File: dlanst.c

package info (click to toggle)
vxl 1.17.0.dfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 153,280 kB
  • ctags: 105,123
  • sloc: cpp: 747,420; ansic: 209,130; fortran: 34,230; lisp: 14,915; sh: 6,187; python: 5,856; makefile: 340; perl: 294; xml: 160
file content (217 lines) | stat: -rw-r--r-- 6,796 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
/* lapack/double/dlanst.f -- translated by f2c (version 20090411).
   You must link the resulting object file with libf2c:
        on Microsoft Windows system, link with libf2c.lib;
        on Linux or Unix systems, link with .../path/to/libf2c.a -lm
        or, if you install libf2c.a in a standard place, with -lf2c -lm
        -- in that order, at the end of the command line, as in
                cc *.o -lf2c -lm
        Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

                http://www.netlib.org/f2c/libf2c.zip
*/

#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"

/* Table of constant values */

static integer c__1 = 1;

/*<       DOUBLE PRECISION FUNCTION DLANST( NORM, N, D, E ) >*/
doublereal dlanst_(char *norm, integer *n, doublereal *d__, doublereal *e,
        ftnlen norm_len)
{
    /* System generated locals */
    integer i__1;
    doublereal ret_val, d__1, d__2, d__3, d__4, d__5;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    integer i__;
    doublereal sum, scale;
    extern logical lsame_(const char *, const char *, ftnlen, ftnlen);
    doublereal anorm;
    extern /* Subroutine */ int dlassq_(integer *, doublereal *, integer *,
            doublereal *, doublereal *);


/*  -- LAPACK auxiliary routine (version 3.2) -- */
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*<       CHARACTER          NORM >*/
/*<       INTEGER            N >*/
/*     .. */
/*     .. Array Arguments .. */
/*<       DOUBLE PRECISION   D( * ), E( * ) >*/
/*     .. */

/*  Purpose */
/*  ======= */

/*  DLANST  returns the value of the one norm,  or the Frobenius norm, or */
/*  the  infinity norm,  or the  element of  largest absolute value  of a */
/*  real symmetric tridiagonal matrix A. */

/*  Description */
/*  =========== */

/*  DLANST returns the value */

/*     DLANST = ( max(abs(A(i,j))), NORM = 'M' or 'm' */
/*              ( */
/*              ( norm1(A),         NORM = '1', 'O' or 'o' */
/*              ( */
/*              ( normI(A),         NORM = 'I' or 'i' */
/*              ( */
/*              ( normF(A),         NORM = 'F', 'f', 'E' or 'e' */

/*  where  norm1  denotes the  one norm of a matrix (maximum column sum), */
/*  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and */
/*  normF  denotes the  Frobenius norm of a matrix (square root of sum of */
/*  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm. */

/*  Arguments */
/*  ========= */

/*  NORM    (input) CHARACTER*1 */
/*          Specifies the value to be returned in DLANST as described */
/*          above. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0.  When N = 0, DLANST is */
/*          set to zero. */

/*  D       (input) DOUBLE PRECISION array, dimension (N) */
/*          The diagonal elements of A. */

/*  E       (input) DOUBLE PRECISION array, dimension (N-1) */
/*          The (n-1) sub-diagonal or super-diagonal elements of A. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*<       DOUBLE PRECISION   ONE, ZERO >*/
/*<       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 ) >*/
/*     .. */
/*     .. Local Scalars .. */
/*<       INTEGER            I >*/
/*<       DOUBLE PRECISION   ANORM, SCALE, SUM >*/
/*     .. */
/*     .. External Functions .. */
/*<       LOGICAL            LSAME >*/
/*<       EXTERNAL           LSAME >*/
/*     .. */
/*     .. External Subroutines .. */
/*<       EXTERNAL           DLASSQ >*/
/*     .. */
/*     .. Intrinsic Functions .. */
/*<       INTRINSIC          ABS, MAX, SQRT >*/
/*     .. */
/*     .. Executable Statements .. */

