */
/* N (input) INTEGER */
/* The order of the matrix T. N >= 0. */
/* T (input/output) COMPLEX*16 array, dimension (LDT,N) */
/* On entry, the upper triangular matrix T. */
/* On exit, T is overwritten by the reordered matrix T, with the */
/* selected eigenvalues as the leading diagonal elements. */
/* LDT (input) INTEGER */
/* The leading dimension of the array T. LDT >= max(1,N). */
/* Q (input/output) COMPLEX*16 array, dimension (LDQ,N) */
/* On entry, if COMPQ = 'V', the matrix Q of Schur vectors. */
/* On exit, if COMPQ = 'V', Q has been postmultiplied by the */
/* unitary transformation matrix which reorders T; the leading M */
/* columns of Q form an orthonormal basis for the specified */
/* invariant subspace. */
/* If COMPQ = 'N', Q is not referenced. */
/* LDQ (input) INTEGER */
/* The leading dimension of the array Q. */
/* LDQ >= 1; and if COMPQ = 'V', LDQ >= N. */
/* W (output) COMPLEX*16 array, dimension (N) */
/* The reordered eigenvalues of T, in the same order as they */
/* appear on the diagonal of T. */
/* M (output) INTEGER */
/* The dimension of the specified invariant subspace. */
/* 0 <= M <= N. */
/* S (output) DOUBLE PRECISION */
/* If JOB = 'E' or 'B', S is a lower bound on the reciprocal */
/* condition number for the selected cluster of eigenvalues. */
/* S cannot underestimate the true reciprocal condition number */
/* by more than a factor of sqrt(N). If M = 0 or N, S = 1. */
/* If JOB = 'N' or 'V', S is not referenced. */
/* SEP (output) DOUBLE PRECISION */
/* If JOB = 'V' or 'B', SEP is the estimated reciprocal */
/* condition number of the specified invariant subspace. If */
/* M = 0 or N, SEP = norm(T). */
/* If JOB = 'N' or 'E', SEP is not referenced. */
/* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) */
/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
/* LWORK (input) INTEGER */
/* The dimension of the array WORK. */
/* If JOB = 'N', LWORK >= 1; */
/* if JOB = 'E', LWORK = max(1,M*(N-M)); */
/* if JOB = 'V' or 'B', LWORK >= max(1,2*M*(N-M)). */
/* If LWORK = -1, then a workspace query is assumed; the routine */
/* only calculates the optimal size of the WORK array, returns */
/* this value as the first entry of the WORK array, and no error */
/* message related to LWORK is issued by XERBLA. */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* Further Details */
/* =============== */
/* ZTRSEN first collects the selected eigenvalues by computing a unitary */
/* transformation Z to move them to the top left corner of T. In other */
/* words, the selected eigenvalues are the eigenvalues of T11 in: */
/* Z'*T*Z = ( T11 T12 ) n1 */
/* ( 0 T22 ) n2 */
/* n1 n2 */
/* where N = n1+n2 and Z' means the conjugate transpose of Z. The first */
/* n1 columns of Z span the specified invariant subspace of T. */
