1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707
|
/*****************************************************************************/
/* */
/* 888888888 ,o, / 888 */
/* 888 88o88o " o8888o 88o8888o o88888o 888 o88888o */
/* 888 888 888 88b 888 888 888 888 888 d888 88b */
/* 888 888 888 o88^o888 888 888 "88888" 888 8888oo888 */
/* 888 888 888 C888 888 888 888 / 888 q888 */
/* 888 888 888 "88o^888 888 888 Cb 888 "88oooo" */
/* "8oo8D */
/* */
/* A Two-Dimensional Quality Mesh Generator and Delaunay Triangulator. */
/* (triangle.c) */
/* */
/* Version 1.3 */
/* July 19, 1996 */
/* */
/* Copyright 1996 */
/* Jonathan Richard Shewchuk */
/* School of Computer Science */
/* Carnegie Mellon University */
/* 5000 Forbes Avenue */
/* Pittsburgh, Pennsylvania 15213-3891 */
/* jrs@cs.cmu.edu */
/* */
/* This program may be freely redistributed under the condition that the */
/* copyright notices (including this entire header and the copyright */
/* notice printed when the `-h' switch is selected) are not removed, and */
/* no compensation is received. Private, research, and institutional */
/* use is free. You may distribute modified versions of this code UNDER */
/* THE CONDITION THAT THIS CODE AND ANY MODIFICATIONS MADE TO IT IN THE */
/* SAME FILE REMAIN UNDER COPYRIGHT OF THE ORIGINAL AUTHOR, BOTH SOURCE */
/* AND OBJECT CODE ARE MADE FREELY AVAILABLE WITHOUT CHARGE, AND CLEAR */
/* NOTICE IS GIVEN OF THE MODIFICATIONS. Distribution of this code as */
/* part of a commercial system is permissible ONLY BY DIRECT ARRANGEMENT */
/* WITH THE AUTHOR. (If you are not directly supplying this code to a */
/* customer, and you are instead telling them how they can obtain it for */
/* free, then you are not required to make any arrangement with me.) */
/* */
/* Hypertext instructions for Triangle are available on the Web at */
/* */
/* http://www.cs.cmu.edu/~quake/triangle.html */
/* */
/* Some of the references listed below are marked [*]. These are available */
/* for downloading from the Web page */
/* */
/* http://www.cs.cmu.edu/~quake/triangle.research.html */
/* */
/* A paper discussing some aspects of Triangle is available. See Jonathan */
/* Richard Shewchuk, "Triangle: Engineering a 2D Quality Mesh Generator */
/* and Delaunay Triangulator," First Workshop on Applied Computational */
/* Geometry, ACM, May 1996. [*] */
/* */
/* Triangle was created as part of the Archimedes project in the School of */
/* Computer Science at Carnegie Mellon University. Archimedes is a */
/* system for compiling parallel finite element solvers. For further */
/* information, see Anja Feldmann, Omar Ghattas, John R. Gilbert, Gary L. */
/* Miller, David R. O'Hallaron, Eric J. Schwabe, Jonathan R. Shewchuk, */
/* and Shang-Hua Teng, "Automated Parallel Solution of Unstructured PDE */
/* Problems." To appear in Communications of the ACM, we hope. */
/* */
/* The quality mesh generation algorithm is due to Jim Ruppert, "A */
/* Delaunay Refinement Algorithm for Quality 2-Dimensional Mesh */
/* Generation," Journal of Algorithms 18(3):548-585, May 1995. [*] */
/* */
/* My implementation of the divide-and-conquer and incremental Delaunay */
/* triangulation algorithms follows closely the presentation of Guibas */
/* and Stolfi, even though I use a triangle-based data structure instead */
/* of their quad-edge data structure. (In fact, I originally implemented */
/* Triangle using the quad-edge data structure, but switching to a */
/* triangle-based data structure sped Triangle by a factor of two.) The */
/* mesh manipulation primitives and the two aforementioned Delaunay */
/* triangulation algorithms are described by Leonidas J. Guibas and Jorge */
/* Stolfi, "Primitives for the Manipulation of General Subdivisions and */
/* the Computation of Voronoi Diagrams," ACM Transactions on Graphics */
/* 4(2):74-123, April 1985. */
/* */
/* Their O(n log n) divide-and-conquer algorithm is adapted from Der-Tsai */
/* Lee and Bruce J. Schachter, "Two Algorithms for Constructing the */
/* Delaunay Triangulation," International Journal of Computer and */
/* Information Science 9(3):219-242, 1980. The idea to improve the */
/* divide-and-conquer algorithm by alternating between vertical and */
/* horizontal cuts was introduced by Rex A. Dwyer, "A Faster Divide-and- */
/* Conquer Algorithm for Constructing Delaunay Triangulations," */
/* Algorithmica 2(2):137-151, 1987. */
/* */
/* The incremental insertion algorithm was first proposed by C. L. Lawson, */
/* "Software for C1 Surface Interpolation," in Mathematical Software III, */
/* John R. Rice, editor, Academic Press, New York, pp. 161-194, 1977. */
/* For point location, I use the algorithm of Ernst P. Mucke, Isaac */
/* Saias, and Binhai Zhu, "Fast Randomized Point Location Without */
/* Preprocessing in Two- and Three-dimensional Delaunay Triangulations," */
/* Proceedings of the Twelfth Annual Symposium on Computational Geometry, */
/* ACM, May 1996. [*] If I were to randomize the order of point */
/* insertion (I currently don't bother), their result combined with the */
/* result of Leonidas J. Guibas, Donald E. Knuth, and Micha Sharir, */
/* "Randomized Incremental Construction of Delaunay and Voronoi */
/* Diagrams," Algorithmica 7(4):381-413, 1992, would yield an expected */
/* O(n^{4/3}) bound on running time. */
/* */
/* The O(n log n) sweepline Delaunay triangulation algorithm is taken from */
/* Steven Fortune, "A Sweepline Algorithm for Voronoi Diagrams", */
/* Algorithmica 2(2):153-174, 1987. A random sample of edges on the */
/* boundary of the triangulation are maintained in a splay tree for the */
/* purpose of point location. Splay trees are described by Daniel */
/* Dominic Sleator and Robert Endre Tarjan, "Self-Adjusting Binary Search */
/* Trees," Journal of the ACM 32(3):652-686, July 1985. */
/* */
/* The algorithms for exact computation of the signs of determinants are */
/* described in Jonathan Richard Shewchuk, "Adaptive Precision Floating- */
/* Point Arithmetic and Fast Robust Geometric Predicates," Technical */
/* Report CMU-CS-96-140, School of Computer Science, Carnegie Mellon */
/* University, Pittsburgh, Pennsylvania, May 1996. [*] (Submitted to */
/* Discrete & Computational Geometry.) An abbreviated version appears as */
/* Jonathan Richard Shewchuk, "Robust Adaptive Floating-Point Geometric */
/* Predicates," Proceedings of the Twelfth Annual Symposium on Computa- */
/* tional Geometry, ACM, May 1996. [*] Many of the ideas for my exact */
/* arithmetic routines originate with Douglas M. Priest, "Algorithms for */
/* Arbitrary Precision Floating Point Arithmetic," Tenth Symposium on */
/* Computer Arithmetic, 132-143, IEEE Computer Society Press, 1991. [*] */
/* Many of the ideas for the correct evaluation of the signs of */
/* determinants are taken from Steven Fortune and Christopher J. Van Wyk, */
/* "Efficient Exact Arithmetic for Computational Geometry," Proceedings */
/* of the Ninth Annual Symposium on Computational Geometry, ACM, */
/* pp. 163-172, May 1993, and from Steven Fortune, "Numerical Stability */
/* of Algorithms for 2D Delaunay Triangulations," International Journal */
/* of Computational Geometry & Applications 5(1-2):193-213, March-June */
/* 1995. */
/* */
/* For definitions of and results involving Delaunay triangulations, */
/* constrained and conforming versions thereof, and other aspects of */
/* triangular mesh generation, see the excellent survey by Marshall Bern */
/* and David Eppstein, "Mesh Generation and Optimal Triangulation," in */
/* Computing and Euclidean Geometry, Ding-Zhu Du and Frank Hwang, */
/* editors, World Scientific, Singapore, pp. 23-90, 1992. */
/* */
/* The time for incrementally adding PSLG (planar straight line graph) */
/* segments to create a constrained Delaunay triangulation is probably */
/* O(n^2) per segment in the worst case and O(n) per edge in the common */
/* case, where n is the number of triangles that intersect the segment */
/* before it is inserted. This doesn't count point location, which can */
/* be much more expensive. (This note does not apply to conforming */
/* Delaunay triangulations, for which a different method is used to */
/* insert segments.) */
/* */
/* The time for adding segments to a conforming Delaunay triangulation is */
/* not clear, but does not depend upon n alone. In some cases, very */
/* small features (like a point lying next to a segment) can cause a */
/* single segment to be split an arbitrary number of times. Of course, */
/* floating-point precision is a practical barrier to how much this can */
/* happen. */
/* */
/* The time for deleting a point from a Delaunay triangulation is O(n^2) in */
/* the worst case and O(n) in the common case, where n is the degree of */
/* the point being deleted. I could improve this to expected O(n) time */
/* by "inserting" the neighboring vertices in random order, but n is */
/* usually quite small, so it's not worth the bother. (The O(n) time */
/* for random insertion follows from L. Paul Chew, "Building Voronoi */
/* Diagrams for Convex Polygons in Linear Expected Time," Technical */
/* Report PCS-TR90-147, Department of Mathematics and Computer Science, */
/* Dartmouth College, 1990. */
/* */
/* Ruppert's Delaunay refinement algorithm typically generates triangles */
/* at a linear rate (constant time per triangle) after the initial */
/* triangulation is formed. There may be pathological cases where more */
/* time is required, but these never arise in practice. */
/* */
/* The segment intersection formulae are straightforward. If you want to */
/* see them derived, see Franklin Antonio. "Faster Line Segment */
/* Intersection." In Graphics Gems III (David Kirk, editor), pp. 199- */
/* 202. Academic Press, Boston, 1992. */
/* */
/* If you make any improvements to this code, please please please let me */
/* know, so that I may obtain the improvements. Even if you don't change */
/* the code, I'd still love to hear what it's being used for. */
/* */
/* Disclaimer: Neither I nor Carnegie Mellon warrant this code in any way */
/* whatsoever. This code is provided "as-is". Use at your own risk. */
/* */
/* Modifications: Ian Scott 10 Jan 2003 - attempt to quash 64 bit */
/* conversion warnings. Replaced most (unsigned long) with */
/* (ptr_sized_int). */
/* Amitha Perera 13 Jan 2003 - replace ptr_sized_int with */
/* intptr_t */
/* */
/*****************************************************************************/
/* For single precision (which will save some memory and reduce paging), */
/* define the symbol SINGLE by using the -DSINGLE compiler switch or by */
/* writing "#define SINGLE" below. */
/* */
/* For double precision (which will allow you to refine meshes to a smaller */
/* edge length), leave SINGLE undefined. */
/* */
/* Double precision uses more memory, but improves the resolution of the */
/* meshes you can generate with Triangle. It also reduces the likelihood */
/* of a floating exception due to overflow. Finally, it is much faster */
/* than single precision on 64-bit architectures like the DEC Alpha. I */
/* recommend double precision unless you want to generate a mesh for which */
/* you do not have enough memory. */
/* #define SINGLE */
/* If yours is not a Unix system, define the NO_TIMER compiler switch to */
/* remove the Unix-specific timing code. */
#define NO_TIMER
/* To insert lots of self-checks for internal errors, define the SELF_CHECK */
/* symbol. This will slow down the program significantly. It is best to */
/* define the symbol using the -DSELF_CHECK compiler switch, but you could */
/* write "#define SELF_CHECK" below. If you are modifying this code, I */
/* recommend you turn self-checks on. */
/* #define SELF_CHECK */
/* To compile Triangle as a callable object library (triangle.o), define the */
/* TRILIBRARY symbol. Read the file triangle.h for details on how to call */
/* the procedure triangulate() that results. */
#define TRILIBRARY
/* It is possible to generate a smaller version of Triangle using one or */
/* both of the following symbols. Define the REDUCED symbol to eliminate */
/* all features that are primarily of research interest; specifically, the */
/* -i, -F, -s, and -C switches. Define the CDT_ONLY symbol to eliminate */
/* all meshing algorithms above and beyond constrained Delaunay */
/* triangulation; specifically, the -r, -q, -a, -S, and -s switches. */
/* These reductions are most likely to be useful when generating an object */
/* library (triangle.o) by defining the TRILIBRARY symbol. */
/* #define REDUCED */
/* #define CDT_ONLY */
/* On some machines, the exact arithmetic routines might be defeated by the */
/* use of internal extended precision floating-point registers. Sometimes */
/* this problem can be fixed by defining certain values to be volatile, */
/* thus forcing them to be stored to memory and rounded off. This isn't */
/* a great solution, though, as it slows Triangle down. */
/* */
/* To try this out, write "#define INEXACT volatile" below. Normally, */
/* however, INEXACT should be defined to be nothing. ("#define INEXACT".) */
#define INEXACT /* Nothing */
/* #define INEXACT volatile */
/* Maximum number of characters in a file name (including the null). */
#define FILENAMESIZE 1024
/* Maximum number of characters in a line read from a file (including the */
/* null). */
#define INPUTLINESIZE 4096
/* For efficiency, a variety of data structures are allocated in bulk. The */
/* following constants determine how many of each structure is allocated */
/* at once. */
#define TRIPERBLOCK 4092 /* Number of triangles allocated at once. */
#define SHELLEPERBLOCK 508 /* Number of shell edges allocated at once. */
#define POINTPERBLOCK 4092 /* Number of points allocated at once. */
#define VIRUSPERBLOCK 1020 /* Number of virus triangles allocated at once. */
/* Number of encroached segments allocated at once. */
#define BADSEGMENTPERBLOCK 252
/* Number of skinny triangles allocated at once. */
#define BADTRIPERBLOCK 4092
/* Number of splay tree nodes allocated at once. */
#define SPLAYNODEPERBLOCK 508
/* The point marker DEADPOINT is an arbitrary number chosen large enough to */
/* (hopefully) not conflict with user boundary markers. Make sure that it */
/* is small enough to fit into your machine's integer size. */
#define DEADPOINT -1073741824
/* The next line is used to outsmart some very stupid compilers. If your */
/* compiler is smarter, feel free to replace the "int" with "void". */
/* Not that it matters. */
#define VOID int
/* Two constants for algorithms based on random sampling. Both constants */
/* have been chosen empirically to optimize their respective algorithms. */
/* Used for the point location scheme of Mucke, Saias, and Zhu, to decide */
/* how large a random sample of triangles to inspect. */
#define SAMPLEFACTOR 11
/* Used in Fortune's sweepline Delaunay algorithm to determine what fraction */
/* of boundary edges should be maintained in the splay tree for point */
/* location on the front. */
#define SAMPLERATE 10
/* A number that speaks for itself, every kissable digit. */
#define PI 3.141592653589793238462643383279502884197169399375105820974944592308
/* Another fave. */
#define SQUAREROOTTWO 1.4142135623730950488016887242096980785696718753769480732
/* And here's one for those of you who are intimidated by math. */
#define ONETHIRD 0.333333333333333333333333333333333333333333333333333333333333
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
/* Borland compiler provides a "poly" function in math.h. This
conflicts with the variable name used below. Move the symbol out
of the way. */
#ifdef __BORLANDC__
# define poly borland_poly
# include <math.h>
# undef poly
#else
# include <math.h>
#endif
#ifndef NO_TIMER
#include <sys/time.h>
#endif /* NO_TIMER */
#ifdef TRILIBRARY
#include "triangle.h"
#endif /* TRILIBRARY */
/* The following obscenity seems to be necessary to ensure that this program */
/* will port to Dec Alphas running OSF/1, because their stdio.h file commits */
/* the unpardonable sin of including stdlib.h. Hence, malloc(), free(), and */
/* exit() may or may not already be defined at this point. I declare these */
/* functions explicitly because some non-ANSI C compilers lack stdlib.h. */
#ifndef _MSC_VER
#ifndef _STDLIB_H_
extern void *malloc();
extern void free();
extern void exit();
extern double strtod();
extern long strtol();
#endif /* _STDLIB_H_ */
#else
# include <stdlib.h>
#endif
/* A few forward declarations. */
struct memorypool;
void poolrestart(struct memorypool *pool);
#ifndef TRILIBRARY
char *readline();
char *findfield();
#endif /* not TRILIBRARY */
/* Labels that signify whether a record consists primarily of pointers or of */
/* floating-point words. Used to make decisions about data alignment. */
enum wordtype {POINTER, FLOATINGPOINT};
/* Labels that signify the result of point location. The result of a */
/* search indicates that the point falls in the interior of a triangle, on */
/* an edge, on a vertex, or outside the mesh. */
enum locateresult {INTRIANGLE, ONEDGE, ONVERTEX, OUTSIDE};
/* Labels that signify the result of site insertion. The result indicates */
/* that the point was inserted with complete success, was inserted but */
/* encroaches on a segment, was not inserted because it lies on a segment, */
/* or was not inserted because another point occupies the same location. */
enum insertsiteresult {SUCCESSFULPOINT, ENCROACHINGPOINT, VIOLATINGPOINT,
DUPLICATEPOINT};
/* Labels that signify the result of direction finding. The result */
/* indicates that a segment connecting the two query points falls within */
/* the direction triangle, along the left edge of the direction triangle, */
/* or along the right edge of the direction triangle. */
enum finddirectionresult {WITHIN, LEFTCOLLINEAR, RIGHTCOLLINEAR};
/* Labels that signify the result of the circumcenter computation routine. */
/* The return value indicates which edge of the triangle is shortest. */
enum circumcenterresult {OPPOSITEORG, OPPOSITEDEST, OPPOSITEAPEX};
/*****************************************************************************/
/* */
/* The basic mesh data structures */
/* */
/* There are three: points, triangles, and shell edges (abbreviated */
/* `shelle'). These three data structures, linked by pointers, comprise */
/* the mesh. A point simply represents a point in space and its properties.*/
/* A triangle is a triangle. A shell edge is a special data structure used */
/* to represent impenetrable segments in the mesh (including the outer */
/* boundary, boundaries of holes, and internal boundaries separating two */
/* triangulated regions). Shell edges represent boundaries defined by the */
/* user that triangles may not lie across. */
/* */
/* A triangle consists of a list of three vertices, a list of three */
/* adjoining triangles, a list of three adjoining shell edges (when shell */
/* edges are used), an arbitrary number of optional user-defined floating- */
/* point attributes, and an optional area constraint. The latter is an */
/* upper bound on the permissible area of each triangle in a region, used */
/* for mesh refinement. */
/* */
/* For a triangle on a boundary of the mesh, some or all of the neighboring */