/*<       IF( N.LE.0 ) THEN >*/
    /* Parameter adjustments */
    --e;
    --d__;

    /* Function Body */
    if (*n <= 0) {
/*<          ANORM = ZERO >*/
        anorm = 0.;
/*<       ELSE IF( LSAME( NORM, 'M' ) ) THEN >*/
    } else if (lsame_(norm, "M", (ftnlen)1, (ftnlen)1)) {

/*        Find max(abs(A(i,j))). */

/*<          ANORM = ABS( D( N ) ) >*/
        anorm = (d__1 = d__[*n], abs(d__1));
/*<          DO 10 I = 1, N - 1 >*/
        i__1 = *n - 1;
        for (i__ = 1; i__ <= i__1; ++i__) {
/*<             ANORM = MAX( ANORM, ABS( D( I ) ) ) >*/
/* Computing MAX */
            d__2 = anorm, d__3 = (d__1 = d__[i__], abs(d__1));
            anorm = max(d__2,d__3);
/*<             ANORM = MAX( ANORM, ABS( E( I ) ) ) >*/
/* Computing MAX */
            d__2 = anorm, d__3 = (d__1 = e[i__], abs(d__1));
            anorm = max(d__2,d__3);
/*<    10    CONTINUE >*/
/* L10: */
        }
/*<        >*/
    } else if (lsame_(norm, "O", (ftnlen)1, (ftnlen)1) || *(unsigned char *)
            norm == '1' || lsame_(norm, "I", (ftnlen)1, (ftnlen)1)) {

/*        Find norm1(A). */

/*<          IF( N.EQ.1 ) THEN >*/
        if (*n == 1) {
/*<             ANORM = ABS( D( 1 ) ) >*/
            anorm = abs(d__[1]);
/*<          ELSE >*/
        } else {
/*<        >*/
/* Computing MAX */
            d__3 = abs(d__[1]) + abs(e[1]), d__4 = (d__1 = e[*n - 1], abs(
                    d__1)) + (d__2 = d__[*n], abs(d__2));
            anorm = max(d__3,d__4);
/*<             DO 20 I = 2, N - 1 >*/
            i__1 = *n - 1;
            for (i__ = 2; i__ <= i__1; ++i__) {
/*<        >*/
/* Computing MAX */
                d__4 = anorm, d__5 = (d__1 = d__[i__], abs(d__1)) + (d__2 = e[
                        i__], abs(d__2)) + (d__3 = e[i__ - 1], abs(d__3));
                anorm = max(d__4,d__5);
/*<    20       CONTINUE >*/
/* L20: */
            }
/*<          END IF >*/
        }
/*<       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN >*/
    } else if (lsame_(norm, "F", (ftnlen)1, (ftnlen)1) || lsame_(norm, "E", (
            ftnlen)1, (ftnlen)1)) {

/*        Find normF(A). */

/*<          SCALE = ZERO >*/
        scale = 0.;
/*<          SUM = ONE >*/
        sum = 1.;
/*<          IF( N.GT.1 ) THEN >*/
        if (*n > 1) {
/*<             CALL DLASSQ( N-1, E, 1, SCALE, SUM ) >*/
            i__1 = *n - 1;
            dlassq_(&i__1, &e[1], &c__1, &scale, &sum);
/*<             SUM = 2*SUM >*/
            sum *= 2;
/*<          END IF >*/
        }
/*<          CALL DLASSQ( N, D, 1, SCALE, SUM ) >*/
        dlassq_(n, &d__[1], &c__1, &scale, &sum);
/*<          ANORM = SCALE*SQRT( SUM ) >*/
        anorm = scale * sqrt(sum);
/*<       END IF >*/
    }

/*<       DLANST = ANORM >*/
    ret_val = anorm;
/*<       RETURN >*/
    return ret_val;

/*     End of DLANST */

/*<       END >*/
} /* dlanst_ */

#ifdef __cplusplus
        }
#endif