/* If T has been obtained from the Schur factorization of a matrix */
/* A = Q*T*Q', then the reordered Schur factorization of A is given by */
/* A = (Q*Z)*(Z'*T*Z)*(Q*Z)', and the first n1 columns of Q*Z span the */
/* corresponding invariant subspace of A. */
/* The reciprocal condition number of the average of the eigenvalues of */
/* T11 may be returned in S. S lies between 0 (very badly conditioned) */
/* and 1 (very well conditioned). It is computed as follows. First we */
/* compute R so that */
/* P = ( I R ) n1 */
/* ( 0 0 ) n2 */
/* n1 n2 */
/* is the projector on the invariant subspace associated with T11. */
/* R is the solution of the Sylvester equation: */
/* T11*R - R*T22 = T12. */
/* Let F-norm(M) denote the Frobenius-norm of M and 2-norm(M) denote */
/* the two-norm of M. Then S is computed as the lower bound */
/* (1 + F-norm(R)**2)**(-1/2) */
/* on the reciprocal of 2-norm(P), the true reciprocal condition number. */
/* S cannot underestimate 1 / 2-norm(P) by more than a factor of */
/* sqrt(N). */
/* An approximate error bound for the computed average of the */
/* eigenvalues of T11 is */
/* EPS * norm(T) / S */
/* where EPS is the machine precision. */
/* The reciprocal condition number of the right invariant subspace */
/* spanned by the first n1 columns of Z (or of Q*Z) is returned in SEP. */
/* SEP is defined as the separation of T11 and T22: */
/* sep( T11, T22 ) = sigma-min( C ) */
/* where sigma-min(C) is the smallest singular value of the */
/* n1*n2-by-n1*n2 matrix */
/* C = kprod( I(n2), T11 ) - kprod( transpose(T22), I(n1) ) */
/* I(m) is an m by m identity matrix, and kprod denotes the Kronecker */
/* product. We estimate sigma-min(C) by the reciprocal of an estimate of */
/* the 1-norm of inverse(C). The true reciprocal 1-norm of inverse(C) */
/* cannot differ from sigma-min(C) by more than a factor of sqrt(n1*n2). */
/* When SEP is small, small changes in T can cause large changes in */
/* the invariant subspace. An approximate bound on the maximum angular */
/* error in the computed right invariant subspace is */
/* EPS * norm(T) / SEP */
/* ===================================================================== */
/* .. Parameters .. */
/*< DOUBLE PRECISION ZERO, ONE >*/
/*< PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) >*/
/* .. */
/* .. Local Scalars .. */
/*< LOGICAL LQUERY, WANTBH, WANTQ, WANTS, WANTSP >*/
/*< INTEGER IERR, K, KASE, KS, LWMIN, N1, N2, NN >*/
/*< DOUBLE PRECISION EST, RNORM, SCALE >*/
/* .. */
/* .. Local Arrays .. */
/*< INTEGER ISAVE( 3 ) >*/
/*< DOUBLE PRECISION RWORK( 1 ) >*/
/* .. */
/* .. External Functions .. */
/*< LOGICAL LSAME >*/
/*< DOUBLE PRECISION ZLANGE >*/
/*< EXTERNAL LSAME, ZLANGE >*/
/* .. */
/* .. External Subroutines .. */