/* triangles may not be present. For a triangle in the interior of the */
/* mesh, often no neighboring shell edges are present. Such absent */
/* triangles and shell edges are never represented by NULL pointers; they */
/* are represented by two special records: `dummytri', the triangle that */
/* fills "outer space", and `dummysh', the omnipresent shell edge. */
/* `dummytri' and `dummysh' are used for several reasons; for instance, */
/* they can be dereferenced and their contents examined without causing the */
/* memory protection exception that would occur if NULL were dereferenced. */
/* */
/* However, it is important to understand that a triangle includes other */
/* information as well. The pointers to adjoining vertices, triangles, and */
/* shell edges are ordered in a way that indicates their geometric relation */
/* to each other. Furthermore, each of these pointers contains orientation */
/* information. Each pointer to an adjoining triangle indicates which face */
/* of that triangle is contacted. Similarly, each pointer to an adjoining */
/* shell edge indicates which side of that shell edge is contacted, and how */
/* the shell edge is oriented relative to the triangle. */
/* */
/* Shell edges are found abutting edges of triangles; either sandwiched */
/* between two triangles, or resting against one triangle on an exterior */
/* boundary or hole boundary. */
/* */
/* A shell edge consists of a list of two vertices, a list of two */
/* adjoining shell edges, and a list of two adjoining triangles. One of */
/* the two adjoining triangles may not be present (though there should */
/* always be one), and neighboring shell edges might not be present. */
/* Shell edges also store a user-defined integer "boundary marker". */
/* Typically, this integer is used to indicate what sort of boundary */
/* conditions are to be applied at that location in a finite element */
/* simulation. */
/* */
/* Like triangles, shell edges maintain information about the relative */
/* orientation of neighboring objects. */
/* */
/* Points are relatively simple. A point is a list of floating point */
/* numbers, starting with the x, and y coordinates, followed by an */
/* arbitrary number of optional user-defined floating-point attributes, */
/* followed by an integer boundary marker. During the segment insertion */
/* phase, there is also a pointer from each point to a triangle that may */
/* contain it. Each pointer is not always correct, but when one is, it */
/* speeds up segment insertion. These pointers are assigned values once */
/* at the beginning of the segment insertion phase, and are not used or */
/* updated at any other time. Edge swapping during segment insertion will */
/* render some of them incorrect. Hence, don't rely upon them for */
/* anything. For the most part, points do not have any information about */
/* what triangles or shell edges they are linked to. */
/* */
/*****************************************************************************/
/*****************************************************************************/
/* */
/* Handles */
/* */
/* The oriented triangle (`triedge') and oriented shell edge (`edge') data */
/* structures defined below do not themselves store any part of the mesh. */
/* The mesh itself is made of `triangle's, `shelle's, and `point's. */
/* */
/* Oriented triangles and oriented shell edges will usually be referred to */
/* as "handles". A handle is essentially a pointer into the mesh; it */
/* allows you to "hold" one particular part of the mesh. Handles are used */
/* to specify the regions in which one is traversing and modifying the mesh.*/
/* A single `triangle' may be held by many handles, or none at all. (The */
/* latter case is not a memory leak, because the triangle is still */
/* connected to other triangles in the mesh.) */
/* */
/* A `triedge' is a handle that holds a triangle. It holds a specific side */
/* of the triangle. An `edge' is a handle that holds a shell edge. It */
/* holds either the left or right side of the edge. */
/* */
/* Navigation about the mesh is accomplished through a set of mesh */
/* manipulation primitives, further below. Many of these primitives take */
/* a handle and produce a new handle that holds the mesh near the first */
/* handle. Other primitives take two handles and glue the corresponding */
/* parts of the mesh together. The exact position of the handles is */
/* important. For instance, when two triangles are glued together by the */
/* bond() primitive, they are glued by the sides on which the handles lie. */
/* */
/* Because points have no information about which triangles they are */
/* attached to, I commonly represent a point by use of a handle whose */
/* origin is the point. A single handle can simultaneously represent a */
/* triangle, an edge, and a point. */
/* */
/*****************************************************************************/
/* The triangle data structure. Each triangle contains three pointers to */
/* adjoining triangles, plus three pointers to vertex points, plus three */
/* pointers to shell edges (defined below; these pointers are usually */
/* `dummysh'). It may or may not also contain user-defined attributes */
/* and/or a floating-point "area constraint". It may also contain extra */
/* pointers for nodes, when the user asks for high-order elements. */
/* Because the size and structure of a `triangle' is not decided until */
/* runtime, I haven't simply defined the type `triangle' to be a struct. */
typedef REAL **triangle; /* Really: typedef triangle *triangle */
/* An oriented triangle: includes a pointer to a triangle and orientation. */
/* The orientation denotes an edge of the triangle. Hence, there are */
/* three possible orientations. By convention, each edge is always */
/* directed to point counterclockwise about the corresponding triangle. */
struct triedge {
triangle *tri;
int orient; /* Ranges from 0 to 2. */
};
/* The shell data structure. Each shell edge contains two pointers to */
/* adjoining shell edges, plus two pointers to vertex points, plus two */
/* pointers to adjoining triangles, plus one shell marker. */
typedef REAL **shelle; /* Really: typedef shelle *shelle */
/* An oriented shell edge: includes a pointer to a shell edge and an */
/* orientation. The orientation denotes a side of the edge. Hence, there */
/* are two possible orientations. By convention, the edge is always */
/* directed so that the "side" denoted is the right side of the edge. */
struct edge {
shelle *sh;
int shorient; /* Ranges from 0 to 1. */
};
/* The point data structure. Each point is actually an array of REALs. */
/* The number of REALs is unknown until runtime. An integer boundary */
/* marker, and sometimes a pointer to a triangle, is appended after the */
/* REALs. */
typedef REAL *point;
/* A queue used to store encroached segments. Each segment's vertices are */
/* stored so that one can check whether a segment is still the same. */
struct badsegment {
struct edge encsegment; /* An encroached segment. */
point segorg, segdest; /* The two vertices. */
struct badsegment *nextsegment; /* Pointer to next encroached segment. */
};
/* A queue used to store bad triangles. The key is the square of the cosine */
/* of the smallest angle of the triangle. Each triangle's vertices are */
/* stored so that one can check whether a triangle is still the same. */
struct badface {
struct triedge badfacetri; /* A bad triangle. */
REAL key; /* cos^2 of smallest (apical) angle. */
point faceorg, facedest, faceapex; /* The three vertices. */
struct badface *nextface; /* Pointer to next bad triangle. */
};
/* A node in a heap used to store events for the sweepline Delaunay */
/* algorithm. Nodes do not point directly to their parents or children in */
/* the heap. Instead, each node knows its position in the heap, and can */
/* look up its parent and children in a separate array. The `eventptr' */
/* points either to a `point' or to a triangle (in encoded format, so that */
/* an orientation is included). In the latter case, the origin of the */
/* oriented triangle is the apex of a "circle event" of the sweepline */
/* algorithm. To distinguish site events from circle events, all circle */
/* events are given an invalid (smaller than `xmin') x-coordinate `xkey'. */
struct event {
REAL xkey, ykey; /* Coordinates of the event. */
VOID *eventptr; /* Can be a point or the location of a circle event. */
int heapposition; /* Marks this event's position in the heap. */
};
/* A node in the splay tree. Each node holds an oriented ghost triangle */
/* that represents a boundary edge of the growing triangulation. When a */
/* circle event covers two boundary edges with a triangle, so that they */
/* are no longer boundary edges, those edges are not immediately deleted */
/* from the tree; rather, they are lazily deleted when they are next */
/* encountered. (Since only a random sample of boundary edges are kept */
/* in the tree, lazy deletion is faster.) `keydest' is used to verify */
/* that a triangle is still the same as when it entered the splay tree; if */
/* it has been rotated (due to a circle event), it no longer represents a */
/* boundary edge and should be deleted. */
struct splaynode {
struct triedge keyedge; /* Lprev of an edge on the front. */
point keydest; /* Used to verify that splay node is still live. */
struct splaynode *lchild, *rchild; /* Children in splay tree. */
};
/* A type used to allocate memory. firstblock is the first block of items. */
/* nowblock is the block from which items are currently being allocated. */
/* nextitem points to the next slab of free memory for an item. */
/* deaditemstack is the head of a linked list (stack) of deallocated items */
/* that can be recycled. unallocateditems is the number of items that */
/* remain to be allocated from nowblock. */
/* */
/* Traversal is the process of walking through the entire list of items, and */
/* is separate from allocation. Note that a traversal will visit items on */
/* the "deaditemstack" stack as well as live items. pathblock points to */
/* the block currently being traversed. pathitem points to the next item */
/* to be traversed. pathitemsleft is the number of items that remain to */
/* be traversed in pathblock. */
/* */
/* itemwordtype is set to POINTER or FLOATINGPOINT, and is used to suggest */
/* what sort of word the record is primarily made up of. alignbytes */
/* determines how new records should be aligned in memory. itembytes and */
/* itemwords are the length of a record in bytes (after rounding up) and */
/* words. itemsperblock is the number of items allocated at once in a */
/* single block. items is the number of currently allocated items. */
/* maxitems is the maximum number of items that have been allocated at */
/* once; it is the current number of items plus the number of records kept */
/* on deaditemstack. */
struct memorypool {
VOID **firstblock, **nowblock;
VOID *nextitem;
VOID *deaditemstack;
VOID **pathblock;
VOID *pathitem;
enum wordtype itemwordtype;
int alignbytes;
int itembytes, itemwords;
int itemsperblock;
long items, maxitems;
int unallocateditems;
int pathitemsleft;
};
/* Variables used to allocate memory for triangles, shell edges, points, */
/* viri (triangles being eaten), bad (encroached) segments, bad (skinny */
/* or too large) triangles, and splay tree nodes. */
static struct memorypool triangles;
static struct memorypool shelles;
static struct memorypool points;
static struct memorypool viri;
static struct memorypool badsegments;
static struct memorypool badtriangles;
static struct memorypool splaynodes;
/* Variables that maintain the bad triangle queues. The tails are pointers */
/* to the pointers that have to be filled in to enqueue an item. */
static struct badface *queuefront[64];
static struct badface **queuetail[64];
static REAL xmin, xmax, ymin, ymax; /* x and y bounds. */
static REAL xminextreme; /* Nonexistent x value used as a flag in sweepline. */
static int inpoints; /* Number of input points. */
static int inelements; /* Number of input triangles. */
static int insegments; /* Number of input segments. */
static int holes; /* Number of input holes. */
static int regions; /* Number of input regions. */
static long edges; /* Number of output edges. */
static int mesh_dim; /* Dimension (ought to be 2). */
static int nextras; /* Number of attributes per point. */
static int eextras; /* Number of attributes per triangle. */
static long hullsize; /* Number of edges of convex hull. */
static int triwords; /* Total words per triangle. */
static int shwords; /* Total words per shell edge. */
static int pointmarkindex; /* Index to find boundary marker of a point. */
static int point2triindex; /* Index to find a triangle adjacent to a point. */
static int highorderindex;/* Index to find extra nodes for high-order elements. */
static int elemattribindex; /* Index to find attributes of a triangle. */
static int areaboundindex; /* Index to find area bound of a triangle. */
static int checksegments; /* Are there segments in the triangulation yet? */
static int readnodefile; /* Has a .node file been read? */
static long samples; /* Number of random samples for point location. */
static unsigned long randomseed; /* Current random number seed. */
static REAL splitter;/* Used to split REAL factors for exact multiplication. */
static REAL epsilon; /* Floating-point machine epsilon. */
static REAL resulterrbound;
static REAL ccwerrboundA, ccwerrboundB, ccwerrboundC;
static REAL iccerrboundA, iccerrboundB, iccerrboundC;
static long incirclecount; /* Number of incircle tests performed. */
static long counterclockcount;/* Number of counterclockwise tests performed. */
static long hyperbolacount; /* Number of right-of-hyperbola tests performed. */
static long circumcentercount;/* Number of circumcenter calculations performed. */
static long circletopcount; /* Number of circle top calculations performed. */
/* Switches for the triangulator. */
/* poly: -p switch. refine: -r switch. */
/* quality: -q switch. */
/* minangle: minimum angle bound, specified after -q switch. */
/* goodangle: cosine squared of minangle. */
/* vararea: -a switch without number. */
/* fixedarea: -a switch with number. */
/* maxarea: maximum area bound, specified after -a switch. */
/* regionattrib: -A switch. convex: -c switch. */
/* firstnumber: inverse of -z switch. All items are numbered starting */
/* from firstnumber. */
/* edgesout: -e switch. voronoi: -v switch. */
/* neighbors: -n switch. geomview: -g switch. */
/* nobound: -B switch. nopolywritten: -P switch. */
/* nonodewritten: -N switch. noelewritten: -E switch. */
/* noiterationnum: -I switch. noholes: -O switch. */
/* noexact: -X switch. */
/* order: element order, specified after -o switch. */
/* nobisect: count of how often -Y switch is selected. */
/* steiner: maximum number of Steiner points, specified after -S switch. */
/* steinerleft: number of Steiner points not yet used. */
/* incremental: -i switch. sweepline: -F switch. */
/* dwyer: inverse of -l switch. */
/* splitseg: -s switch. */
/* docheck: -C switch. */
/* quiet: -Q switch. verbose: count of how often -V switch is selected. */
/* useshelles: -p, -r, -q, or -c switch; determines whether shell edges */
/* are used at all. */
/* */
/* Read the instructions to find out the meaning of these switches. */
static int poly, refine, quality, vararea, fixedarea, regionattrib, convex;
static int firstnumber;
static int edgesout, voronoi, neighbors, geomview;
static int nobound, nopolywritten, nonodewritten, noelewritten, noiterationnum;
static int noholes, noexact;
static int incremental, sweepline, dwyer;
static int splitseg;
static int docheck;
static int quiet, verbose;
static int useshelles;
static int order;
static int nobisect;
static int steiner, steinerleft;
static REAL minangle, goodangle;
static REAL maxarea;
/* Variables for file names. */
#ifndef TRILIBRARY
char innodefilename[FILENAMESIZE];
char inelefilename[FILENAMESIZE];
char inpolyfilename[FILENAMESIZE];
char areafilename[FILENAMESIZE];
char outnodefilename[FILENAMESIZE];
char outelefilename[FILENAMESIZE];
char outpolyfilename[FILENAMESIZE];
char edgefilename[FILENAMESIZE];
char vnodefilename[FILENAMESIZE];
char vedgefilename[FILENAMESIZE];
char neighborfilename[FILENAMESIZE];
char offfilename[FILENAMESIZE];
#endif /* not TRILIBRARY */
/* Triangular bounding box points. */
static point infpoint1, infpoint2, infpoint3;
/* Pointer to the `triangle' that occupies all of "outer space". */
static triangle *dummytri;
static triangle *dummytribase; /* Keep base address so we can free() it later. */
/* Pointer to the omnipresent shell edge. Referenced by any triangle or */
/* shell edge that isn't really connected to a shell edge at that */
/* location. */
static shelle *dummysh;
static shelle *dummyshbase; /* Keep base address so we can free() it later. */
/* Pointer to a recently visited triangle. Improves point location if */
/* proximate points are inserted sequentially. */
static struct triedge recenttri;
/* Deal with point types that are not unsigned long */
#ifdef _MSC_VER
# if _MSC_VER <= 1200
typedef unsigned long intptr_t;
# else
# include <stddef.h>
# include <stdlib.h> /* for malloc and friends */
# endif
#else
# if defined(__alpha) /* there is no inttypes.h here */
typedef unsigned long intptr_t;
# elif defined(__CYGWIN__)
# include <sys/types.h> /* for intptr_t on Cygwin */
# elif defined(__BORLANDC__)
# if __BORLANDC__ < 0x0560
typedef unsigned long intptr_t;
# else
# include <stdint.h> /* for intptr_t on Borland 5.6. */
# endif
# else
# include <inttypes.h> /* for intptr_t on e.g. SGI, Linux, Solaris */
# endif
#endif
/*****************************************************************************/
/* */
/* Mesh manipulation primitives. Each triangle contains three pointers to */
/* other triangles, with orientations. Each pointer points not to the */
/* first byte of a triangle, but to one of the first three bytes of a */
/* triangle. It is necessary to extract both the triangle itself and the */
/* orientation. To save memory, I keep both pieces of information in one */
/* pointer. To make this possible, I assume that all triangles are aligned */
/* to four-byte boundaries. The `decode' routine below decodes a pointer, */
/* extracting an orientation (in the range 0 to 2) and a pointer to the */
/* beginning of a triangle. The `encode' routine compresses a pointer to a */
/* triangle and an orientation into a single pointer. My assumptions that */
/* triangles are four-byte-aligned and that the `unsigned long' type is */
/* long enough to hold a pointer are two of the few kludges in this program.*/
/* */
/* Shell edges are manipulated similarly. A pointer to a shell edge */
/* carries both an address and an orientation in the range 0 to 1. */
/* */
/* The other primitives take an oriented triangle or oriented shell edge, */
/* and return an oriented triangle or oriented shell edge or point; or they */
/* change the connections in the data structure. */
/* */
/*****************************************************************************/
/********* Mesh manipulation primitives begin here *********/
/** **/
/** **/
