1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
|
/* lapack/double/dlae2.f -- translated by f2c (version 20090411).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/*< SUBROUTINE DLAE2( A, B, C, RT1, RT2 ) >*/
/* Subroutine */ int dlae2_(doublereal *a, doublereal *b, doublereal *c__,
doublereal *rt1, doublereal *rt2)
{
/* System generated locals */
doublereal d__1;
/* Builtin functions */
double sqrt(doublereal);
/* Local variables */
doublereal ab, df, tb, sm, rt, adf, acmn, acmx;
/* -- LAPACK auxiliary routine (version 3.2) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* November 2006 */
/* .. Scalar Arguments .. */
/*< DOUBLE PRECISION A, B, C, RT1, RT2 >*/
/* .. */
/* Purpose */
/* ======= */
/* DLAE2 computes the eigenvalues of a 2-by-2 symmetric matrix */
/* [ A B ] */
/* [ B C ]. */
/* On return, RT1 is the eigenvalue of larger absolute value, and RT2 */
/* is the eigenvalue of smaller absolute value. */
/* Arguments */
/* ========= */
/* A (input) DOUBLE PRECISION */
/* The (1,1) element of the 2-by-2 matrix. */
/* B (input) DOUBLE PRECISION */
/* The (1,2) and (2,1) elements of the 2-by-2 matrix. */
/* C (input) DOUBLE PRECISION */
/* The (2,2) element of the 2-by-2 matrix. */
/* RT1 (output) DOUBLE PRECISION */
/* The eigenvalue of larger absolute value. */
/* RT2 (output) DOUBLE PRECISION */
/* The eigenvalue of smaller absolute value. */
/* Further Details */
/* =============== */
/* RT1 is accurate to a few ulps barring over/underflow. */
/* RT2 may be inaccurate if there is massive cancellation in the */
/* determinant A*C-B*B; higher precision or correctly rounded or */
/* correctly truncated arithmetic would be needed to compute RT2 */
/* accurately in all cases. */
/* Overflow is possible only if RT1 is within a factor of 5 of overflow. */
/* Underflow is harmless if the input data is 0 or exceeds */
/* underflow_threshold / macheps. */
/* ===================================================================== */
/* .. Parameters .. */
/*< DOUBLE PRECISION ONE >*/
/*< PARAMETER ( ONE = 1.0D0 ) >*/
/*< DOUBLE PRECISION TWO >*/
/*< PARAMETER ( TWO = 2.0D0 ) >*/
/*< DOUBLE PRECISION ZERO >*/
/*< PARAMETER ( ZERO = 0.0D0 ) >*/
/*< DOUBLE PRECISION HALF >*/
/*< PARAMETER ( HALF = 0.5D0 ) >*/
/* .. */
/* .. Local Scalars .. */
/*< DOUBLE PRECISION AB, ACMN, ACMX, ADF, DF, RT, SM, TB >*/
/* .. */
/* .. Intrinsic Functions .. */
/*< INTRINSIC ABS, SQRT >*/
/* .. */
/* .. Executable Statements .. */
/* Compute the eigenvalues */
/*< SM = A + C >*/
sm = *a + *c__;
/*< DF = A - C >*/
df = *a - *c__;
/*< ADF = ABS( DF ) >*/
adf = abs(df);
/*< TB = B + B >*/
tb = *b + *b;
/*< AB = ABS( TB ) >*/
ab = abs(tb);
/*< IF( ABS( A ).GT.ABS( C ) ) THEN >*/
if (abs(*a) > abs(*c__)) {
/*< ACMX = A >*/
acmx = *a;
/*< ACMN = C >*/
acmn = *c__;
/*< ELSE >*/
} else {
/*< ACMX = C >*/
acmx = *c__;
/*< ACMN = A >*/
acmn = *a;
/*< END IF >*/
}
/*< IF( ADF.GT.AB ) THEN >*/
if (adf > ab) {
/*< RT = ADF*SQRT( ONE+( AB / ADF )**2 ) >*/
/* Computing 2nd power */
d__1 = ab / adf;
rt = adf * sqrt(d__1 * d__1 + 1.);
/*< ELSE IF( ADF.LT.AB ) THEN >*/
} else if (adf < ab) {
/*< RT = AB*SQRT( ONE+( ADF / AB )**2 ) >*/
/* Computing 2nd power */
d__1 = adf / ab;
rt = ab * sqrt(d__1 * d__1 + 1.);
/*< ELSE >*/
} else {
/* Includes case AB=ADF=0 */
/*< RT = AB*SQRT( TWO ) >*/
rt = ab * sqrt(2.);
/*< END IF >*/
}
/*< IF( SM.LT.ZERO ) THEN >*/
if (sm < 0.) {
/*< RT1 = HALF*( SM-RT ) >*/
*rt1 = (sm - rt) * .5;
/* Order of execution important. */
/* To get fully accurate smaller eigenvalue, */
/* next line needs to be executed in higher precision. */
/*< RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B >*/
*rt2 = acmx / *rt1 * acmn - *b / *rt1 * *b;
/*< ELSE IF( SM.GT.ZERO ) THEN >*/
} else if (sm > 0.) {
/*< RT1 = HALF*( SM+RT ) >*/
*rt1 = (sm + rt) * .5;
/* Order of execution important. */
/* To get fully accurate smaller eigenvalue, */
/* next line needs to be executed in higher precision. */
/*< RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B >*/
*rt2 = acmx / *rt1 * acmn - *b / *rt1 * *b;
/*< ELSE >*/
} else {
/* Includes case RT1 = RT2 = 0 */
/*< RT1 = HALF*RT >*/
*rt1 = rt * .5;
/*< RT2 = -HALF*RT >*/
*rt2 = rt * -.5;
/*< END IF >*/
}
/*< RETURN >*/
return 0;
/* End of DLAE2 */
/*< END >*/
} /* dlae2_ */
#ifdef __cplusplus
}
#endif
|