/*< EXTERNAL XERBLA, ZLACN2, ZLACPY, ZTREXC, ZTRSYL >*/
/* .. */
/* .. Intrinsic Functions .. */
/*< INTRINSIC MAX, SQRT >*/
/* .. */
/* .. Executable Statements .. */
/* Decode and test the input parameters. */
/*< WANTBH = LSAME( JOB, 'B' ) >*/
/* Parameter adjustments */
--select;
t_dim1 = *ldt;
t_offset = 1 + t_dim1;
t -= t_offset;
q_dim1 = *ldq;
q_offset = 1 + q_dim1;
q -= q_offset;
--w;
--work;
/* Function Body */
wantbh = lsame_(job, "B", (ftnlen)1, (ftnlen)1);
/*< WANTS = LSAME( JOB, 'E' ) .OR. WANTBH >*/
wants = lsame_(job, "E", (ftnlen)1, (ftnlen)1) || wantbh;
/*< WANTSP = LSAME( JOB, 'V' ) .OR. WANTBH >*/
wantsp = lsame_(job, "V", (ftnlen)1, (ftnlen)1) || wantbh;
/*< WANTQ = LSAME( COMPQ, 'V' ) >*/
wantq = lsame_(compq, "V", (ftnlen)1, (ftnlen)1);
/* Set M to the number of selected eigenvalues. */
/*< M = 0 >*/
*m = 0;
/*< DO 10 K = 1, N >*/
i__1 = *n;
for (k = 1; k <= i__1; ++k) {
/*< >*/
if (select[k]) {
++(*m);
}
/*< 10 CONTINUE >*/
/* L10: */
}
/*< N1 = M >*/
n1 = *m;
/*< N2 = N - M >*/
n2 = *n - *m;
/*< NN = N1*N2 >*/
nn = n1 * n2;
/*< INFO = 0 >*/
*info = 0;
/*< LQUERY = ( LWORK.EQ.-1 ) >*/
lquery = *lwork == -1;
/*< IF( WANTSP ) THEN >*/
if (wantsp) {
/*< LWMIN = MAX( 1, 2*NN ) >*/
/* Computing MAX */
i__1 = 1, i__2 = nn << 1;
lwmin = max(i__1,i__2);
/*< ELSE IF( LSAME( JOB, 'N' ) ) THEN >*/
} else if (lsame_(job, "N", (ftnlen)1, (ftnlen)1)) {
/*< LWMIN = 1 >*/
lwmin = 1;
/*< ELSE IF( LSAME( JOB, 'E' ) ) THEN >*/
} else if (lsame_(job, "E", (ftnlen)1, (ftnlen)1)) {
/*< LWMIN = MAX( 1, NN ) >*/
lwmin = max(1,nn);
/*< END IF >*/
}
/*< >*/
if (! lsame_(job, "N", (ftnlen)1, (ftnlen)1) && ! wants && ! wantsp) {
/*< INFO = -1 >*/
*info = -1;
/*< ELSE IF( .NOT.LSAME( COMPQ, 'N' ) .AND. .NOT.WANTQ ) THEN >*/
} else if (! lsame_(compq, "N", (ftnlen)1, (ftnlen)1) && ! wantq) {
/*< INFO = -2 >*/
*info = -2;
/*< ELSE IF( N.LT.0 ) THEN >*/
} else if (*n < 0) {
/*< INFO = -4 >*/
*info = -4;
/*< ELSE IF( LDT.LT.MAX( 1, N ) ) THEN >*/
} else if (*ldt < max(1,*n)) {
/*< INFO = -6 >*/
*info = -6;
/*< ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN >*/
} else if (*ldq < 1 || (wantq && *ldq) < *n) {
/*< INFO = -8 >*/
*info = -8;
/*< ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN >*/
} else if (*lwork < lwmin && ! lquery) {
/*< INFO = -14 >*/
*info = -14;
/*< END IF >*/
}
/*< IF( INFO.EQ.0 ) THEN >*/
if (*info == 0) {
/*< WORK( 1 ) = LWMIN >*/
work[1].r = (doublereal) lwmin, work[1].i = 0.;
/*< END IF >*/
}
/*< IF( INFO.NE.0 ) THEN >*/
if (*info != 0) {
/*< CALL XERBLA( 'ZTRSEN', -INFO ) >*/
i__1 = -(*info);
xerbla_("ZTRSEN", &i__1, (ftnlen)6);
/*< RETURN >*/
return 0;
/*< ELSE IF( LQUERY ) THEN >*/
} else if (lquery) {
/*< RETURN >*/
return 0;
/*< END IF >*/
}
/* Quick return if possible */
/*< IF( M.EQ.N .OR. M.EQ.0 ) THEN >*/