/* Fast lookup arrays to speed some of the mesh manipulation primitives. */
static int plus1mod3[3] = {1, 2, 0};
static int minus1mod3[3] = {2, 0, 1};
/********* Primitives for triangles *********/
/* */
/* */
/* decode() converts a pointer to an oriented triangle. The orientation is */
/* extracted from the two least significant bits of the pointer. */
#define decode(ptr, triedge) \
(triedge).orient = (int) ((intptr_t) (ptr) & (intptr_t) 3l); \
(triedge).tri = (triangle *) \
((intptr_t) (ptr) ^ (intptr_t) (triedge).orient)
/* encode() compresses an oriented triangle into a single pointer. It */
/* relies on the assumption that all triangles are aligned to four-byte */
/* boundaries, so the two least significant bits of (triedge).tri are zero.*/
#define encode(triedge) \
(triangle) ((intptr_t) (triedge).tri | (intptr_t) (triedge).orient)
/* The following edge manipulation primitives are all described by Guibas */
/* and Stolfi. However, they use an edge-based data structure, whereas I */
/* am using a triangle-based data structure. */
/* sym() finds the abutting triangle, on the same edge. Note that the */
/* edge direction is necessarily reversed, because triangle/edge handles */
/* are always directed counterclockwise around the triangle. */
#define sym(triedge1, triedge2) \
ptr = (triedge1).tri[(triedge1).orient]; \
decode(ptr, triedge2);
#define symself(triedge) \
ptr = (triedge).tri[(triedge).orient]; \
decode(ptr, triedge);
/* lnext() finds the next edge (counterclockwise) of a triangle. */
#define lnext(triedge1, triedge2) \
(triedge2).tri = (triedge1).tri; \
(triedge2).orient = plus1mod3[(triedge1).orient]
#define lnextself(triedge) \
(triedge).orient = plus1mod3[(triedge).orient]
/* lprev() finds the previous edge (clockwise) of a triangle. */
#define lprev(triedge1, triedge2) \
(triedge2).tri = (triedge1).tri; \
(triedge2).orient = minus1mod3[(triedge1).orient]
#define lprevself(triedge) \
(triedge).orient = minus1mod3[(triedge).orient]
/* onext() spins counterclockwise around a point; that is, it finds the next */
/* edge with the same origin in the counterclockwise direction. This edge */
/* will be part of a different triangle. */
#define onext(triedge1, triedge2) \
lprev(triedge1, triedge2); \
symself(triedge2);
#define onextself(triedge) \
lprevself(triedge); \
symself(triedge);
/* oprev() spins clockwise around a point; that is, it finds the next edge */
/* with the same origin in the clockwise direction. This edge will be */
/* part of a different triangle. */
#define oprev(triedge1, triedge2) \
sym(triedge1, triedge2); \
lnextself(triedge2);
#define oprevself(triedge) \
symself(triedge); \
lnextself(triedge);
/* dnext() spins counterclockwise around a point; that is, it finds the next */
/* edge with the same destination in the counterclockwise direction. This */
/* edge will be part of a different triangle. */
#define dnext(triedge1, triedge2) \
sym(triedge1, triedge2); \
lprevself(triedge2);
#define dnextself(triedge) \
symself(triedge); \
lprevself(triedge);
/* dprev() spins clockwise around a point; that is, it finds the next edge */
/* with the same destination in the clockwise direction. This edge will */
/* be part of a different triangle. */
#define dprev(triedge1, triedge2) \
lnext(triedge1, triedge2); \
symself(triedge2);
#define dprevself(triedge) \
lnextself(triedge); \
symself(triedge);
/* rnext() moves one edge counterclockwise about the adjacent triangle. */
/* (It's best understood by reading Guibas and Stolfi. It involves */
/* changing triangles twice.) */
#define rnext(triedge1, triedge2) \
sym(triedge1, triedge2); \
lnextself(triedge2); \
symself(triedge2);
#define rnextself(triedge) \
symself(triedge); \
lnextself(triedge); \
symself(triedge);
/* rnext() moves one edge clockwise about the adjacent triangle. */
/* (It's best understood by reading Guibas and Stolfi. It involves */
/* changing triangles twice.) */
#define rprev(triedge1, triedge2) \
sym(triedge1, triedge2); \
lprevself(triedge2); \
symself(triedge2);
#define rprevself(triedge) \
symself(triedge); \
lprevself(triedge); \
symself(triedge);
/* These primitives determine or set the origin, destination, or apex of a */
/* triangle. */
#define org(triedge, pointptr) \
pointptr = (point) (triedge).tri[plus1mod3[(triedge).orient] + 3]
#define dest(triedge, pointptr) \
pointptr = (point) (triedge).tri[minus1mod3[(triedge).orient] + 3]
#define apex(triedge, pointptr) \
pointptr = (point) (triedge).tri[(triedge).orient + 3]
#define setorg(triedge, pointptr) \
(triedge).tri[plus1mod3[(triedge).orient] + 3] = (triangle) pointptr
#define setdest(triedge, pointptr) \
(triedge).tri[minus1mod3[(triedge).orient] + 3] = (triangle) pointptr
#define setapex(triedge, pointptr) \
(triedge).tri[(triedge).orient + 3] = (triangle) pointptr
#define setvertices2null(triedge) \
(triedge).tri[3] = (triangle) NULL; \
(triedge).tri[4] = (triangle) NULL; \
(triedge).tri[5] = (triangle) NULL;
/* Bond two triangles together. */
#define bond(triedge1, triedge2) \
(triedge1).tri[(triedge1).orient] = encode(triedge2); \
(triedge2).tri[(triedge2).orient] = encode(triedge1)
/* Dissolve a bond (from one side). Note that the other triangle will still */
/* think it's connected to this triangle. Usually, however, the other */
/* triangle is being deleted entirely, or bonded to another triangle, so */
/* it doesn't matter. */
#define dissolve(triedge) \
(triedge).tri[(triedge).orient] = (triangle) dummytri
/* Copy a triangle/edge handle. */
#define triedgecopy(triedge1, triedge2) \
(triedge2).tri = (triedge1).tri; \
(triedge2).orient = (triedge1).orient
/* Test for equality of triangle/edge handles. */
#define triedgeequal(triedge1, triedge2) \
(((triedge1).tri == (triedge2).tri) && \
((triedge1).orient == (triedge2).orient))
/* Primitives to infect or cure a triangle with the virus. These rely on */
/* the assumption that all shell edges are aligned to four-byte boundaries.*/
#define infect(triedge) \
(triedge).tri[6] = (triangle) \
((intptr_t) (triedge).tri[6] | (intptr_t) 2l)
#define uninfect(triedge) \
(triedge).tri[6] = (triangle) \
((intptr_t) (triedge).tri[6] & ~ (intptr_t) 2l)
/* Test a triangle for viral infection. */
#define infected(triedge) \
(((intptr_t) (triedge).tri[6] & (intptr_t) 2l) != 0)
/* Check or set a triangle's attributes. */
#define elemattribute(triedge, attnum) \
((REAL *) (triedge).tri)[elemattribindex + (attnum)]
#define setelemattribute(triedge, attnum, value) \
((REAL *) (triedge).tri)[elemattribindex + (attnum)] = value
/* Check or set a triangle's maximum area bound. */
#define areabound(triedge) ((REAL *) (triedge).tri)[areaboundindex]
#define setareabound(triedge, value) \
((REAL *) (triedge).tri)[areaboundindex] = value
/********* Primitives for shell edges *********/
/* */
/* */
/* sdecode() converts a pointer to an oriented shell edge. The orientation */
/* is extracted from the least significant bit of the pointer. The two */
/* least significant bits (one for orientation, one for viral infection) */
/* are masked out to produce the real pointer. */
#define sdecode(sptr, edge) \
(edge).shorient = (int) ((intptr_t) (sptr) & (intptr_t) 1l); \
(edge).sh = (shelle *) \
((intptr_t) (sptr) & ~ (intptr_t) 3l)
/* sencode() compresses an oriented shell edge into a single pointer. It */
/* relies on the assumption that all shell edges are aligned to two-byte */
/* boundaries, so the least significant bit of (edge).sh is zero. */
#define sencode(edge) \
(shelle) ((intptr_t) (edge).sh | (intptr_t) (edge).shorient)
/* ssym() toggles the orientation of a shell edge. */
#define ssym(edge1, edge2) \
(edge2).sh = (edge1).sh; \
(edge2).shorient = 1 - (edge1).shorient
#define ssymself(edge) \
(edge).shorient = 1 - (edge).shorient
/* spivot() finds the other shell edge (from the same segment) that shares */
/* the same origin. */
#define spivot(edge1, edge2) \
sptr = (edge1).sh[(edge1).shorient]; \
sdecode(sptr, edge2)
#define spivotself(edge) \
sptr = (edge).sh[(edge).shorient]; \
sdecode(sptr, edge)
/* snext() finds the next shell edge (from the same segment) in sequence; */
/* one whose origin is the input shell edge's destination. */
#define snext(edge1, edge2) \
sptr = (edge1).sh[1 - (edge1).shorient]; \
sdecode(sptr, edge2)
#define snextself(edge) \
sptr = (edge).sh[1 - (edge).shorient]; \
sdecode(sptr, edge)
/* These primitives determine or set the origin or destination of a shell */
/* edge. */
#define sorg(edge, pointptr) \
pointptr = (point) (edge).sh[2 + (edge).shorient]
#define sdest(edge, pointptr) \
pointptr = (point) (edge).sh[3 - (edge).shorient]
#define setsorg(edge, pointptr) \
(edge).sh[2 + (edge).shorient] = (shelle) pointptr
#define setsdest(edge, pointptr) \
(edge).sh[3 - (edge).shorient] = (shelle) pointptr
/* These primitives read or set a shell marker. Shell markers are used to */
/* hold user boundary information. */
#define mark(edge) (* (int *) ((edge).sh + 6))
#define setmark(edge, value) \
* (int *) ((edge).sh + 6) = value
/* Bond two shell edges together. */
#define sbond(edge1, edge2) \
(edge1).sh[(edge1).shorient] = sencode(edge2); \
(edge2).sh[(edge2).shorient] = sencode(edge1)
/* Dissolve a shell edge bond (from one side). Note that the other shell */
/* edge will still think it's connected to this shell edge. */
#define sdissolve(edge) \
(edge).sh[(edge).shorient] = (shelle) dummysh
/* Copy a shell edge. */
#define shellecopy(edge1, edge2) \
(edge2).sh = (edge1).sh; \
(edge2).shorient = (edge1).shorient
/* Test for equality of shell edges. */
#define shelleequal(edge1, edge2) \
(((edge1).sh == (edge2).sh) && \
((edge1).shorient == (edge2).shorient))
/********* Primitives for interacting triangles and shell edges *********/
/* */
/* */
/* tspivot() finds a shell edge abutting a triangle. */
#define tspivot(triedge, edge) \
sptr = (shelle) (triedge).tri[6 + (triedge).orient]; \
sdecode(sptr, edge)
/* stpivot() finds a triangle abutting a shell edge. It requires that the */
/* variable `ptr' of type `triangle' be defined. */
#define stpivot(edge, triedge) \
ptr = (triangle) (edge).sh[4 + (edge).shorient]; \
decode(ptr, triedge)
/* Bond a triangle to a shell edge. */
#define tsbond(triedge, edge) \
(triedge).tri[6 + (triedge).orient] = (triangle) sencode(edge); \
(edge).sh[4 + (edge).shorient] = (shelle) encode(triedge)
/* Dissolve a bond (from the triangle side). */
#define tsdissolve(triedge) \
(triedge).tri[6 + (triedge).orient] = (triangle) dummysh
/* Dissolve a bond (from the shell edge side). */
#define stdissolve(edge) \
(edge).sh[4 + (edge).shorient] = (shelle) dummytri
/********* Primitives for points *********/
/* */
/* */
#define pointmark(pt) ((int *) (pt))[pointmarkindex]
#define setpointmark(pt, value) \
((int *) (pt))[pointmarkindex] = value
#define point2tri(pt) ((triangle *) (pt))[point2triindex]
#define setpoint2tri(pt, value) \
((triangle *) (pt))[point2triindex] = value
/** **/
/** **/
/********* Mesh manipulation primitives end here *********/
/********* User interaction routines begin here *********/
/** **/
/** **/
/*****************************************************************************/
/* */
/* syntax() Print list of command line switches. */
/* */
/*****************************************************************************/
#ifndef TRILIBRARY
void syntax(void)
{
#ifdef CDT_ONLY
#ifdef REDUCED
printf("triangle [-pAcevngBPNEIOXzo_lQVh] input_file\n");
#else /* not REDUCED */
printf("triangle [-pAcevngBPNEIOXzo_iFlCQVh] input_file\n");
#endif /* not REDUCED */
#else /* not CDT_ONLY */
#ifdef REDUCED
printf("triangle [-prq__a__AcevngBPNEIOXzo_YS__lQVh] input_file\n");
#else /* not REDUCED */
printf("triangle [-prq__a__AcevngBPNEIOXzo_YS__iFlsCQVh] input_file\n");
#endif /* not REDUCED */
#endif /* not CDT_ONLY */
printf(" -p Triangulates a Planar Straight Line Graph (.poly file).\n");
#ifndef CDT_ONLY
printf(" -r Refines a previously generated mesh.\n");
printf(
" -q Quality mesh generation. A minimum angle may be specified.\n");
printf(" -a Applies a maximum triangle area constraint.\n");
#endif /* not CDT_ONLY */
printf(
" -A Applies attributes to identify elements in certain regions.\n");
printf(" -c Encloses the convex hull with segments.\n");
printf(" -e Generates an edge list.\n");
printf(" -v Generates a Voronoi diagram.\n");
printf(" -n Generates a list of triangle neighbors.\n");
printf(" -g Generates an .off file for Geomview.\n");
printf(" -B Suppresses output of boundary information.\n");
printf(" -P Suppresses output of .poly file.\n");
printf(" -N Suppresses output of .node file.\n");
printf(" -E Suppresses output of .ele file.\n");
printf(" -I Suppresses mesh iteration numbers.\n");
printf(" -O Ignores holes in .poly file.\n");
printf(" -X Suppresses use of exact arithmetic.\n");
printf(" -z Numbers all items starting from zero (rather than one).\n");
printf(" -o2 Generates second-order subparametric elements.\n");
#ifndef CDT_ONLY
printf(" -Y Suppresses boundary segment splitting.\n");
printf(" -S Specifies maximum number of added Steiner points.\n");
#endif /* not CDT_ONLY */
#ifndef REDUCED
printf(" -i Uses incremental method, rather than divide-and-conquer.\n");
printf(" -F Uses Fortune's sweepline algorithm, rather than d-and-c.\n");
#endif /* not REDUCED */
printf(" -l Uses vertical cuts only, rather than alternating cuts.\n");
#ifndef REDUCED
#ifndef CDT_ONLY
printf(
" -s Force segments into mesh by splitting (instead of using CDT).\n");
#endif /* not CDT_ONLY */
printf(" -C Check consistency of final mesh.\n");
#endif /* not REDUCED */
printf(" -Q Quiet: No terminal output except errors.\n");
printf(" -V Verbose: Detailed information on what I'm doing.\n");
printf(" -h Help: Detailed instructions for Triangle.\n");
exit(0);
}
#endif /* not TRILIBRARY */
/*****************************************************************************/
/* */
/* info() Print out complete instructions. */
/* */
/*****************************************************************************/
#ifndef TRILIBRARY
void info(void)
{
printf("Triangle\n");
printf("A Two-Dimensional Quality Mesh Generator and Delaunay Triangulator.\n");
printf("Version 1.3\n\n");
printf("Copyright 1996 Jonathan Richard Shewchuk (bugs/comments to jrs@cs.cmu.edu)\n");
printf("School of Computer Science / Carnegie Mellon University\n");
printf("5000 Forbes Avenue / Pittsburgh, Pennsylvania 15213-3891\n");
printf("Created as part of the Archimedes project (tools for parallel FEM).\n");
printf("Supported in part by NSF Grant CMS-9318163 and an NSERC 1967 Scholarship.\n");
printf("There is no warranty whatsoever. Use at your own risk.\n");
#ifdef SINGLE
printf("This executable is compiled for single precision arithmetic.\n\n\n");
#else /* not SINGLE */
printf("This executable is compiled for double precision arithmetic.\n\n\n");
#endif /* not SINGLE */
printf("Triangle generates exact Delaunay triangulations, constrained Delaunay\n");
printf("triangulations, and quality conforming Delaunay triangulations. The latter\n");
printf("can be generated with no small angles, and are thus suitable for finite\n");
printf("element analysis. If no command line switches are specified, your .node\n");
printf("input file will be read, and the Delaunay triangulation will be returned in\n");
printf(".node and .ele output files. The command syntax is:\n\n");
#ifdef CDT_ONLY
#ifdef REDUCED
printf("triangle [-pAcevngBPNEIOXzo_lQVh] input_file\n\n");
#else /* not REDUCED */
printf("triangle [-pAcevngBPNEIOXzo_iFlCQVh] input_file\n\n");
#endif /* not REDUCED */
#else /* not CDT_ONLY */
#ifdef REDUCED
printf("triangle [-prq__a__AcevngBPNEIOXzo_YS__lQVh] input_file\n\n");
#else /* not REDUCED */
printf("triangle [-prq__a__AcevngBPNEIOXzo_YS__iFlsCQVh] input_file\n\n");
#endif /* not REDUCED */
#endif /* not CDT_ONLY */
printf("Underscores indicate that numbers may optionally follow certain switches;\n");
printf("do not leave any space between a switch and its numeric parameter.\n");
printf("input_file must be a file with extension .node, or extension .poly if the\n");
printf("-p switch is used. If -r is used, you must supply .node and .ele files,\n");
printf("and possibly a .poly file and .area file as well. The formats of these\n");
printf("files are described below.\n\n");
printf("Command Line Switches:\n\n");
printf(" -p Reads a Planar Straight Line Graph (.poly file), which can specify\n");
printf(" points, segments, holes, and regional attributes and area\n");
printf(" constraints. Will generate a constrained Delaunay triangulation\n");
printf(" fitting the input; or, if -s, -q, or -a is used, a conforming\n");
printf(" Delaunay triangulation. If -p is not used, Triangle reads a .node\n");
printf(" file by default.\n");
printf(" -r Refines a previously generated mesh. The mesh is read from a .node\n");
printf(" file and an .ele file. If -p is also used, a .poly file is read\n");
printf(" and used to constrain edges in the mesh. Further details on\n");
printf(" refinement are given below.\n");
printf(" -q Quality mesh generation by Jim Ruppert's Delaunay refinement\n");
printf(" algorithm. Adds points to the mesh to ensure that no angles\n");
printf(" smaller than 20 degrees occur. An alternative minimum angle may be\n");
printf(" specified after the `q'. If the minimum angle is 20.7 degrees or\n");
printf(" smaller, the triangulation algorithm is theoretically guaranteed to\n");
printf(" terminate (assuming infinite precision arithmetic - Triangle may\n");
printf(" fail to terminate if you run out of precision). In practice, the\n");
printf(" algorithm often succeeds for minimum angles up to 33.8 degrees.\n");
printf(" For highly refined meshes, however, it may be necessary to reduce\n");
printf(" the minimum angle to well below 20 to avoid problems associated\n");
printf(" with insufficient floating-point precision. The specified angle\n");
printf(" may include a decimal point.\n");
printf(" -a Imposes a maximum triangle area. If a number follows the `a', no\n");
printf(" triangle will be generated whose area is larger than that number.\n");
printf(" If no number is specified, an .area file (if -r is used) or .poly\n");
printf(" file (if -r is not used) specifies a number of maximum area\n");
printf(" constraints. An .area file contains a separate area constraint for\n");
printf(" each triangle, and is useful for refining a finite element mesh\n");
printf(" based on a posteriori error estimates. A .poly file can optionally\n");
printf(" contain an area constraint for each segment-bounded region, thereby\n");
printf(" enforcing triangle densities in a first triangulation. You can\n");
printf(" impose both a fixed area constraint and a varying area constraint\n");
printf(" by invoking the -a switch twice, once with and once without a\n");
printf(" number following. Each area specified may include a decimal point.\n");
printf(" -A Assigns an additional attribute to each triangle that identifies\n");
printf(" what segment-bounded region each triangle belongs to. Attributes\n");
printf(" are assigned to regions by the .poly file. If a region is not\n");
printf(" explicitly marked by the .poly file, triangles in that region are\n");
printf(" assigned an attribute of zero. The -A switch has an effect only\n");
