File: slas2.c

package info (click to toggle)
vxl 1.17.0.dfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 153,280 kB
  • ctags: 105,123
  • sloc: cpp: 747,420; ansic: 209,130; fortran: 34,230; lisp: 14,915; sh: 6,187; python: 5,856; makefile: 340; perl: 294; xml: 160
file content (199 lines) | stat: -rw-r--r-- 6,259 bytes parent folder | download | duplicates (16)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
/* lapack/single/slas2.f -- translated by f2c (version 20050501).
   You must link the resulting object file with libf2c:
        on Microsoft Windows system, link with libf2c.lib;
        on Linux or Unix systems, link with .../path/to/libf2c.a -lm
        or, if you install libf2c.a in a standard place, with -lf2c -lm
        -- in that order, at the end of the command line, as in
                cc *.o -lf2c -lm
        Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

                http://www.netlib.org/f2c/libf2c.zip
*/

#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"

/*<       SUBROUTINE SLAS2( F, G, H, SSMIN, SSMAX ) >*/
/* Subroutine */ int slas2_(real *f, real *g, real *h__, real *ssmin, real *
        ssmax)
{
    /* System generated locals */
    real r__1, r__2;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    real c__, fa, ga, ha, as, at, au, fhmn, fhmx;


/*  -- LAPACK auxiliary routine (version 3.0) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/*     Courant Institute, Argonne National Lab, and Rice University */
/*     September 30, 1994 */

/*     .. Scalar Arguments .. */
/*<       REAL               F, G, H, SSMAX, SSMIN >*/
/*     .. */

/*  Purpose */
/*  ======= */

/*  SLAS2  computes the singular values of the 2-by-2 matrix */
/*     [  F   G  ] */
/*     [  0   H  ]. */
/*  On return, SSMIN is the smaller singular value and SSMAX is the */
/*  larger singular value. */

/*  Arguments */
/*  ========= */

/*  F       (input) REAL */
/*          The (1,1) element of the 2-by-2 matrix. */

/*  G       (input) REAL */
/*          The (1,2) element of the 2-by-2 matrix. */

/*  H       (input) REAL */
/*          The (2,2) element of the 2-by-2 matrix. */

/*  SSMIN   (output) REAL */
/*          The smaller singular value. */

/*  SSMAX   (output) REAL */
/*          The larger singular value. */

/*  Further Details */
/*  =============== */

/*  Barring over/underflow, all output quantities are correct to within */
/*  a few units in the last place (ulps), even in the absence of a guard */
/*  digit in addition/subtraction. */

/*  In IEEE arithmetic, the code works correctly if one matrix element is */
/*  infinite. */

/*  Overflow will not occur unless the largest singular value itself */
/*  overflows, or is within a few ulps of overflow. (On machines with */
/*  partial overflow, like the Cray, overflow may occur if the largest */
/*  singular value is within a factor of 2 of overflow.) */

/*  Underflow is harmless if underflow is gradual. Otherwise, results */
/*  may correspond to a matrix modified by perturbations of size near */
/*  the underflow threshold. */

/*  ==================================================================== */

/*     .. Parameters .. */
/*<       REAL               ZERO >*/
/*<       PARAMETER          ( ZERO = 0.0E0 ) >*/
/*<       REAL               ONE >*/
/*<       PARAMETER          ( ONE = 1.0E0 ) >*/
/*<       REAL               TWO >*/
/*<       PARAMETER          ( TWO = 2.0E0 ) >*/
/*     .. */
/*     .. Local Scalars .. */
/*<       REAL               AS, AT, AU, C, FA, FHMN, FHMX, GA, HA >*/
/*     .. */
/*     .. Intrinsic Functions .. */
/*<       INTRINSIC          ABS, MAX, MIN, SQRT >*/
/*     .. */
/*     .. Executable Statements .. */

/*<       FA = ABS( F ) >*/
    fa = dabs(*f);
/*<       GA = ABS( G ) >*/
    ga = dabs(*g);
/*<       HA = ABS( H ) >*/
    ha = dabs(*h__);
/*<       FHMN = MIN( FA, HA ) >*/
    fhmn = dmin(fa,ha);
/*<       FHMX = MAX( FA, HA ) >*/
    fhmx = dmax(fa,ha);
/*<       IF( FHMN.EQ.ZERO ) THEN >*/
    if (fhmn == (float)0.) {
/*<          SSMIN = ZERO >*/
        *ssmin = (float)0.;
/*<          IF( FHMX.EQ.ZERO ) THEN >*/
        if (fhmx == (float)0.) {
/*<             SSMAX = GA >*/
            *ssmax = ga;
/*<          ELSE >*/
        } else {
/*<    >*/
/* Computing 2nd power */
            r__1 = dmin(fhmx,ga) / dmax(fhmx,ga);
            *ssmax = dmax(fhmx,ga) * sqrt(r__1 * r__1 + (float)1.);
/*<          END IF >*/
        }
/*<       ELSE >*/
    } else {
/*<          IF( GA.LT.FHMX ) THEN >*/
        if (ga < fhmx) {
/*<             AS = ONE + FHMN / FHMX >*/
            as = fhmn / fhmx + (float)1.;
/*<             AT = ( FHMX-FHMN ) / FHMX >*/
            at = (fhmx - fhmn) / fhmx;
/*<             AU = ( GA / FHMX )**2 >*/
/* Computing 2nd power */
            r__1 = ga / fhmx;
            au = r__1 * r__1;
/*<             C = TWO / ( SQRT( AS*AS+AU )+SQRT( AT*AT+AU ) ) >*/
            c__ = (float)2. / (sqrt(as * as + au) + sqrt(at * at + au));
/*<             SSMIN = FHMN*C >*/
            *ssmin = fhmn * c__;
/*<             SSMAX = FHMX / C >*/
            *ssmax = fhmx / c__;
/*<          ELSE >*/
        } else {
/*<             AU = FHMX / GA >*/
            au = fhmx / ga;
/*<             IF( AU.EQ.ZERO ) THEN >*/
            if (au == (float)0.) {

/*              Avoid possible harmful underflow if exponent range */
/*              asymmetric (true SSMIN may not underflow even if */
/*              AU underflows) */

/*<                SSMIN = ( FHMN*FHMX ) / GA >*/
                *ssmin = fhmn * fhmx / ga;
/*<                SSMAX = GA >*/
                *ssmax = ga;
/*<             ELSE >*/
            } else {
/*<                AS = ONE + FHMN / FHMX >*/
                as = fhmn / fhmx + (float)1.;
/*<                AT = ( FHMX-FHMN ) / FHMX >*/
                at = (fhmx - fhmn) / fhmx;
/*<    >*/
/* Computing 2nd power */
                r__1 = as * au;
/* Computing 2nd power */
                r__2 = at * au;
                c__ = (float)1. / (sqrt(r__1 * r__1 + (float)1.) + sqrt(r__2 *
                         r__2 + (float)1.));
/*<                SSMIN = ( FHMN*C )*AU >*/
                *ssmin = fhmn * c__ * au;
/*<                SSMIN = SSMIN + SSMIN >*/
                *ssmin += *ssmin;
/*<                SSMAX = GA / ( C+C ) >*/
                *ssmax = ga / (c__ + c__);
/*<             END IF >*/
            }
/*<          END IF >*/
        }
/*<       END IF >*/
    }
/*<       RETURN >*/
    return 0;

/*     End of SLAS2 */

/*<       END >*/
} /* slas2_ */

#ifdef __cplusplus
        }
#endif