if (*m == *n || *m == 0) {
/*< >*/
if (wants) {
*s = 1.;
}
/*< >*/
if (wantsp) {
*sep = zlange_("1", n, n, &t[t_offset], ldt, rwork, (ftnlen)1);
}
/*< GO TO 40 >*/
goto L40;
/*< END IF >*/
}
/* Collect the selected eigenvalues at the top left corner of T. */
/*< KS = 0 >*/
ks = 0;
/*< DO 20 K = 1, N >*/
i__1 = *n;
for (k = 1; k <= i__1; ++k) {
/*< IF( SELECT( K ) ) THEN >*/
if (select[k]) {
/*< KS = KS + 1 >*/
++ks;
/* Swap the K-th eigenvalue to position KS. */
/*< >*/
if (k != ks) {
ztrexc_(compq, n, &t[t_offset], ldt, &q[q_offset], ldq, &k, &
ks, &ierr, (ftnlen)1);
}
/*< END IF >*/
}
/*< 20 CONTINUE >*/
/* L20: */
}
/*< IF( WANTS ) THEN >*/
if (wants) {
/* Solve the Sylvester equation for R: */
/* T11*R - R*T22 = scale*T12 */
/*< CALL ZLACPY( 'F', N1, N2, T( 1, N1+1 ), LDT, WORK, N1 ) >*/
zlacpy_("F", &n1, &n2, &t[(n1 + 1) * t_dim1 + 1], ldt, &work[1], &n1,
(ftnlen)1);
/*< >*/
ztrsyl_("N", "N", &c_n1, &n1, &n2, &t[t_offset], ldt, &t[n1 + 1 + (n1
+ 1) * t_dim1], ldt, &work[1], &n1, &scale, &ierr, (ftnlen)1,
(ftnlen)1);
/* Estimate the reciprocal of the condition number of the cluster */
/* of eigenvalues. */
/*< RNORM = ZLANGE( 'F', N1, N2, WORK, N1, RWORK ) >*/
rnorm = zlange_("F", &n1, &n2, &work[1], &n1, rwork, (ftnlen)1);
/*< IF( RNORM.EQ.ZERO ) THEN >*/
if (rnorm == 0.) {
/*< S = ONE >*/
*s = 1.;
/*< ELSE >*/
} else {
/*< >*/
*s = scale / (sqrt(scale * scale / rnorm + rnorm) * sqrt(rnorm));
/*< END IF >*/
}
/*< END IF >*/
}
/*< IF( WANTSP ) THEN >*/
if (wantsp) {
/* Estimate sep(T11,T22). */
/*< EST = ZERO >*/
est = 0.;
/*< KASE = 0 >*/
kase = 0;
/*< 30 CONTINUE >*/
L30:
/*< CALL ZLACN2( NN, WORK( NN+1 ), WORK, EST, KASE, ISAVE ) >*/
zlacn2_(&nn, &work[nn + 1], &work[1], &est, &kase, isave);
/*< IF( KASE.NE.0 ) THEN >*/
if (kase != 0) {
/*< IF( KASE.EQ.1 ) THEN >*/
if (kase == 1) {
/* Solve T11*R - R*T22 = scale*X. */
/*< >*/
ztrsyl_("N", "N", &c_n1, &n1, &n2, &t[t_offset], ldt, &t[n1 +
1 + (n1 + 1) * t_dim1], ldt, &work[1], &n1, &scale, &
ierr, (ftnlen)1, (ftnlen)1);
/*< ELSE >*/
} else {
/* Solve T11'*R - R*T22' = scale*X. */
/*< >*/
ztrsyl_("C", "C", &c_n1, &n1, &n2, &t[t_offset], ldt, &t[n1 +
1 + (n1 + 1) * t_dim1], ldt, &work[1], &n1, &scale, &
ierr, (ftnlen)1, (ftnlen)1);
/*< END IF >*/
}
/*< GO TO 30 >*/
goto L30;
/*< END IF >*/
}
/*< SEP = SCALE / EST >*/
*sep = scale / est;
/*< END IF >*/
}
/*< 40 CONTINUE >*/
L40:
/* Copy reordered eigenvalues to W. */
/*< DO 50 K = 1, N >*/
i__1 = *n;
for (k = 1; k <= i__1; ++k) {
/*< W( K ) = T( K, K ) >*/
i__2 = k;
i__3 = k + k * t_dim1;
w[i__2].r = t[i__3].r, w[i__2].i = t[i__3].i;
/*< 50 CONTINUE >*/
/* L50: */
}
/*< WORK( 1 ) = LWMIN >*/
work[1].r = (doublereal) lwmin, work[1].i = 0.;
/*< RETURN >*/
return 0;
/* End of ZTRSEN */
/*< END >*/
} /* ztrsen_ */
#ifdef __cplusplus
}
#endif
|