printf(" when the -p switch is used and the -r switch is not.\n");
printf(" -c Creates segments on the convex hull of the triangulation. If you\n");
printf(" are triangulating a point set, this switch causes a .poly file to\n");
printf(" be written, containing all edges in the convex hull. (By default,\n");
printf(" a .poly file is written only if a .poly file is read.) If you are\n");
printf(" triangulating a PSLG, this switch specifies that the interior of\n");
printf(" the convex hull of the PSLG should be triangulated. If you do not\n");
printf(" use this switch when triangulating a PSLG, it is assumed that you\n");
printf(" have identified the region to be triangulated by surrounding it\n");
printf(" with segments of the input PSLG. Beware: if you are not careful,\n");
printf(" this switch can cause the introduction of an extremely thin angle\n");
printf(" between a PSLG segment and a convex hull segment, which can cause\n");
printf(" overrefinement or failure if Triangle runs out of precision. If\n");
printf(" you are refining a mesh, the -c switch works differently; it\n");
printf(" generates the set of boundary edges of the mesh, rather than the\n");
printf(" convex hull.\n");
printf(" -e Outputs (to an .edge file) a list of edges of the triangulation.\n");
printf(" -v Outputs the Voronoi diagram associated with the triangulation.\n");
printf(" Does not attempt to detect degeneracies.\n");
printf(" -n Outputs (to a .neigh file) a list of triangles neighboring each\n");
printf(" triangle.\n");
printf(" -g Outputs the mesh to an Object File Format (.off) file, suitable for\n");
printf(" viewing with the Geometry Center's Geomview package.\n");
printf(" -B No boundary markers in the output .node, .poly, and .edge output\n");
printf(" files. See the detailed discussion of boundary markers below.\n");
printf(" -P No output .poly file. Saves disk space, but you lose the ability\n");
printf(" to impose segment constraints on later refinements of the mesh.\n");
printf(" -N No output .node file.\n");
printf(" -E No output .ele file.\n");
printf(" -I No iteration numbers. Suppresses the output of .node and .poly\n");
printf(" files, so your input files won't be overwritten. (If your input is\n");
printf(" a .poly file only, a .node file will be written.) Cannot be used\n");
printf(" with the -r switch, because that would overwrite your input .ele\n");
printf(" file. Shouldn't be used with the -s, -q, or -a switch if you are\n");
printf(" using a .node file for input, because no .node file will be\n");
printf(" written, so there will be no record of any added points.\n");
printf(" -O No holes. Ignores the holes in the .poly file.\n");
printf(" -X No exact arithmetic. Normally, Triangle uses exact floating-point\n");
printf(" arithmetic for certain tests if it thinks the inexact tests are not\n");
printf(" accurate enough. Exact arithmetic ensures the robustness of the\n");
printf(" triangulation algorithms, despite floating-point roundoff error.\n");
printf(" Disabling exact arithmetic with the -X switch will cause a small\n");
printf(" improvement in speed and create the possibility (albeit small) that\n");
printf(" Triangle will fail to produce a valid mesh. Not recommended.\n");
printf(" -z Numbers all items starting from zero (rather than one). Note that\n");
printf(" this switch is normally overrided by the value used to number the\n");
printf(" first point of the input .node or .poly file. However, this switch\n");
printf(" is useful when calling Triangle from another program.\n");
printf(" -o2 Generates second-order subparametric elements with six nodes each.\n");
printf(" -Y No new points on the boundary. This switch is useful when the mesh\n");
printf(" boundary must be preserved so that it conforms to some adjacent\n");
printf(" mesh. Be forewarned that you will probably sacrifice some of the\n");
printf(" quality of the mesh; Triangle will try, but the resulting mesh may\n");
printf(" contain triangles of poor aspect ratio. Works well if all the\n");
printf(" boundary points are closely spaced. Specify this switch twice\n");
printf(" (`-YY') to prevent all segment splitting, including internal\n");
printf(" boundaries.\n");
printf(" -S Specifies the maximum number of Steiner points (points that are not\n");
printf(" in the input, but are added to meet the constraints of minimum\n");
printf(" angle and maximum area). The default is to allow an unlimited\n");
printf(" number. If you specify this switch with no number after it,\n");
printf(" the limit is set to zero. Triangle always adds points at segment\n");
printf(" intersections, even if it needs to use more points than the limit\n");
printf(" you set. When Triangle inserts segments by splitting (-s), it\n");
printf(" always adds enough points to ensure that all the segments appear in\n");
printf(" the triangulation, again ignoring the limit. Be forewarned that\n");
printf(" the -S switch may result in a conforming triangulation that is not\n");
printf(" truly Delaunay, because Triangle may be forced to stop adding\n");
printf(" points when the mesh is in a state where a segment is non-Delaunay\n");
printf(" and needs to be split. If so, Triangle will print a warning.\n");
printf(" -i Uses an incremental rather than divide-and-conquer algorithm to\n");
printf(" form a Delaunay triangulation. Try it if the divide-and-conquer\n");
printf(" algorithm fails.\n");
printf(" -F Uses Steven Fortune's sweepline algorithm to form a Delaunay\n");
printf(" triangulation. Warning: does not use exact arithmetic for all\n");
printf(" calculations. An exact result is not guaranteed.\n");
printf(" -l Uses only vertical cuts in the divide-and-conquer algorithm. By\n");
printf(" default, Triangle uses alternating vertical and horizontal cuts,\n");
printf(" which usually improve the speed except with point sets that are\n");
printf(" small or short and wide. This switch is primarily of theoretical\n");
printf(" interest.\n");
printf(" -s Specifies that segments should be forced into the triangulation by\n");
printf(" recursively splitting them at their midpoints, rather than by\n");
printf(" generating a constrained Delaunay triangulation. Segment splitting\n");
printf(" is true to Ruppert's original algorithm, but can create needlessly\n");
printf(" small triangles near external small features.\n");
printf(" -C Check the consistency of the final mesh. Uses exact arithmetic for\n");
printf(" checking, even if the -X switch is used. Useful if you suspect\n");
printf(" Triangle is buggy.\n");
printf(" -Q Quiet: Suppresses all explanation of what Triangle is doing, unless\n");
printf(" an error occurs.\n");
printf(" -V Verbose: Gives detailed information about what Triangle is doing.\n");
printf(" Add more `V's for increasing amount of detail. `-V' gives\n");
printf(" information on algorithmic progress and more detailed statistics.\n");
printf(" `-VV' gives point-by-point details, and will print so much that\n");
printf(" Triangle will run much more slowly. `-VVV' gives information only\n");
printf(" a debugger could love.\n");
printf(" -h Help: Displays these instructions.\n\n");
printf("Definitions:\n\n");
printf(" A Delaunay triangulation of a point set is a triangulation whose vertices\n");
printf(" are the point set, having the property that no point in the point set\n");
printf(" falls in the interior of the circumcircle (circle that passes through all\n");
printf(" three vertices) of any triangle in the triangulation.\n\n");
printf(" A Voronoi diagram of a point set is a subdivision of the plane into\n");
printf(" polygonal regions (some of which may be infinite), where each region is\n");
printf(" the set of points in the plane that are closer to some input point than\n");
printf(" to any other input point. (The Voronoi diagram is the geometric dual of\n");
printf(" the Delaunay triangulation.)\n\n");
printf(" A Planar Straight Line Graph (PSLG) is a collection of points and\n");
printf(" segments. Segments are simply edges, whose endpoints are points in the\n");
printf(" PSLG. The file format for PSLGs (.poly files) is described below.\n\n");
printf(" A constrained Delaunay triangulation of a PSLG is similar to a Delaunay\n");
printf(" triangulation, but each PSLG segment is present as a single edge in the\n");
printf(" triangulation. (A constrained Delaunay triangulation is not truly a\n");
printf(" Delaunay triangulation.)\n\n");
printf(" A conforming Delaunay triangulation of a PSLG is a true Delaunay\n");
printf(" triangulation in which each PSLG segment may have been subdivided into\n");
printf(" several edges by the insertion of additional points. These inserted\n");
printf(" points are necessary to allow the segments to exist in the mesh while\n");
printf(" maintaining the Delaunay property.\n\n");
printf("File Formats:\n\n");
printf(" All files may contain comments prefixed by the character '#'. Points,\n");
printf(" triangles, edges, holes, and maximum area constraints must be numbered\n");
printf(" consecutively, starting from either 1 or 0. Whichever you choose, all\n");
printf(" input files must be consistent; if the nodes are numbered from 1, so must\n");
printf(" be all other objects. Triangle automatically detects your choice while\n");
printf(" reading the .node (or .poly) file. (When calling Triangle from another\n");
printf(" program, use the -z switch if you wish to number objects from zero.)\n");
printf(" Examples of these file formats are given below.\n\n");
printf(" .node files:\n");
printf(" First line: <# of points> <dimension (must be 2)> <# of attributes>\n");
printf(" <# of boundary markers (0 or 1)>\n");
printf(" Remaining lines: <point #> <x> <y> [attributes] [boundary marker]\n\n");
printf(" The attributes, which are typically floating-point values of physical\n");
printf(" quantities (such as mass or conductivity) associated with the nodes of\n");
printf(" a finite element mesh, are copied unchanged to the output mesh. If -s,\n");
printf(" -q, or -a is selected, each new Steiner point added to the mesh will\n");
printf(" have attributes assigned to it by linear interpolation.\n\n");
printf(" If the fourth entry of the first line is `1', the last column of the\n");
printf(" remainder of the file is assumed to contain boundary markers. Boundary\n");
printf(" markers are used to identify boundary points and points resting on PSLG\n");
printf(" segments; a complete description appears in a section below. The .node\n");
printf(" file produced by Triangle will contain boundary markers in the last\n");
printf(" column unless they are suppressed by the -B switch.\n\n");
printf(" .ele files:\n");
printf(" First line: <# of triangles> <points per triangle> <# of attributes>\n");
printf(" Remaining lines: <triangle #> <point> <point> <point> ... [attributes]\n\n");
printf(" Points are indices into the corresponding .node file. The first three\n");
printf(" points are the corners, and are listed in counterclockwise order around\n");
printf(" each triangle. (The remaining points, if any, depend on the type of\n");
printf(" finite element used.) The attributes are just like those of .node\n");
printf(" files. Because there is no simple mapping from input to output\n");
printf(" triangles, an attempt is made to interpolate attributes, which may\n");
printf(" result in a good deal of diffusion of attributes among nearby triangles\n");
printf(" as the triangulation is refined. Diffusion does not occur across\n");
printf(" segments, so attributes used to identify segment-bounded regions remain\n");
printf(" intact. In output .ele files, all triangles have three points each\n");
printf(" unless the -o2 switch is used, in which case they have six, and the\n");
printf(" fourth, fifth, and sixth points lie on the midpoints of the edges\n");
printf(" opposite the first, second, and third corners.\n\n");
printf(" .poly files:\n");
printf(" First line: <# of points> <dimension (must be 2)> <# of attributes>\n");
printf(" <# of boundary markers (0 or 1)>\n");
printf(" Following lines: <point #> <x> <y> [attributes] [boundary marker]\n");
printf(" One line: <# of segments> <# of boundary markers (0 or 1)>\n");
printf(" Following lines: <segment #> <endpoint> <endpoint> [boundary marker]\n");
printf(" One line: <# of holes>\n");
printf(" Following lines: <hole #> <x> <y>\n");
printf(" Optional line: <# of regional attributes and/or area constraints>\n");
printf(" Optional following lines: <constraint #> <x> <y> <attrib> <max area>\n\n");
printf(" A .poly file represents a PSLG, as well as some additional information.\n");
printf(" The first section lists all the points, and is identical to the format\n");
printf(" of .node files. <# of points> may be set to zero to indicate that the\n");
printf(" points are listed in a separate .node file; .poly files produced by\n");
printf(" Triangle always have this format. This has the advantage that a point\n");
printf(" set may easily be triangulated with or without segments. (The same\n");
printf(" effect can be achieved, albeit using more disk space, by making a copy\n");
printf(" of the .poly file with the extension .node; all sections of the file\n");
printf(" but the first are ignored.)\n\n");
printf(" The second section lists the segments. Segments are edges whose\n");
printf(" presence in the triangulation is enforced. Each segment is specified\n");
printf(" by listing the indices of its two endpoints. This means that you must\n");
printf(" include its endpoints in the point list. If -s, -q, and -a are not\n");
printf(" selected, Triangle will produce a constrained Delaunay triangulation,\n");
printf(" in which each segment appears as a single edge in the triangulation.\n");
printf(" If -q or -a is selected, Triangle will produce a conforming Delaunay\n");
printf(" triangulation, in which segments may be subdivided into smaller edges.\n");
printf(" Each segment, like each point, may have a boundary marker.\n\n");
printf(" The third section lists holes (and concavities, if -c is selected) in\n");
printf(" the triangulation. Holes are specified by identifying a point inside\n");
printf(" each hole. After the triangulation is formed, Triangle creates holes\n");
printf(" by eating triangles, spreading out from each hole point until its\n");
printf(" progress is blocked by PSLG segments; you must be careful to enclose\n");
printf(" each hole in segments, or your whole triangulation may be eaten away.\n");
printf(" If the two triangles abutting a segment are eaten, the segment itself\n");
printf(" is also eaten. Do not place a hole directly on a segment; if you do,\n");
printf(" Triangle will choose one side of the segment arbitrarily.\n\n");
printf(" The optional fourth section lists regional attributes (to be assigned\n");
printf(" to all triangles in a region) and regional constraints on the maximum\n");
printf(" triangle area. Triangle will read this section only if the -A switch\n");
printf(" is used or the -a switch is used without a number following it, and the\n");
printf(" -r switch is not used. Regional attributes and area constraints are\n");
printf(" propagated in the same manner as holes; you specify a point for each\n");
printf(" attribute and/or constraint, and the attribute and/or constraint will\n");
printf(" affect the whole region (bounded by segments) containing the point. If\n");
printf(" two values are written on a line after the x and y coordinate, the\n");
printf(" former is assumed to be a regional attribute (but will only be applied\n");
printf(" if the -A switch is selected), and the latter is assumed to be a\n");
printf(" regional area constraint (but will only be applied if the -a switch is\n");
printf(" selected). You may also specify just one value after the coordinates,\n");
printf(" which can serve as both an attribute and an area constraint, depending\n");
printf(" on the choice of switches. If you are using the -A and -a switches\n");
printf(" simultaneously and wish to assign an attribute to some region without\n");
printf(" imposing an area constraint, use a negative maximum area.\n\n");
printf(" When a triangulation is created from a .poly file, you must either\n");
printf(" enclose the entire region to be triangulated in PSLG segments, or\n");
printf(" use the -c switch, which encloses the convex hull of the input point\n");
printf(" set. If you do not use the -c switch, Triangle will eat all triangles\n");
printf(" on the outer boundary that are not protected by segments; if you are\n");
printf(" not careful, your whole triangulation may be eaten away. If you do\n");
printf(" use the -c switch, you can still produce concavities by appropriate\n");
printf(" placement of holes just inside the convex hull.\n\n");
printf(" An ideal PSLG has no intersecting segments, nor any points that lie\n");
printf(" upon segments (except, of course, the endpoints of each segment.) You\n");
printf(" aren't required to make your .poly files ideal, but you should be aware\n");
printf(" of what can go wrong. Segment intersections are relatively safe -\n");
printf(" Triangle will calculate the intersection points for you and add them to\n");
printf(" the triangulation - as long as your machine's floating-point precision\n");
printf(" doesn't become a problem. You are tempting the fates if you have three\n");
printf(" segments that cross at the same location, and expect Triangle to figure\n");
printf(" out where the intersection point is. Thanks to floating-point roundoff\n");
printf(" error, Triangle will probably decide that the three segments intersect\n");
printf(" at three different points, and you will find a minuscule triangle in\n");
printf(" your output - unless Triangle tries to refine the tiny triangle, uses\n");
printf(" up the last bit of machine precision, and fails to terminate at all.\n");
printf(" You're better off putting the intersection point in the input files,\n");
printf(" and manually breaking up each segment into two. Similarly, if you\n");
printf(" place a point at the middle of a segment, and hope that Triangle will\n");
printf(" break up the segment at that point, you might get lucky. On the other\n");
printf(" hand, Triangle might decide that the point doesn't lie precisely on the\n");
printf(" line, and you'll have a needle-sharp triangle in your output - or a lot\n");
printf(" of tiny triangles if you're generating a quality mesh.\n\n");
printf(" When Triangle reads a .poly file, it also writes a .poly file, which\n");
printf(" includes all edges that are part of input segments. If the -c switch\n");
printf(" is used, the output .poly file will also include all of the edges on\n");
printf(" the convex hull. Hence, the output .poly file is useful for finding\n");
printf(" edges associated with input segments and setting boundary conditions in\n");
printf(" finite element simulations. More importantly, you will need it if you\n");
printf(" plan to refine the output mesh, and don't want segments to be missing\n");
printf(" in later triangulations.\n\n");
printf(" .area files:\n");
printf(" First line: <# of triangles>\n");
printf(" Following lines: <triangle #> <maximum area>\n\n");
printf(" An .area file associates with each triangle a maximum area that is used\n");
printf(" for mesh refinement. As with other file formats, every triangle must\n");
printf(" be represented, and they must be numbered consecutively. A triangle\n");
printf(" may be left unconstrained by assigning it a negative maximum area.\n\n");
printf(" .edge files:\n");
printf(" First line: <# of edges> <# of boundary markers (0 or 1)>\n");
printf(" Following lines: <edge #> <endpoint> <endpoint> [boundary marker]\n\n");
printf(" Endpoints are indices into the corresponding .node file. Triangle can\n");
printf(" produce .edge files (use the -e switch), but cannot read them. The\n");
printf(" optional column of boundary markers is suppressed by the -B switch.\n\n");
printf(" In Voronoi diagrams, one also finds a special kind of edge that is an\n");
printf(" infinite ray with only one endpoint. For these edges, a different\n");
printf(" format is used:\n\n");
printf(" <edge #> <endpoint> -1 <direction x> <direction y>\n\n");
printf(" The `direction' is a floating-point vector that indicates the direction\n");
printf(" of the infinite ray.\n\n");
printf(" .neigh files:\n");
printf(" First line: <# of triangles> <# of neighbors per triangle (always 3)>\n");
printf(" Following lines: <triangle #> <neighbor> <neighbor> <neighbor>\n\n");
printf(" Neighbors are indices into the corresponding .ele file. An index of -1\n");
printf(" indicates a mesh boundary, and therefore no neighbor. Triangle can\n");
printf(" produce .neigh files (use the -n switch), but cannot read them.\n\n");
printf(" The first neighbor of triangle i is opposite the first corner of\n");
printf(" triangle i, and so on.\n\n");
printf("Boundary Markers:\n\n");
printf(" Boundary markers are tags used mainly to identify which output points and\n");
printf(" edges are associated with which PSLG segment, and to identify which\n");
printf(" points and edges occur on a boundary of the triangulation. A common use\n");
printf(" is to determine where boundary conditions should be applied to a finite\n");
printf(" element mesh. You can prevent boundary markers from being written into\n");
printf(" files produced by Triangle by using the -B switch.\n\n");
printf(" The boundary marker associated with each segment in an output .poly file\n");
printf(" or edge in an output .edge file is chosen as follows:\n");
printf(" - If an output edge is part or all of a PSLG segment with a nonzero\n");
printf(" boundary marker, then the edge is assigned the same marker.\n");
printf(" - Otherwise, if the edge occurs on a boundary of the triangulation\n");
printf(" (including boundaries of holes), then the edge is assigned the marker\n");
printf(" one (1).\n");
printf(" - Otherwise, the edge is assigned the marker zero (0).\n");
printf(" The boundary marker associated with each point in an output .node file is\n");
printf(" chosen as follows:\n");
printf(" - If a point is assigned a nonzero boundary marker in the input file,\n");
printf(" then it is assigned the same marker in the output .node file.\n");
printf(" - Otherwise, if the point lies on a PSLG segment (including the\n");
printf(" segment's endpoints) with a nonzero boundary marker, then the point\n");
printf(" is assigned the same marker. If the point lies on several such\n");
printf(" segments, one of the markers is chosen arbitrarily.\n");
printf(" - Otherwise, if the point occurs on a boundary of the triangulation,\n");
printf(" then the point is assigned the marker one (1).\n");
printf(" - Otherwise, the point is assigned the marker zero (0).\n\n");
printf(" If you want Triangle to determine for you which points and edges are on\n");
printf(" the boundary, assign them the boundary marker zero (or use no markers at\n");
printf(" all) in your input files. Alternatively, you can mark some of them and\n");
printf(" leave others marked zero, allowing Triangle to label them.\n\n");
printf("Triangulation Iteration Numbers:\n\n");
printf(" Because Triangle can read and refine its own triangulations, input\n");
printf(" and output files have iteration numbers. For instance, Triangle might\n");
printf(" read the files mesh.3.node, mesh.3.ele, and mesh.3.poly, refine the\n");
printf(" triangulation, and output the files mesh.4.node, mesh.4.ele, and\n");
printf(" mesh.4.poly. Files with no iteration number are treated as if\n");
printf(" their iteration number is zero; hence, Triangle might read the file\n");
printf(" points.node, triangulate it, and produce the files points.1.node and\n");
printf(" points.1.ele.\n\n");
printf(" Iteration numbers allow you to create a sequence of successively finer\n");
printf(" meshes suitable for multigrid methods. They also allow you to produce a\n");
printf(" sequence of meshes using error estimate-driven mesh refinement.\n\n");
printf(" If you're not using refinement or quality meshing, and you don't like\n");
printf(" iteration numbers, use the -I switch to disable them. This switch will\n");
printf(" also disable output of .node and .poly files to prevent your input files\n");
printf(" from being overwritten. (If the input is a .poly file that contains its\n");
printf(" own points, a .node file will be written.)\n\n");
printf("Examples of How to Use Triangle:\n\n");
printf(" `triangle dots' will read points from dots.node, and write their Delaunay\n");
printf(" triangulation to dots.1.node and dots.1.ele. (dots.1.node will be\n");
printf(" identical to dots.node.) `triangle -I dots' writes the triangulation to\n");
printf(" dots.ele instead. (No additional .node file is needed, so none is\n");
printf(" written.)\n\n");
printf(" `triangle -pe object.1' will read a PSLG from object.1.poly (and possibly\n");
printf(" object.1.node, if the points are omitted from object.1.poly) and write\n");
printf(" their constrained Delaunay triangulation to object.2.node and\n");
printf(" object.2.ele. The segments will be copied to object.2.poly, and all\n");
printf(" edges will be written to object.2.edge.\n\n");
printf(" `triangle -pq31.5a.1 object' will read a PSLG from object.poly (and\n");
printf(" possibly object.node), generate a mesh whose angles are all greater than\n");
printf(" 31.5 degrees and whose triangles all have area smaller than 0.1, and\n");
printf(" write the mesh to object.1.node and object.1.ele. Each segment may have\n");
printf(" been broken up into multiple edges; the resulting constrained edges are\n");
printf(" written to object.1.poly.\n\n");
printf(" Here is a sample file `box.poly' describing a square with a square hole:\n\n");
printf(" # A box with eight points in 2D, no attributes, one boundary marker.\n");
printf(" 8 2 0 1\n");
printf(" # Outer box has these vertices:\n");
printf(" 1 0 0 0\n");
printf(" 2 0 3 0\n");
printf(" 3 3 0 0\n");
printf(" 4 3 3 33 # A special marker for this point.\n");
printf(" # Inner square has these vertices:\n");
printf(" 5 1 1 0\n");
printf(" 6 1 2 0\n");
printf(" 7 2 1 0\n");
printf(" 8 2 2 0\n");
printf(" # Five segments with boundary markers.\n");
printf(" 5 1\n");
printf(" 1 1 2 5 # Left side of outer box.\n");
printf(" 2 5 7 0 # Segments 2 through 5 enclose the hole.\n");
printf(" 3 7 8 0\n");
printf(" 4 8 6 10\n");
printf(" 5 6 5 0\n");
printf(" # One hole in the middle of the inner square.\n");
printf(" 1\n");
printf(" 1 1.5 1.5\n\n");
printf(" Note that some segments are missing from the outer square, so one must\n");
printf(" use the `-c' switch. After `triangle -pqc box.poly', here is the output\n");
printf(" file `box.1.node', with twelve points. The last four points were added\n");
printf(" to meet the angle constraint. Points 1, 2, and 9 have markers from\n");
printf(" segment 1. Points 6 and 8 have markers from segment 4. All the other\n");
printf(" points but 4 have been marked to indicate that they lie on a boundary.\n\n");
printf(" 12 2 0 1\n");
printf(" 1 0 0 5\n");
printf(" 2 0 3 5\n");
printf(" 3 3 0 1\n");
printf(" 4 3 3 33\n");
printf(" 5 1 1 1\n");
printf(" 6 1 2 10\n");
printf(" 7 2 1 1\n");
printf(" 8 2 2 10\n");
printf(" 9 0 1.5 5\n");
printf(" 10 1.5 0 1\n");
printf(" 11 3 1.5 1\n");
printf(" 12 1.5 3 1\n");
printf(" # Generated by triangle -pqc box.poly\n\n");
printf(" Here is the output file `box.1.ele', with twelve triangles.\n\n");
printf(" 12 3 0\n");
printf(" 1 5 6 9\n");
printf(" 2 10 3 7\n");
printf(" 3 6 8 12\n");
printf(" 4 9 1 5\n");
printf(" 5 6 2 9\n");
printf(" 6 7 3 11\n");
printf(" 7 11 4 8\n");
printf(" 8 7 5 10\n");
printf(" 9 12 2 6\n");
printf(" 10 8 7 11\n");
printf(" 11 5 1 10\n");
printf(" 12 8 4 12\n");
printf(" # Generated by triangle -pqc box.poly\n\n");
printf(" Here is the output file `box.1.poly'. Note that segments have been added\n");
printf(" to represent the convex hull, and some segments have been split by newly\n");
printf(" added points. Note also that <# of points> is set to zero to indicate\n");
printf(" that the points should be read from the .node file.\n\n");
printf(" 0 2 0 1\n");
printf(" 12 1\n");
printf(" 1 1 9 5\n");
printf(" 2 5 7 1\n");
printf(" 3 8 7 1\n");
printf(" 4 6 8 10\n");
printf(" 5 5 6 1\n");
printf(" 6 3 10 1\n");
printf(" 7 4 11 1\n");
printf(" 8 2 12 1\n");
printf(" 9 9 2 5\n");
printf(" 10 10 1 1\n");
printf(" 11 11 3 1\n");
printf(" 12 12 4 1\n");
printf(" 1\n");
printf(" 1 1.5 1.5\n");
printf(" # Generated by triangle -pqc box.poly\n\n");
printf("Refinement and Area Constraints:\n\n");
printf(" The -r switch causes a mesh (.node and .ele files) to be read and\n");
printf(" refined. If the -p switch is also used, a .poly file is read and used to\n");
printf(" specify edges that are constrained and cannot be eliminated (although\n");
printf(" they can be divided into smaller edges) by the refinement process.\n\n");
printf(" When you refine a mesh, you generally want to impose tighter quality\n");
printf(" constraints. One way to accomplish this is to use -q with a larger\n");
printf(" angle, or -a followed by a smaller area than you used to generate the\n");
printf(" mesh you are refining. Another way to do this is to create an .area\n");
printf(" file, which specifies a maximum area for each triangle, and use the -a\n");
printf(" switch (without a number following). Each triangle's area constraint is\n");
printf(" applied to that triangle. Area constraints tend to diffuse as the mesh\n");
printf(" is refined, so if there are large variations in area constraint between\n");
printf(" adjacent triangles, you may not get the results you want.\n\n");
printf(" If you are refining a mesh composed of linear (three-node) elements, the\n");
printf(" output mesh will contain all the nodes present in the input mesh, in the\n");
printf(" same order, with new nodes added at the end of the .node file. However,\n");
printf(" there is no guarantee that each output element is contained in a single\n");
printf(" input element. Often, output elements will overlap two input elements,\n");
printf(" and input edges are not present in the output mesh. Hence, a sequence of\n");
printf(" refined meshes will form a hierarchy of nodes, but not a hierarchy of\n");
printf(" elements. If you a refining a mesh of higher-order elements, the\n");
printf(" hierarchical property applies only to the nodes at the corners of an\n");
printf(" element; other nodes may not be present in the refined mesh.\n\n");
printf(" It is important to understand that maximum area constraints in .poly\n");
printf(" files are handled differently from those in .area files. A maximum area\n");
printf(" in a .poly file applies to the whole (segment-bounded) region in which a\n");
printf(" point falls, whereas a maximum area in an .area file applies to only one\n");
printf(" triangle. Area constraints in .poly files are used only when a mesh is\n");
printf(" first generated, whereas area constraints in .area files are used only to\n");
printf(" refine an existing mesh, and are typically based on a posteriori error\n");
printf(" estimates resulting from a finite element simulation on that mesh.\n\n");
printf(" `triangle -rq25 object.1' will read object.1.node and object.1.ele, then\n");
printf(" refine the triangulation to enforce a 25 degree minimum angle, and then\n");
printf(" write the refined triangulation to object.2.node and object.2.ele.\n\n");
printf(" `triangle -rpaa6.2 z.3' will read z.3.node, z.3.ele, z.3.poly, and\n");
printf(" z.3.area. After reconstructing the mesh and its segments, Triangle will\n");
printf(" refine the mesh so that no triangle has area greater than 6.2, and\n");
printf(" furthermore the triangles satisfy the maximum area constraints in\n");
printf(" z.3.area. The output is written to z.4.node, z.4.ele, and z.4.poly.\n\n");
printf(" The sequence `triangle -qa1 x', `triangle -rqa.3 x.1', `triangle -rqa.1\n");
printf(" x.2' creates a sequence of successively finer meshes x.1, x.2, and x.3,\n");
printf(" suitable for multigrid.\n\n");
printf("Convex Hulls and Mesh Boundaries:\n\n");
printf(" If the input is a point set (rather than a PSLG), Triangle produces its\n");
printf(" convex hull as a by-product in the output .poly file if you use the -c\n");
printf(" switch. There are faster algorithms for finding a two-dimensional convex\n");
printf(" hull than triangulation, of course, but this one comes for free. If the\n");
printf(" input is an unconstrained mesh (you are using the -r switch but not the\n");
printf(" -p switch), Triangle produces a list of its boundary edges (including\n");
printf(" hole boundaries) as a by-product if you use the -c switch.\n\n");
printf("Voronoi Diagrams:\n\n");
printf(" The -v switch produces a Voronoi diagram, in files suffixed .v.node and\n");
printf(" .v.edge. For example, `triangle -v points' will read points.node,\n");
printf(" produce its Delaunay triangulation in points.1.node and points.1.ele,\n");
printf(" and produce its Voronoi diagram in points.1.v.node and points.1.v.edge.\n");
printf(" The .v.node file contains a list of all Voronoi vertices, and the .v.edge\n");
printf(" file contains a list of all Voronoi edges, some of which may be infinite\n");
printf(" rays. (The choice of filenames makes it easy to run the set of Voronoi\n");
printf(" vertices through Triangle, if so desired.)\n\n");
printf(" This implementation does not use exact arithmetic to compute the Voronoi\n");
printf(" vertices, and does not check whether neighboring vertices are identical.\n");
printf(" Be forewarned that if the Delaunay triangulation is degenerate or\n");
printf(" near-degenerate, the Voronoi diagram may have duplicate points, crossing\n");
printf(" edges, or infinite rays whose direction vector is zero. Also, if you\n");
printf(" generate a constrained (as opposed to conforming) Delaunay triangulation,\n");
printf(" or if the triangulation has holes, the corresponding Voronoi diagram is\n");
printf(" likely to have crossing edges and unlikely to make sense.\n\n");
printf("Mesh Topology:\n\n");
printf(" You may wish to know which triangles are adjacent to a certain Delaunay\n");
printf(" edge in an .edge file, which Voronoi regions are adjacent to a certain\n");
printf(" Voronoi edge in a .v.edge file, or which Voronoi regions are adjacent to\n");
printf(" each other. All of this information can be found by cross-referencing\n");
printf(" output files with the recollection that the Delaunay triangulation and\n");
printf(" the Voronoi diagrams are planar duals.\n\n");
printf(" Specifically, edge i of an .edge file is the dual of Voronoi edge i of\n");
printf(" the corresponding .v.edge file, and is rotated 90 degrees counterclock-\n");
printf(" wise from the Voronoi edge. Triangle j of an .ele file is the dual of\n");
printf(" vertex j of the corresponding .v.node file; and Voronoi region k is the\n");
printf(" dual of point k of the corresponding .node file.\n\n");
printf(" Hence, to find the triangles adjacent to a Delaunay edge, look at the\n");
printf(" vertices of the corresponding Voronoi edge; their dual triangles are on\n");
printf(" the left and right of the Delaunay edge, respectively. To find the\n");
printf(" Voronoi regions adjacent to a Voronoi edge, look at the endpoints of the\n");
printf(" corresponding Delaunay edge; their dual regions are on the right and left\n");
printf(" of the Voronoi edge, respectively. To find which Voronoi regions are\n");
printf(" adjacent to each other, just read the list of Delaunay edges.\n\n");
printf("Statistics:\n\n");
printf(" After generating a mesh, Triangle prints a count of the number of points,\n");
printf(" triangles, edges, boundary edges, and segments in the output mesh. If\n");
printf(" you've forgotten the statistics for an existing mesh, the -rNEP switches\n");
printf(" (or -rpNEP if you've got a .poly file for the existing mesh) will\n");
printf(" regenerate these statistics without writing any output.\n\n");
printf(" The -V switch produces extended statistics, including a rough estimate\n");
printf(" of memory use and a histogram of triangle aspect ratios and angles in the\n");
printf(" mesh.\n\n");
printf("Exact Arithmetic:\n\n");
printf(" Triangle uses adaptive exact arithmetic to perform what computational\n");
printf(" geometers call the `orientation' and `incircle' tests. If the floating-\n");
printf(" point arithmetic of your machine conforms to the IEEE 754 standard (as\n");
printf(" most workstations do), and does not use extended precision internal\n");
printf(" registers, then your output is guaranteed to be an absolutely true\n");
printf(" Delaunay or conforming Delaunay triangulation, roundoff error\n");
printf(" notwithstanding. The word `adaptive' implies that these arithmetic\n");
printf(" routines compute the result only to the precision necessary to guarantee\n");
printf(" correctness, so they are usually nearly as fast as their approximate\n");
printf(" counterparts. The exact tests can be disabled with the -X switch. On\n");
printf(" most inputs, this switch will reduce the computation time by about eight\n");
printf(" percent - it's not worth the risk. There are rare difficult inputs\n");
printf(" (having many collinear and cocircular points), however, for which the\n");
printf(" difference could be a factor of two. These are precisely the inputs most\n");
printf(" likely to cause errors if you use the -X switch.\n\n");
printf(" Unfortunately, these routines don't solve every numerical problem. Exact\n");
printf(" arithmetic is not used to compute the positions of points, because the\n");
printf(" bit complexity of point coordinates would grow without bound. Hence,\n");
printf(" segment intersections aren't computed exactly; in very unusual cases,\n");
printf(" roundoff error in computing an intersection point might actually lead to\n");
printf(" an inverted triangle and an invalid triangulation. (This is one reason\n");
printf(" to compute your own intersection points in your .poly files.) Similarly,\n");
printf(" exact arithmetic is not used to compute the vertices of the Voronoi\n");
printf(" diagram.\n\n");
printf(" Underflow and overflow can also cause difficulties; the exact arithmetic\n");
printf(" routines do not ameliorate out-of-bounds exponents, which can arise\n");
printf(" during the orientation and incircle tests. As a rule of thumb, you\n");
printf(" should ensure that your input values are within a range such that their\n");
printf(" third powers can be taken without underflow or overflow. Underflow can\n");
printf(" silently prevent the tests from being performed exactly, while overflow\n");
printf(" will typically cause a floating exception.\n\n");
printf("Calling Triangle from Another Program:\n\n");
printf(" Read the file triangle.h for details.\n\n");
printf("Troubleshooting:\n\n");
printf(" Please read this section before mailing me bugs.\n\n");
printf(" `My output mesh has no triangles!'\n\n");
printf(" If you're using a PSLG, you've probably failed to specify a proper set\n");
printf(" of bounding segments, or forgotten to use the -c switch. Or you may\n");
printf(" have placed a hole badly. To test these possibilities, try again with\n");
printf(" the -c and -O switches. Alternatively, all your input points may be\n");
printf(" collinear, in which case you can hardly expect to triangulate them.\n\n");
printf(" `Triangle doesn't terminate, or just crashes.'\n\n");
printf(" Bad things can happen when triangles get so small that the distance\n");
printf(" between their vertices isn't much larger than the precision of your\n");
printf(" machine's arithmetic. If you've compiled Triangle for single-precision\n");
printf(" arithmetic, you might do better by recompiling it for double-precision.\n");
printf(" Then again, you might just have to settle for more lenient constraints\n");
printf(" on the minimum angle and the maximum area than you had planned.\n\n");
printf(" You can minimize precision problems by ensuring that the origin lies\n");
printf(" inside your point set, or even inside the densest part of your\n");
printf(" mesh. On the other hand, if you're triangulating an object whose x\n");
printf(" coordinates all fall between 6247133 and 6247134, you're not leaving\n");
printf(" much floating-point precision for Triangle to work with.\n\n");
printf(" Precision problems can occur covertly if the input PSLG contains two\n");
printf(" segments that meet (or intersect) at a very small angle, or if such an\n");
printf(" angle is introduced by the -c switch, which may occur if a point lies\n");
printf(" ever-so-slightly inside the convex hull, and is connected by a PSLG\n");
printf(" segment to a point on the convex hull. If you don't realize that a\n");
printf(" small angle is being formed, you might never discover why Triangle is\n");
printf(" crashing. To check for this possibility, use the -S switch (with an\n");
printf(" appropriate limit on the number of Steiner points, found by trial-and-\n");
printf(" error) to stop Triangle early, and view the output .poly file with\n");
printf(" Show Me (described below). Look carefully for small angles between\n");
printf(" segments; zoom in closely, as such segments might look like a single\n");
printf(" segment from a distance.\n\n");
printf(" If some of the input values are too large, Triangle may suffer a\n");
printf(" floating exception due to overflow when attempting to perform an\n");
printf(" orientation or incircle test. (Read the section on exact arithmetic\n");
printf(" above.) Again, I recommend compiling Triangle for double (rather\n");
printf(" than single) precision arithmetic.\n\n");
printf(" `The numbering of the output points doesn't match the input points.'\n\n");
printf(" You may have eaten some of your input points with a hole, or by placing\n");
printf(" them outside the area enclosed by segments.\n\n");
printf(" `Triangle executes without incident, but when I look at the resulting\n");
printf(" mesh, it has overlapping triangles or other geometric inconsistencies.'\n\n");
printf(" If you select the -X switch, Triangle's divide-and-conquer Delaunay\n");
printf(" triangulation algorithm occasionally makes mistakes due to floating-\n");
printf(" point roundoff error. Although these errors are rare, don't use the -X\n");
printf(" switch. If you still have problems, please report the bug.\n\n");
printf(" Strange things can happen if you've taken liberties with your PSLG. Do\n");
printf(" you have a point lying in the middle of a segment? Triangle sometimes\n");
printf(" copes poorly with that sort of thing. Do you want to lay out a collinear\n");
printf(" row of evenly spaced, segment-connected points? Have you simply defined\n");
printf(" one long segment connecting the leftmost point to the rightmost point,\n");
printf(" and a bunch of points lying along it? This method occasionally works,\n");
printf(" especially with horizontal and vertical lines, but often it doesn't, and\n");
printf(" you'll have to connect each adjacent pair of points with a separate\n");
printf(" segment. If you don't like it, tough.\n\n");
printf(" Furthermore, if you have segments that intersect other than at their\n");
printf(" endpoints, try not to let the intersections fall extremely close to PSLG\n");
printf(" points or each other.\n\n");
printf(" If you have problems refining a triangulation not produced by Triangle:\n");
printf(" Are you sure the triangulation is geometrically valid? Is it formatted\n");
printf(" correctly for Triangle? Are the triangles all listed so the first three\n");
printf(" points are their corners in counterclockwise order?\n\n");
printf("Show Me:\n\n");
printf(" Triangle comes with a separate program named `Show Me', whose primary\n");
printf(" purpose is to draw meshes on your screen or in PostScript. Its secondary\n");
printf(" purpose is to check the validity of your input files, and do so more\n");
printf(" thoroughly than Triangle does. Show Me requires that you have the X\n");
printf(" Windows system. If you didn't receive Show Me with Triangle, complain to\n");
printf(" whomever you obtained Triangle from, then send me mail.\n\n");
printf("Triangle on the Web:\n\n");
printf(" To see an illustrated, updated version of these instructions, check out\n\n");
printf(" http://www.cs.cmu.edu/~quake/triangle.html\n\n");
printf("A Brief Plea:\n\n");
printf(" If you use Triangle, and especially if you use it to accomplish real\n");
printf(" work, I would like very much to hear from you. A short letter or email\n");
printf(" (to jrs@cs.cmu.edu) describing how you use Triangle will mean a lot to\n");
printf(" me. The more people I know are using this program, the more easily I can\n");
printf(" justify spending time on improvements and on the three-dimensional\n");
printf(" successor to Triangle, which in turn will benefit you. Also, I can put\n");
printf(" you on a list to receive email whenever a new version of Triangle is\n");
printf(" available.\n\n");
printf(" If you use a mesh generated by Triangle in a publication, please include\n");
printf(" an acknowledgment as well.\n\n");
printf("Research credit:\n\n");
printf(" Of course, I can take credit for only a fraction of the ideas that made\n");
printf(" this mesh generator possible. Triangle owes its existence to the efforts\n");
printf(" of many fine computational geometers and other researchers, including\n");
printf(" Marshall Bern, L. Paul Chew, Boris Delaunay, Rex A. Dwyer, David\n");
printf(" Eppstein, Steven Fortune, Leonidas J. Guibas, Donald E. Knuth, C. L.\n");
printf(" Lawson, Der-Tsai Lee, Ernst P. Mucke, Douglas M. Priest, Jim Ruppert,\n");
printf(" Isaac Saias, Bruce J. Schachter, Micha Sharir, Jorge Stolfi, Christopher\n");
printf(" J. Van Wyk, David F. Watson, and Binhai Zhu. See the comments at the\n");
printf(" beginning of the source code for references.\n\n");
exit(0);
}
#endif /* not TRILIBRARY */
/*****************************************************************************/
/* */
/* internalerror() Ask the user to send me the defective product. Exit. */
/* */
/*****************************************************************************/
void internalerror(void)
{
printf(" Please report this bug to jrs@cs.cmu.edu\n");
printf(" Include the message above, your input data set, and the exact\n");
printf(" command line you used to run Triangle.\n");
exit(1);
}
/*****************************************************************************/
/* */
/* parsecommandline() Read the command line, identify switches, and set */
/* up options and file names. */
/* */
/* The effects of this routine are felt entirely through global variables. */
/* */
/*****************************************************************************/
void parsecommandline(argc, argv)
int argc;
const char **argv;
{
#ifdef TRILIBRARY
#define STARTINDEX 0
#else /* not TRILIBRARY */
#define STARTINDEX 1
int increment;
int meshnumber;
#endif /* not TRILIBRARY */
int i, j, k;
char workstring[FILENAMESIZE];
poly = refine = quality = vararea = fixedarea = regionattrib = convex = 0;
firstnumber = 1;
edgesout = voronoi = neighbors = geomview = 0;
nobound = nopolywritten = nonodewritten = noelewritten = noiterationnum = 0;
noholes = noexact = 0;
incremental = sweepline = 0;
dwyer = 1;
splitseg = 0;
docheck = 0;
nobisect = 0;
steiner = -1;
order = 1;
minangle = 0.0;
maxarea = -1.0;
quiet = verbose = 0;
#ifndef TRILIBRARY
innodefilename[0] = '\0';
#endif /* not TRILIBRARY */
for (i = STARTINDEX; i < argc; i++) {
#ifndef TRILIBRARY
if (argv[i][0] == '-') {
#endif /* not TRILIBRARY */
for (j = STARTINDEX; argv[i][j] != '\0'; j++) {
if (argv[i][j] == 'p') {
poly = 1;
}
#ifndef CDT_ONLY
if (argv[i][j] == 'r') {
refine = 1;
}
if (argv[i][j] == 'q') {
quality = 1;
if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) ||
(argv[i][j + 1] == '.')) {
k = 0;
while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) ||
(argv[i][j + 1] == '.')) {
j++;
workstring[k] = argv[i][j];
k++;
}
workstring[k] = '\0';
minangle = (REAL) strtod(workstring, (char **) NULL);
}
else {
minangle = 20.0;
}
}
if (argv[i][j] == 'a') {
quality = 1;
if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) ||
(argv[i][j + 1] == '.')) {
fixedarea = 1;
k = 0;
while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) ||
(argv[i][j + 1] == '.')) {
j++;
workstring[k] = argv[i][j];
k++;
}
workstring[k] = '\0';
maxarea = (REAL) strtod(workstring, (char **) NULL);
if (maxarea <= 0.0) {
printf("Error: Maximum area must be greater than zero.\n");
exit(1);
}
}
else {
vararea = 1;
}
}
#endif /* not CDT_ONLY */
if (argv[i][j] == 'A') {
regionattrib = 1;
}
if (argv[i][j] == 'c') {
convex = 1;
}
if (argv[i][j] == 'z') {
firstnumber = 0;
}
if (argv[i][j] == 'e') {
edgesout = 1;
}
if (argv[i][j] == 'v') {
voronoi = 1;
}
if (argv[i][j] == 'n') {
neighbors = 1;
}
if (argv[i][j] == 'g') {
geomview = 1;
}
if (argv[i][j] == 'B') {
nobound = 1;
}
if (argv[i][j] == 'P') {
nopolywritten = 1;
}
if (argv[i][j] == 'N') {
nonodewritten = 1;
}
if (argv[i][j] == 'E') {
noelewritten = 1;
}
#ifndef TRILIBRARY
if (argv[i][j] == 'I') {
noiterationnum = 1;
}
#endif /* not TRILIBRARY */
if (argv[i][j] == 'O') {
noholes = 1;
}
if (argv[i][j] == 'X') {
noexact = 1;
}
if (argv[i][j] == 'o') {
if (argv[i][j + 1] == '2') {
j++;
order = 2;
}
}
#ifndef CDT_ONLY
if (argv[i][j] == 'Y') {
nobisect++;
}
if (argv[i][j] == 'S') {
steiner = 0;
while ((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) {
j++;
steiner = steiner * 10 + (int) (argv[i][j] - '0');
}
}
#endif /* not CDT_ONLY */
#ifndef REDUCED
if (argv[i][j] == 'i') {
incremental = 1;
}
if (argv[i][j] == 'F') {
sweepline = 1;
}
#endif /* not REDUCED */
if (argv[i][j] == 'l') {
dwyer = 0;
}
#ifndef REDUCED
#ifndef CDT_ONLY
if (argv[i][j] == 's') {
splitseg = 1;
}
#endif /* not CDT_ONLY */
if (argv[i][j] == 'C') {
docheck = 1;
}
#endif /* not REDUCED */
if (argv[i][j] == 'Q') {
quiet = 1;
}
if (argv[i][j] == 'V') {
verbose++;
}
#ifndef TRILIBRARY
if ((argv[i][j] == 'h') || (argv[i][j] == 'H') || (argv[i][j] == '?')) {
info();
}
#endif /* not TRILIBRARY */
}
#ifndef TRILIBRARY
}
else {
strncpy(innodefilename, argv[i], FILENAMESIZE - 1);
innodefilename[FILENAMESIZE - 1] = '\0';
}
#endif /* not TRILIBRARY */
}
#ifndef TRILIBRARY
if (innodefilename[0] == '\0') {
syntax();
}
if (!strcmp(&innodefilename[strlen(innodefilename) - 5], ".node")) {
innodefilename[strlen(innodefilename) - 5] = '\0';
}
if (!strcmp(&innodefilename[strlen(innodefilename) - 5], ".poly")) {
innodefilename[strlen(innodefilename) - 5] = '\0';
poly = 1;
}
#ifndef CDT_ONLY
if (!strcmp(&innodefilename[strlen(innodefilename) - 4], ".ele")) {
innodefilename[strlen(innodefilename) - 4] = '\0';
refine = 1;
}
if (!strcmp(&innodefilename[strlen(innodefilename) - 5], ".area")) {
innodefilename[strlen(innodefilename) - 5] = '\0';
refine = 1;
quality = 1;
vararea = 1;
}
#endif /* not CDT_ONLY */
#endif /* not TRILIBRARY */
steinerleft = steiner;
useshelles = poly || refine || quality || convex;
goodangle = cos(minangle * PI / 180.0);
goodangle *= goodangle;
if (refine && noiterationnum) {
printf(
"Error: You cannot use the -I switch when refining a triangulation.\n");
exit(1);
}
/* Be careful not to allocate space for element area constraints that */
/* will never be assigned any value (other than the default -1.0). */
if (!refine && !poly) {
vararea = 0;
}
/* Be careful not to add an extra attribute to each element unless the */
/* input supports it (PSLG in, but not refining a preexisting mesh). */
if (refine || !poly) {
regionattrib = 0;
}
#ifndef TRILIBRARY
strcpy(inpolyfilename, innodefilename);
strcpy(inelefilename, innodefilename);
strcpy(areafilename, innodefilename);
increment = 0;
strcpy(workstring, innodefilename);
j = 1;
while (workstring[j] != '\0') {
if ((workstring[j] == '.') && (workstring[j + 1] != '\0')) {
increment = j + 1;
}
j++;
}
meshnumber = 0;
if (increment > 0) {
j = increment;
do {
if ((workstring[j] >= '0') && (workstring[j] <= '9')) {
meshnumber = meshnumber * 10 + (int) (workstring[j] - '0');
}
else {
increment = 0;
}
j++;
} while (workstring[j] != '\0');
}
if (noiterationnum) {
strcpy(outnodefilename, innodefilename);
strcpy(outelefilename, innodefilename);
strcpy(edgefilename, innodefilename);
strcpy(vnodefilename, innodefilename);
strcpy(vedgefilename, innodefilename);
strcpy(neighborfilename, innodefilename);
strcpy(offfilename, innodefilename);
strcat(outnodefilename, ".node");
strcat(outelefilename, ".ele");
strcat(edgefilename, ".edge");
strcat(vnodefilename, ".v.node");
strcat(vedgefilename, ".v.edge");
strcat(neighborfilename, ".neigh");
strcat(offfilename, ".off");
}
else if (increment == 0) {
strcpy(outnodefilename, innodefilename);
strcpy(outpolyfilename, innodefilename);
strcpy(outelefilename, innodefilename);
strcpy(edgefilename, innodefilename);
strcpy(vnodefilename, innodefilename);
strcpy(vedgefilename, innodefilename);
strcpy(neighborfilename, innodefilename);
strcpy(offfilename, innodefilename);
strcat(outnodefilename, ".1.node");
strcat(outpolyfilename, ".1.poly");
strcat(outelefilename, ".1.ele");
strcat(edgefilename, ".1.edge");
strcat(vnodefilename, ".1.v.node");
strcat(vedgefilename, ".1.v.edge");
strcat(neighborfilename, ".1.neigh");
strcat(offfilename, ".1.off");
}
else {
workstring[increment] = '%';
workstring[increment + 1] = 'd';
workstring[increment + 2] = '\0';
sprintf(outnodefilename, workstring, meshnumber + 1);
strcpy(outpolyfilename, outnodefilename);
strcpy(outelefilename, outnodefilename);
strcpy(edgefilename, outnodefilename);
strcpy(vnodefilename, outnodefilename);
strcpy(vedgefilename, outnodefilename);
strcpy(neighborfilename, outnodefilename);
strcpy(offfilename, outnodefilename);
strcat(outnodefilename, ".node");
strcat(outpolyfilename, ".poly");
strcat(outelefilename, ".ele");
strcat(edgefilename, ".edge");
strcat(vnodefilename, ".v.node");
strcat(vedgefilename, ".v.edge");
strcat(neighborfilename, ".neigh");
strcat(offfilename, ".off");
}
strcat(innodefilename, ".node");
strcat(inpolyfilename, ".poly");
strcat(inelefilename, ".ele");
strcat(areafilename, ".area");
#endif /* not TRILIBRARY */
}
/** **/
/** **/
/********* User interaction routines begin here *********/
/********* Debugging routines begin here *********/
/** **/
/** **/
/*****************************************************************************/
/* */
/* print_cast() Convert a pointer to an unsigned long integer for display */
/* */
/* This is used to avoid compiler warnings for those compilers that check */
/* and warn about potential 64-bit problems. */
/*****************************************************************************/
#if defined(_MSC_VER) && (_MSC_VER >= 1300)
# pragma warning( push )
/* warning C4311: 'type cast' : pointer truncation from 'void *' to 'unsigned long' */
# pragma warning( disable: 4311 )
#endif
static
unsigned long print_cast( void* p )
{
return (unsigned long)p;
}
#if defined(_MSC_VER) && (_MSC_VER >= 1300)
# pragma warning( pop )
#endif
/*****************************************************************************/
/* */
/* printtriangle() Print out the details of a triangle/edge handle. */
/* */
/* I originally wrote this procedure to simplify debugging; it can be */
/* called directly from the debugger, and presents information about a */
/* triangle/edge handle in digestible form. It's also used when the */
/* highest level of verbosity (`-VVV') is specified. */
/* */
/*****************************************************************************/
void printtriangle(struct triedge *t)
{
struct triedge printtri;
struct edge printsh;
point printpoint;
printf("triangle x%lx with orientation %d:\n", print_cast( t->tri ),
t->orient);
decode(t->tri[0], printtri);
if (printtri.tri == dummytri) {
printf(" [0] = Outer space\n");
}
else {
printf(" [0] = x%lx %d\n", print_cast( printtri.tri ),
printtri.orient);
}
decode(t->tri[1], printtri);
if (printtri.tri == dummytri) {
printf(" [1] = Outer space\n");
}
else {
printf(" [1] = x%lx %d\n", print_cast( printtri.tri ),
printtri.orient);
}
decode(t->tri[2], printtri);
if (printtri.tri == dummytri) {
printf(" [2] = Outer space\n");
}
else {
printf(" [2] = x%lx %d\n", print_cast( printtri.tri ),
printtri.orient);
}
org(*t, printpoint);
if (printpoint == (point) NULL)
printf(" Origin[%d] = NULL\n", (t->orient + 1) % 3 + 3);
else
printf(" Origin[%d] = x%lx (%.12g, %.12g)\n",
(t->orient + 1) % 3 + 3, print_cast( printpoint ),
printpoint[0], printpoint[1]);
dest(*t, printpoint);
if (printpoint == (point) NULL)
printf(" Dest [%d] = NULL\n", (t->orient + 2) % 3 + 3);
else
printf(" Dest [%d] = x%lx (%.12g, %.12g)\n",
(t->orient + 2) % 3 + 3, print_cast( printpoint ),
printpoint[0], printpoint[1]);
apex(*t, printpoint);
if (printpoint == (point) NULL)
printf(" Apex [%d] = NULL\n", t->orient + 3);
else
printf(" Apex [%d] = x%lx (%.12g, %.12g)\n",
t->orient + 3, print_cast( printpoint ),
printpoint[0], printpoint[1]);
if (useshelles) {
sdecode(t->tri[6], printsh);
if (printsh.sh != dummysh) {
printf(" [6] = x%lx %d\n", print_cast( printsh.sh ),
printsh.shorient);
}
sdecode(t->tri[7], printsh);
if (printsh.sh != dummysh) {
printf(" [7] = x%lx %d\n", print_cast( printsh.sh ),
printsh.shorient);
}
sdecode(t->tri[8], printsh);
if (printsh.sh != dummysh) {
printf(" [8] = x%lx %d\n", print_cast( printsh.sh ),
printsh.shorient);
}
}
if (vararea) {
printf(" Area constraint: %.4g\n", areabound(*t));
}
}
/*****************************************************************************/
/* */
/* printshelle() Print out the details of a shell edge handle. */
/* */
/* I originally wrote this procedure to simplify debugging; it can be */
/* called directly from the debugger, and presents information about a */
/* shell edge handle in digestible form. It's also used when the highest */
/* level of verbosity (`-VVV') is specified. */
/* */
/*****************************************************************************/
void printshelle(struct edge *s)
{
struct edge printsh;
struct triedge printtri;
point printpoint;
printf("shell edge x%lx with orientation %d and mark %d:\n",
print_cast( s->sh ), s->shorient, mark(*s));
sdecode(s->sh[0], printsh);
if (printsh.sh == dummysh) {
printf(" [0] = No shell\n");
}
else {
printf(" [0] = x%lx %d\n", print_cast( printsh.sh ),
printsh.shorient);
}
sdecode(s->sh[1], printsh);
if (printsh.sh == dummysh) {
printf(" [1] = No shell\n");
}
else {
printf(" [1] = x%lx %d\n", print_cast( printsh.sh ),
printsh.shorient);
}
sorg(*s, printpoint);
if (printpoint == (point) NULL)
printf(" Origin[%d] = NULL\n", 2 + s->shorient);
else
printf(" Origin[%d] = x%lx (%.12g, %.12g)\n",
2 + s->shorient, print_cast( printpoint ),
printpoint[0], printpoint[1]);
sdest(*s, printpoint);
if (printpoint == (point) NULL)
printf(" Dest [%d] = NULL\n", 3 - s->shorient);
else
printf(" Dest [%d] = x%lx (%.12g, %.12g)\n",
3 - s->shorient, print_cast( printpoint ),
printpoint[0], printpoint[1]);
decode(s->sh[4], printtri);
if (printtri.tri == dummytri) {
printf(" [4] = Outer space\n");
}
else {
printf(" [4] = x%lx %d\n", print_cast( printtri.tri ),
printtri.orient);
}
decode(s->sh[5], printtri);
if (printtri.tri == dummytri) {
printf(" [5] = Outer space\n");
}
else {
printf(" [5] = x%lx %d\n", print_cast( printtri.tri ),
printtri.orient);
}
}
/** **/
/** **/
/********* Debugging routines end here *********/
/********* Memory management routines begin here *********/
/** **/
/** **/
/*****************************************************************************/
/* */
/* poolinit() Initialize a pool of memory for allocation of items. */
/* */
/* This routine initializes the machinery for allocating items. A `pool' */
/* is created whose records have size at least `bytecount'. Items will be */
/* allocated in `itemcount'-item blocks. Each item is assumed to be a */
/* collection of words, and either pointers or floating-point values are */
/* assumed to be the "primary" word type. (The "primary" word type is used */
/* to determine alignment of items.) If `alignment' isn't zero, all items */
/* will be `alignment'-byte aligned in memory. `alignment' must be either */
/* a multiple or a factor of the primary word size; powers of two are safe. */
/* `alignment' is normally used to create a few unused bits at the bottom */
/* of each item's pointer, in which information may be stored. */
/* */
/* Don't change this routine unless you understand it. */
/* */
/*****************************************************************************/
void poolinit(struct memorypool *pool,
int bytecount,
int itemcount,
enum wordtype wtype,
int alignment)
{
int wordsize;
/* Initialize values in the pool. */
pool->itemwordtype = wtype;
wordsize = (pool->itemwordtype == POINTER) ? sizeof(VOID *) : sizeof(REAL);
/* Find the proper alignment, which must be at least as large as: */
/* - The parameter `alignment'. */
/* - The primary word type, to avoid unaligned accesses. */
/* - sizeof(VOID *), so the stack of dead items can be maintained */
/* without unaligned accesses. */
if (alignment > wordsize) {
pool->alignbytes = alignment;
}
else {
pool->alignbytes = wordsize;
}
if ((int)sizeof(VOID *) > pool->alignbytes) {
pool->alignbytes = sizeof(VOID *);
}
pool->itemwords = ((bytecount + pool->alignbytes - 1) / pool->alignbytes)
* (pool->alignbytes / wordsize);
pool->itembytes = pool->itemwords * wordsize;
pool->itemsperblock = itemcount;
/* Allocate a block of items. Space for `itemsperblock' items and one */
/* pointer (to point to the next block) are allocated, as well as space */
/* to ensure alignment of the items. */
pool->firstblock = (VOID **) malloc(pool->itemsperblock * pool->itembytes
+ sizeof(VOID *) + pool->alignbytes);
if (pool->firstblock == (VOID **) NULL) {
printf("Error: Out of memory.\n");
exit(1);
}
/* Set the next block pointer to NULL. */
*(pool->firstblock) = (VOID *) NULL;
poolrestart(pool);
}
/*****************************************************************************/
/* */
/* poolrestart() Deallocate all items in a pool. */
/* */
/* The pool is returned to its starting state, except that no memory is */
/* freed to the operating system. Rather, the previously allocated blocks */
/* are ready to be reused. */
/* */
/*****************************************************************************/
void poolrestart(struct memorypool *pool)
{
intptr_t alignptr;
pool->items = 0;
pool->maxitems = 0;
/* Set the currently active block. */
pool->nowblock = pool->firstblock;
/* Find the first item in the pool. Increment by the size of (VOID *). */
alignptr = (intptr_t) (pool->nowblock + 1);
/* Align the item on an `alignbytes'-byte boundary. */
pool->nextitem = (VOID *)
(alignptr + (intptr_t) pool->alignbytes
- (alignptr % (intptr_t) pool->alignbytes));
/* There are lots of unallocated items left in this block. */
pool->unallocateditems = pool->itemsperblock;
/* The stack of deallocated items is empty. */
pool->deaditemstack = (VOID *) NULL;
}
/*****************************************************************************/
/* */
/* pooldeinit() Free to the operating system all memory taken by a pool. */
/* */
/*****************************************************************************/
void pooldeinit(struct memorypool *pool)
{
while (pool->firstblock != (VOID **) NULL) {
pool->nowblock = (VOID **) *(pool->firstblock);
free(pool->firstblock);
pool->firstblock = pool->nowblock;
}
}
/*****************************************************************************/
/* */
/* poolalloc() Allocate space for an item. */
/* */
/*****************************************************************************/
VOID *poolalloc(struct memorypool *pool)
{
VOID *newitem;
VOID **newblock;
intptr_t alignptr;
/* First check the linked list of dead items. If the list is not */
/* empty, allocate an item from the list rather than a fresh one. */
if (pool->deaditemstack != (VOID *) NULL) {
newitem = pool->deaditemstack; /* Take first item in list. */
pool->deaditemstack = * (VOID **) pool->deaditemstack;
}
else {
/* Check if there are any free items left in the current block. */
if (pool->unallocateditems == 0) {
/* Check if another block must be allocated. */
if (*(pool->nowblock) == (VOID *) NULL) {
/* Allocate a new block of items, pointed to by the previous block. */
newblock = (VOID **) malloc(pool->itemsperblock * pool->itembytes
+ sizeof(VOID *) + pool->alignbytes);
if (newblock == (VOID **) NULL) {
printf("Error: Out of memory.\n");
exit(1);
}
*(pool->nowblock) = (VOID *) newblock;
/* The next block pointer is NULL. */
*newblock = (VOID *) NULL;
}
/* Move to the new block. */
pool->nowblock = (VOID **) *(pool->nowblock);
/* Find the first item in the block. */
/* Increment by the size of (VOID *). */
alignptr = (intptr_t) (pool->nowblock + 1);
/* Align the item on an `alignbytes'-byte boundary. */
pool->nextitem = (VOID *)
(alignptr + (intptr_t) pool->alignbytes
- (alignptr % (intptr_t) pool->alignbytes));
/* There are lots of unallocated items left in this block. */
pool->unallocateditems = pool->itemsperblock;
}
/* Allocate a new item. */
newitem = pool->nextitem;
/* Advance `nextitem' pointer to next free item in block. */
if (pool->itemwordtype == POINTER) {
pool->nextitem = (VOID *) ((VOID **) pool->nextitem + pool->itemwords);
}
else {
pool->nextitem = (VOID *) ((REAL *) pool->nextitem + pool->itemwords);
}
pool->unallocateditems--;
pool->maxitems++;
}
pool->items++;
return newitem;
}
/*****************************************************************************/
/* */
/* pooldealloc() Deallocate space for an item. */
/* */
/* The deallocated space is stored in a queue for later reuse. */
/* */
/*****************************************************************************/
void pooldealloc(struct memorypool *pool,
VOID *dyingitem)
{
/* Push freshly killed item onto stack. */
*((VOID **) dyingitem) = pool->deaditemstack;
pool->deaditemstack = dyingitem;
pool->items--;
}
/*****************************************************************************/
/* */
/* traversalinit() Prepare to traverse the entire list of items. */
/* */
/* This routine is used in conjunction with traverse(). */
/* */
/*****************************************************************************/
void traversalinit(pool)
struct memorypool *pool;
{
intptr_t alignptr;
/* Begin the traversal in the first block. */
pool->pathblock = pool->firstblock;
/* Find the first item in the block. Increment by the size of (VOID *). */
alignptr = (intptr_t) (pool->pathblock + 1);
/* Align with item on an `alignbytes'-byte boundary. */
pool->pathitem = (VOID *)
(alignptr + (intptr_t) pool->alignbytes
- (alignptr % (intptr_t) pool->alignbytes));
/* Set the number of items left in the current block. */
pool->pathitemsleft = pool->itemsperblock;
}
/*****************************************************************************/
/* */
/* traverse() Find the next item in the list. */
/* */
/* This routine is used in conjunction with traversalinit(). Be forewarned */
/* that this routine successively returns all items in the list, including */
/* deallocated ones on the deaditemqueue. It's up to you to figure out */
/* which ones are actually dead. Why? I don't want to allocate extra */
/* space just to demarcate dead items. It can usually be done more */
/* space-efficiently by a routine that knows something about the structure */
/* of the item. */
/* */
/*****************************************************************************/
VOID *traverse(struct memorypool *pool)
{
VOID *newitem;
intptr_t alignptr;
/* Stop upon exhausting the list of items. */
if (pool->pathitem == pool->nextitem) {
return (VOID *) NULL;
}
/* Check whether any untraversed items remain in the current block. */
if (pool->pathitemsleft == 0) {
/* Find the next block. */
pool->pathblock = (VOID **) *(pool->pathblock);
/* Find the first item in the block. Increment by the size of (VOID *). */
alignptr = (intptr_t) (pool->pathblock + 1);
/* Align with item on an `alignbytes'-byte boundary. */
pool->pathitem = (VOID *)
(alignptr + (intptr_t) pool->alignbytes
- (alignptr % (intptr_t) pool->alignbytes));
/* Set the number of items left in the current block. */
pool->pathitemsleft = pool->itemsperblock;
}
newitem = pool->pathitem;
/* Find the next item in the block. */
if (pool->itemwordtype == POINTER) {
pool->pathitem = (VOID *) ((VOID **) pool->pathitem + pool->itemwords);
}
else {
pool->pathitem = (VOID *) ((REAL *) pool->pathitem + pool->itemwords);
}
pool->pathitemsleft--;
return newitem;
}
/*****************************************************************************/
/* */
/* dummyinit() Initialize the triangle that fills "outer space" and the */
/* omnipresent shell edge. */
/* */
/* The triangle that fills "outer space", called `dummytri', is pointed to */
/* by every triangle and shell edge on a boundary (be it outer or inner) of */
/* the triangulation. Also, `dummytri' points to one of the triangles on */
/* the convex hull (until the holes and concavities are carved), making it */
/* possible to find a starting triangle for point location. */
/* */
/* The omnipresent shell edge, `dummysh', is pointed to by every triangle */
/* or shell edge that doesn't have a full complement of real shell edges */
/* to point to. */
/* */
/*****************************************************************************/
void dummyinit(int trianglewords,
int shellewords)
{
intptr_t alignptr;
/* `triwords' and `shwords' are used by the mesh manipulation primitives */
/* to extract orientations of triangles and shell edges from pointers. */
triwords = trianglewords; /* Initialize `triwords' once and for all. */
shwords = shellewords; /* Initialize `shwords' once and for all. */
/* Set up `dummytri', the `triangle' that occupies "outer space". */
dummytribase = (triangle *) malloc(triwords * sizeof(triangle)
+ triangles.alignbytes);
if (dummytribase == (triangle *) NULL) {
printf("Error: Out of memory.\n");
exit(1);
}
/* Align `dummytri' on a `triangles.alignbytes'-byte boundary. */
alignptr = (intptr_t) dummytribase;
dummytri = (triangle *)
(alignptr + (intptr_t) triangles.alignbytes
- (alignptr % (intptr_t) triangles.alignbytes));
/* Initialize the three adjoining triangles to be "outer space". These */
/* will eventually be changed by various bonding operations, but their */
/* values don't really matter, as long as they can legally be */
/* dereferenced. */
dummytri[0] = (triangle) dummytri;
dummytri[1] = (triangle) dummytri;
dummytri[2] = (triangle) dummytri;
/* Three NULL vertex points. */
dummytri[3] = (triangle) NULL;
dummytri[4] = (triangle) NULL;
dummytri[5] = (triangle) NULL;
if (useshelles) {
/* Set up `dummysh', the omnipresent "shell edge" pointed to by any */
/* triangle side or shell edge end that isn't attached to a real shell */
/* edge. */
dummyshbase = (shelle *) malloc(shwords * sizeof(shelle)
+ shelles.alignbytes);
if (dummyshbase == (shelle *) NULL) {
printf("Error: Out of memory.\n");
exit(1);
}
/* Align `dummysh' on a `shelles.alignbytes'-byte boundary. */
alignptr = (intptr_t) dummyshbase;
dummysh = (shelle *)
(alignptr + (intptr_t) shelles.alignbytes
- (alignptr % (intptr_t) shelles.alignbytes));
/* Initialize the two adjoining shell edges to be the omnipresent shell */
/* edge. These will eventually be changed by various bonding */
/* operations, but their values don't really matter, as long as they */
/* can legally be dereferenced. */
dummysh[0] = (shelle) dummysh;
dummysh[1] = (shelle) dummysh;
/* Two NULL vertex points. */
dummysh[2] = (shelle) NULL;
dummysh[3] = (shelle) NULL;
/* Initialize the two adjoining triangles to be "outer space". */
dummysh[4] = (shelle) dummytri;
dummysh[5] = (shelle) dummytri;
/* Set the boundary marker to zero. */
* (int *) (dummysh + 6) = 0;
/* Initialize the three adjoining shell edges of `dummytri' to be */
/* the omnipresent shell edge. */
dummytri[6] = (triangle) dummysh;
dummytri[7] = (triangle) dummysh;
dummytri[8] = (triangle) dummysh;
}
}
/*****************************************************************************/
/* */
/* initializepointpool() Calculate the size of the point data structure */
/* and initialize its memory pool. */
/* */
/* This routine also computes the `pointmarkindex' and `point2triindex' */
/* indices used to find values within each point. */
/* */
/*****************************************************************************/
void initializepointpool(void)
{
int pointsize;
/* The index within each point at which the boundary marker is found. */
/* Ensure the point marker is aligned to a sizeof(int)-byte address. */
pointmarkindex = ((mesh_dim + nextras) * sizeof(REAL) + sizeof(int) - 1)
/ sizeof(int);
pointsize = (pointmarkindex + 1) * sizeof(int);
if (poly) {
/* The index within each point at which a triangle pointer is found. */
/* Ensure the pointer is aligned to a sizeof(triangle)-byte address. */
point2triindex = (pointsize + sizeof(triangle) - 1) / sizeof(triangle);
pointsize = (point2triindex + 1) * sizeof(triangle);
}
/* Initialize the pool of points. */
poolinit(&points, pointsize, POINTPERBLOCK,
(sizeof(REAL) >= sizeof(triangle)) ? FLOATINGPOINT : POINTER, 0);
}
/*****************************************************************************/
/* */
/* initializetrisegpools() Calculate the sizes of the triangle and shell */
/* edge data structures and initialize their */
/* memory pools. */
/* */
/* This routine also computes the `highorderindex', `elemattribindex', and */
/* `areaboundindex' indices used to find values within each triangle. */
/* */
/*****************************************************************************/
void initializetrisegpools(void)
{
int trisize;
/* The index within each triangle at which the extra nodes (above three) */
/* associated with high order elements are found. There are three */
/* pointers to other triangles, three pointers to corners, and possibly */
/* three pointers to shell edges before the extra nodes. */
highorderindex = 6 + (useshelles * 3);
/* The number of bytes occupied by a triangle. */
trisize = ((order + 1) * (order + 2) / 2 + (highorderindex - 3)) *
sizeof(triangle);
/* The index within each triangle at which its attributes are found, */
/* where the index is measured in REALs. */
elemattribindex = (trisize + sizeof(REAL) - 1) / sizeof(REAL);
/* The index within each triangle at which the maximum area constraint */
/* is found, where the index is measured in REALs. Note that if the */
/* `regionattrib' flag is set, an additional attribute will be added. */
areaboundindex = elemattribindex + eextras + regionattrib;
/* If triangle attributes or an area bound are needed, increase the number */
/* of bytes occupied by a triangle. */
if (vararea) {
trisize = (areaboundindex + 1) * sizeof(REAL);
}
else if (eextras + regionattrib > 0) {
trisize = areaboundindex * sizeof(REAL);
}
/* If a Voronoi diagram or triangle neighbor graph is requested, make */
/* sure there's room to store an integer index in each triangle. This */
/* integer index can occupy the same space as the shell edges or */
/* attributes or area constraint or extra nodes. */
if ((voronoi || neighbors) &&
(trisize < 6 * (int)sizeof(triangle) + (int)sizeof(int))) {
trisize = 6 * sizeof(triangle) + sizeof(int);
}
/* Having determined the memory size of a triangle, initialize the pool. */
poolinit(&triangles, trisize, TRIPERBLOCK, POINTER, 4);
if (useshelles) {
/* Initialize the pool of shell edges. */
poolinit(&shelles, (int)(6 * sizeof(triangle) + sizeof(int)),
SHELLEPERBLOCK, POINTER, 4);
/* Initialize the "outer space" triangle and omnipresent shell edge. */
dummyinit(triangles.itemwords, shelles.itemwords);
}
else {
/* Initialize the "outer space" triangle. */
dummyinit(triangles.itemwords, 0);
}
}
/*****************************************************************************/
/* */
/* triangledealloc() Deallocate space for a triangle, marking it dead. */
/* */
/*****************************************************************************/
void triangledealloc(triangle *dyingtriangle)
{
/* Set triangle's vertices to NULL. This makes it possible to */
/* detect dead triangles when traversing the list of all triangles. */
dyingtriangle[3] = (triangle) NULL;
dyingtriangle[4] = (triangle) NULL;
dyingtriangle[5] = (triangle) NULL;
pooldealloc(&triangles, (VOID *) dyingtriangle);
}
/*****************************************************************************/
/* */
/* triangletraverse() Traverse the triangles, skipping dead ones. */
/* */
/*****************************************************************************/
triangle *triangletraverse(void)
{
triangle *newtriangle;
do {
newtriangle = (triangle *) traverse(&triangles);
if (newtriangle == (triangle *) NULL) {
return (triangle *) NULL;
}
} while (newtriangle[3] == (triangle) NULL); /* Skip dead ones. */
return newtriangle;
}
/*****************************************************************************/
/* */
/* shelledealloc() Deallocate space for a shell edge, marking it dead. */
/* */
/*****************************************************************************/
void shelledealloc(shelle *dyingshelle)
{
/* Set shell edge's vertices to NULL. This makes it possible to */
/* detect dead shells when traversing the list of all shells. */
dyingshelle[2] = (shelle) NULL;
dyingshelle[3] = (shelle) NULL;
pooldealloc(&shelles, (VOID *) dyingshelle);
}
/*****************************************************************************/
/* */
/* shelletraverse() Traverse the shell edges, skipping dead ones. */
/* */
/*****************************************************************************/
shelle *shelletraverse(void)
{
shelle *newshelle;
do {
newshelle = (shelle *) traverse(&shelles);
if (newshelle == (shelle *) NULL) {
return (shelle *) NULL;
}
} while (newshelle[2] == (shelle) NULL); /* Skip dead ones. */
return newshelle;
}
/*****************************************************************************/
/* */
/* pointdealloc() Deallocate space for a point, marking it dead. */
/* */
/*****************************************************************************/
void pointdealloc(point dyingpoint)
{
/* Mark the point as dead. This makes it possible to detect dead points */
/* when traversing the list of all points. */
setpointmark(dyingpoint, DEADPOINT);
pooldealloc(&points, (VOID *) dyingpoint);
}
/*****************************************************************************/
/* */
/* pointtraverse() Traverse the points, skipping dead ones. */
/* */
/*****************************************************************************/
point pointtraverse(void)
{
point newpoint;
do {
newpoint = (point) traverse(&points);
if (newpoint == (point) NULL) {
return (point) NULL;
}
} while (pointmark(newpoint) == DEADPOINT); /* Skip dead ones. */
return newpoint;
}
/*****************************************************************************/
/* */
/* badsegmentdealloc() Deallocate space for a bad segment, marking it */
/* dead. */
/* */
/*****************************************************************************/
#ifndef CDT_ONLY
void badsegmentdealloc(struct edge *dyingseg)
{
/* Set segment's orientation to -1. This makes it possible to */
/* detect dead segments when traversing the list of all segments. */
dyingseg->shorient = -1;
pooldealloc(&badsegments, (VOID *) dyingseg);
}
#endif /* not CDT_ONLY */
/*****************************************************************************/
/* */
/* badsegmenttraverse() Traverse the bad segments, skipping dead ones. */
/* */
/*****************************************************************************/
#ifndef CDT_ONLY
struct edge *badsegmenttraverse(void)
{
struct edge *newseg;
do {
newseg = (struct edge *) traverse(&badsegments);
if (newseg == (struct edge *) NULL) {
return (struct edge *) NULL;
}
} while (newseg->shorient == -1); /* Skip dead ones. */
return newseg;
}
#endif /* not CDT_ONLY */
/*****************************************************************************/
/* */
/* getpoint() Get a specific point, by number, from the list. */
/* */
/* The first point is number 'firstnumber'. */
/* */
/* Note that this takes O(n) time (with a small constant, if POINTPERBLOCK */
/* is large). I don't care to take the trouble to make it work in constant */
/* time. */
/* */
/*****************************************************************************/
point getpoint(int number)
{
VOID **getblock;
point foundpoint;
intptr_t alignptr;
int current;
getblock = points.firstblock;
current = firstnumber;
/* Find the right block. */
while (current + points.itemsperblock <= number) {
getblock = (VOID **) *getblock;
current += points.itemsperblock;
}
/* Now find the right point. */
alignptr = (intptr_t) (getblock + 1);
foundpoint = (point) (alignptr + (intptr_t) points.alignbytes
- (alignptr % (intptr_t) points.alignbytes));
while (current < number) {
foundpoint += points.itemwords;
current++;
}
return foundpoint;
}
/*****************************************************************************/
/* */
/* triangledeinit() Free all remaining allocated memory. */
/* */
/*****************************************************************************/
void triangledeinit(void)
{
pooldeinit(&triangles);
free(dummytribase);
if (useshelles) {
pooldeinit(&shelles);
free(dummyshbase);
}
pooldeinit(&points);
#ifndef CDT_ONLY
if (quality) {
pooldeinit(&badsegments);
if ((minangle > 0.0) || vararea || fixedarea) {
pooldeinit(&badtriangles);
}
}
#endif /* not CDT_ONLY */
}
/** **/
/** **/
/********* Memory management routines end here *********/
/********* Constructors begin here *********/
/** **/
/** **/
/*****************************************************************************/
/* */
/* maketriangle() Create a new triangle with orientation zero. */
/* */
/*****************************************************************************/
void maketriangle(struct triedge *newtriedge)
{
int i;
newtriedge->tri = (triangle *) poolalloc(&triangles);
/* Initialize the three adjoining triangles to be "outer space". */
newtriedge->tri[0] = (triangle) dummytri;
newtriedge->tri[1] = (triangle) dummytri;
newtriedge->tri[2] = (triangle) dummytri;
/* Three NULL vertex points. */
newtriedge->tri[3] = (triangle) NULL;
newtriedge->tri[4] = (triangle) NULL;
newtriedge->tri[5] = (triangle) NULL;
/* Initialize the three adjoining shell edges to be the omnipresent */
/* shell edge. */
if (useshelles) {
newtriedge->tri[6] = (triangle) dummysh;
newtriedge->tri[7] = (triangle) dummysh;
newtriedge->tri[8] = (triangle) dummysh;
}
for (i = 0; i < eextras; i++) {
setelemattribute(*newtriedge, i, 0.0);
}
if (vararea) {
setareabound(*newtriedge, -1.0);
}
newtriedge->orient = 0;
}
/*****************************************************************************/
/* */
/* makeshelle() Create a new shell edge with orientation zero. */
/* */
/*****************************************************************************/
void makeshelle(struct edge *newedge)
{
newedge->sh = (shelle *) poolalloc(&shelles);
/* Initialize the two adjoining shell edges to be the omnipresent */
/* shell edge. */
newedge->sh[0] = (shelle) dummysh;
newedge->sh[1] = (shelle) dummysh;
/* Two NULL vertex points. */
newedge->sh[2] = (shelle) NULL;
newedge->sh[3] = (shelle) NULL;
/* Initialize the two adjoining triangles to be "outer space". */
newedge->sh[4] = (shelle) dummytri;
newedge->sh[5] = (shelle) dummytri;
/* Set the boundary marker to zero. */
setmark(*newedge, 0);
newedge->shorient = 0;
}
/** **/
/** **/
/********* Constructors end here *********/
/********* Determinant evaluation routines begin here *********/
/** **/
/** **/
/* The adaptive exact arithmetic geometric predicates implemented herein are */
/* described in detail in my Technical Report CMU-CS-96-140. The complete */
/* reference is given in the header. */
/* Which of the following two methods of finding the absolute values is */
/* fastest is compiler-dependent. A few compilers can inline and optimize */
/* the fabs() call; but most will incur the overhead of a function call, */
/* which is disastrously slow. A faster way on IEEE machines might be to */
/* mask the appropriate bit, but that's difficult to do in C. */
#define Absolute(a) ((a) >= 0.0 ? (a) : -(a))
/* #define Absolute(a) fabs(a) */
/* Many of the operations are broken up into two pieces, a main part that */
/* performs an approximate operation, and a "tail" that computes the */
/* roundoff error of that operation. */
/* */
/* The operations Fast_Two_Sum(), Fast_Two_Diff(), Two_Sum(), Two_Diff(), */
/* Split(), and Two_Product() are all implemented as described in the */
/* reference. Each of these macros requires certain variables to be */
/* defined in the calling routine. The variables `bvirt', `c', `abig', */
/* `_i', `_j', `_k', `_l', `_m', and `_n' are declared `INEXACT' because */
/* they store the result of an operation that may incur roundoff error. */
/* The input parameter `x' (or the highest numbered `x_' parameter) must */
/* also be declared `INEXACT'. */
#define Fast_Two_Sum_Tail(a, b, x, y) \
bvirt = x - a; \
y = b - bvirt
#define Fast_Two_Sum(a, b, x, y) \
x = (REAL) (a + b); \
Fast_Two_Sum_Tail(a, b, x, y)
#define Two_Sum_Tail(a, b, x, y) \
bvirt = (REAL) (x - a); \
avirt = x - bvirt; \
bround = b - bvirt; \
around = a - avirt; \
y = around + bround
#define Two_Sum(a, b, x, y) \
x = (REAL) (a + b); \
Two_Sum_Tail(a, b, x, y)
#define Two_Diff_Tail(a, b, x, y) \
bvirt = (REAL) (a - x); \
avirt = x + bvirt; \
bround = bvirt - b; \
around = a - avirt; \
y = around + bround
#define Two_Diff(a, b, x, y) \
x = (REAL) (a - b); \
Two_Diff_Tail(a, b, x, y)
#define Split(a, ahi, alo) \
c = (REAL) (splitter * a); \
abig = (REAL) (c - a); \
ahi = c - abig; \
alo = a - ahi
#define Two_Product_Tail(a, b, x, y) \
Split(a, ahi, alo); \
Split(b, bhi, blo); \
err1 = x - (ahi * bhi); \
err2 = err1 - (alo * bhi); \
err3 = err2 - (ahi * blo); \
y = (alo * blo) - err3
#define Two_Product(a, b, x, y) \
x = (REAL) (a * b); \
Two_Product_Tail(a, b, x, y)
/* Two_Product_Presplit() is Two_Product() where one of the inputs has */
/* already been split. Avoids redundant splitting. */
#define Two_Product_Presplit(a, b, bhi, blo, x, y) \
x = (REAL) (a * b); \
Split(a, ahi, alo); \
err1 = x - (ahi * bhi); \
err2 = err1 - (alo * bhi); \
err3 = err2 - (ahi * blo); \
y = (alo * blo) - err3
/* Square() can be done more quickly than Two_Product(). */
#define Square_Tail(a, x, y) \
Split(a, ahi, alo); \
err1 = x - (ahi * ahi); \
err3 = err1 - ((ahi + ahi) * alo); \
y = (alo * alo) - err3
#define Square(a, x, y) \
x = (REAL) (a * a); \
Square_Tail(a, x, y)
/* Macros for summing expansions of various fixed lengths. These are all */
/* unrolled versions of Expansion_Sum(). */
#define Two_One_Sum(a1, a0, b, x2, x1, x0) \
Two_Sum(a0, b , _i, x0); \
Two_Sum(a1, _i, x2, x1)
#define Two_One_Diff(a1, a0, b, x2, x1, x0) \
Two_Diff(a0, b , _i, x0); \
Two_Sum( a1, _i, x2, x1)
#define Two_Two_Sum(a1, a0, b1, b0, x3, x2, x1, x0) \
Two_One_Sum(a1, a0, b0, _j, _0, x0); \
Two_One_Sum(_j, _0, b1, x3, x2, x1)
#define Two_Two_Diff(a1, a0, b1, b0, x3, x2, x1, x0) \
Two_One_Diff(a1, a0, b0, _j, _0, x0); \
Two_One_Diff(_j, _0, b1, x3, x2, x1)
/*****************************************************************************/
/* */
/* exactinit() Initialize the variables used for exact arithmetic. */
/* */
/* `epsilon' is the largest power of two such that 1.0 + epsilon = 1.0 in */
/* floating-point arithmetic. `epsilon' bounds the relative roundoff */
/* error. It is used for floating-point error analysis. */
/* */
/* `splitter' is used to split floating-point numbers into two half- */
/* length significands for exact multiplication. */
/* */
/* I imagine that a highly optimizing compiler might be too smart for its */
/* own good, and somehow cause this routine to fail, if it pretends that */
/* floating-point arithmetic is too much like real arithmetic. */
/* */
/* Don't change this routine unless you fully understand it. */
/* */
/*****************************************************************************/
void exactinit(void)
{
REAL half;
REAL check, lastcheck;
int every_other;
every_other = 1;
half = 0.5;
epsilon = 1.0;
splitter = 1.0;
check = 1.0;
/* Repeatedly divide `epsilon' by two until it is too small to add to */
/* one without causing roundoff. (Also check if the sum is equal to */
/* the previous sum, for machines that round up instead of using exact */
/* rounding. Not that these routines will work on such machines anyway. */
do {
lastcheck = check;
epsilon *= half;
if (every_other) {
splitter *= 2.0;
}
every_other = !every_other;
check = 1.0 + epsilon;
} while ((check != 1.0) && (check != lastcheck));
splitter += 1.0;
if (verbose > 1) {
printf("Floating point roundoff is of magnitude %.17g\n", epsilon);
printf("Floating point splitter is %.17g\n", splitter);
}
/* Error bounds for orientation and incircle tests. */
resulterrbound = (3.0 + 8.0 * epsilon) * epsilon;
ccwerrboundA = (3.0 + 16.0 * epsilon) * epsilon;
ccwerrboundB = (2.0 + 12.0 * epsilon) * epsilon;
ccwerrboundC = (9.0 + 64.0 * epsilon) * epsilon * epsilon;
iccerrboundA = (10.0 + 96.0 * epsilon) * epsilon;
iccerrboundB = (4.0 + 48.0 * epsilon) * epsilon;
iccerrboundC = (44.0 + 576.0 * epsilon) * epsilon * epsilon;
}
/*****************************************************************************/
/* */
/* fast_expansion_sum_zeroelim() Sum two expansions, eliminating zero */
/* components from the output expansion. */
/* */
/* Sets h = e + f. See my Robust Predicates paper for details. */
/* */
/* If round-to-even is used (as with IEEE 754), maintains the strongly */
/* nonoverlapping property. (That is, if e is strongly nonoverlapping, h */
/* will be also.) Does NOT maintain the nonoverlapping or nonadjacent */
/* properties. */
/* */
/*****************************************************************************/
int fast_expansion_sum_zeroelim(int elen, REAL *e, int flen, REAL *f, REAL *h) /* h cannot be e or f. */
{
REAL Q;
INEXACT REAL Qnew;
INEXACT REAL hh;
INEXACT REAL bvirt;
REAL avirt, bround, around;
int eindex, findex, hindex;
REAL enow, fnow;
enow = e[0];
fnow = f[0];
eindex = findex = 0;
if ((fnow > enow) == (fnow > -enow)) {
Q = enow;
enow = e[++eindex];
}
else {
Q = fnow;
fnow = f[++findex];
}
hindex = 0;
if ((eindex < elen) && (findex < flen)) {
if ((fnow > enow) == (fnow > -enow)) {
Fast_Two_Sum(enow, Q, Qnew, hh);
enow = e[++eindex];
}
else {
Fast_Two_Sum(fnow, Q, Qnew, hh);
fnow = f[++findex];
}
Q = Qnew;
if (hh != 0.0) {
h[hindex++] = hh;
}
while ((eindex < elen) && (findex < flen)) {
if ((fnow > enow) == (fnow > -enow)) {
Two_Sum(Q, enow, Qnew, hh);
enow = e[++eindex];
}
else {
Two_Sum(Q, fnow, Qnew, hh);
fnow = f[++findex];
}
Q = Qnew;
if (hh != 0.0) {
h[hindex++] = hh;
}
}
}
while (eindex < elen) {
Two_Sum(Q, enow, Qnew, hh);
enow = e[++eindex];
Q = Qnew;
if (hh != 0.0) {
h[hindex++] = hh;
}
}
while (findex < flen) {
Two_Sum(Q, fnow, Qnew, hh);
fnow = f[++findex];
Q = Qnew;
if (hh != 0.0) {
h[hindex++] = hh;
}
}
if ((Q != 0.0) || (hindex == 0)) {
h[hindex++] = Q;
}
return hindex;
}
/*****************************************************************************/
/* */
/* scale_expansion_zeroelim() Multiply an expansion by a scalar, */
/* eliminating zero components from the */
/* output expansion. */
/* */
/* Sets h = be. See my Robust Predicates paper for details. */
/* */
/* Maintains the nonoverlapping property. If round-to-even is used (as */
/* with IEEE 754), maintains the strongly nonoverlapping and nonadjacent */
/* properties as well. (That is, if e has one of these properties, so */
/* will h.) */
/* */
/*****************************************************************************/
int scale_expansion_zeroelim(int elen, REAL *e, REAL b, REAL *h) /* e and h cannot be the same. */
{
INEXACT REAL Q, sum;
REAL hh;
INEXACT REAL product1;
REAL product0;
int eindex, hindex;
REAL enow;
INEXACT REAL bvirt;
REAL avirt, bround, around;
INEXACT REAL c;
INEXACT REAL abig;
REAL ahi, alo, bhi, blo;
REAL err1, err2, err3;
Split(b, bhi, blo);
Two_Product_Presplit(e[0], b, bhi, blo, Q, hh);
hindex = 0;
if (hh != 0) {
h[hindex++] = hh;
}
for (eindex = 1; eindex < elen; eindex++) {
enow = e[eindex];
Two_Product_Presplit(enow, b, bhi, blo, product1, product0);
Two_Sum(Q, product0, sum, hh);
if (hh != 0) {
h[hindex++] = hh;
}
Fast_Two_Sum(product1, sum, Q, hh);
if (hh != 0) {
h[hindex++] = hh;
}
}
if ((Q != 0.0) || (hindex == 0)) {
h[hindex++] = Q;
}
return hindex;
}
/*****************************************************************************/
/* */
/* estimate() Produce a one-word estimate of an expansion's value. */
/* */
/* See my Robust Predicates paper for details. */
/* */
/*****************************************************************************/
REAL estimate(int elen, REAL *e)
{
REAL Q;
int eindex;
Q = e[0];
for (eindex = 1; eindex < elen; eindex++) {
Q += e[eindex];
}
return Q;
}
/*****************************************************************************/
/* */
/* counterclockwise() Return a positive value if the points pa, pb, and */
/* pc occur in counterclockwise order; a negative */
/* value if they occur in clockwise order; and zero */
/* if they are collinear. The result is also a rough */
/* approximation of twice the signed area of the */
/* triangle defined by the three points. */
/* */
/* Uses exact arithmetic if necessary to ensure a correct answer. The */
/* result returned is the determinant of a matrix. This determinant is */
/* computed adaptively, in the sense that exact arithmetic is used only to */
/* the degree it is needed to ensure that the returned value has the */
/* correct sign. Hence, this function is usually quite fast, but will run */
/* more slowly when the input points are collinear or nearly so. */
/* */
/* See my Robust Predicates paper for details. */
/* */
/*****************************************************************************/
REAL counterclockwiseadapt(point pa,
point pb,
point pc,
REAL detsum)
{
INEXACT REAL acx, acy, bcx, bcy;
REAL acxtail, acytail, bcxtail, bcytail;
INEXACT REAL detleft, detright;
REAL detlefttail, detrighttail;
REAL det, errbound;
REAL B[4], C1[8], C2[12], D[16];
INEXACT REAL B3;
int C1length, C2length, Dlength;
REAL u[4];
INEXACT REAL u3;
INEXACT REAL s1, t1;
REAL s0, t0;
INEXACT REAL bvirt;
REAL avirt, bround, around;
INEXACT REAL c;
INEXACT REAL abig;
REAL ahi, alo, bhi, blo;
REAL err1, err2, err3;
INEXACT REAL _i, _j;
REAL _0;
acx = (REAL) (pa[0] - pc[0]);
bcx = (REAL) (pb[0] - pc[0]);
acy = (REAL) (pa[1] - pc[1]);
bcy = (REAL) (pb[1] - pc[1]);
Two_Product(acx, bcy, detleft, detlefttail);
Two_Product(acy, bcx, detright, detrighttail);
Two_Two_Diff(detleft, detlefttail, detright, detrighttail,
B3, B[2], B[1], B[0]);
B[3] = B3;
det = estimate(4, B);
errbound = ccwerrboundB * detsum;
if ((det >= errbound) || (-det >= errbound)) {
return det;
}
Two_Diff_Tail(pa[0], pc[0], acx, acxtail);
Two_Diff_Tail(pb[0], pc[0], bcx, bcxtail);
Two_Diff_Tail(pa[1], pc[1], acy, acytail);
Two_Diff_Tail(pb[1], pc[1], bcy, bcytail);
if ((acxtail == 0.0) && (acytail == 0.0)
&& (bcxtail == 0.0) && (bcytail == 0.0)) {
return det;
}
errbound = ccwerrboundC * detsum + resulterrbound * Absolute(det);
det += (acx * bcytail + bcy * acxtail)
- (acy * bcxtail + bcx * acytail);
if ((det >= errbound) || (-det >= errbound)) {
return det;
}
Two_Product(acxtail, bcy, s1, s0);
Two_Product(acytail, bcx, t1, t0);
Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]);
u[3] = u3;
C1length = fast_expansion_sum_zeroelim(4, B, 4, u, C1);
Two_Product(acx, bcytail, s1, s0);
Two_Product(acy, bcxtail, t1, t0);
Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]);
u[3] = u3;
C2length = fast_expansion_sum_zeroelim(C1length, C1, 4, u, C2);
Two_Product(acxtail, bcytail, s1, s0);
Two_Product(acytail, bcxtail, t1, t0);
Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]);
u[3] = u3;
Dlength = fast_expansion_sum_zeroelim(C2length, C2, 4, u, D);
return D[Dlength - 1];
}
REAL counterclockwise(point pa,
point pb,
point pc)
{
REAL detleft, detright, det;
REAL detsum, errbound;
counterclockcount++;
detleft = (pa[0] - pc[0]) * (pb[1] - pc[1]);
detright = (pa[1] - pc[1]) * (pb[0] - pc[0]);
det = detleft - detright;
if (noexact) {
return det;
}
if (detleft > 0.0) {
if (detright <= 0.0) {
return det;
}
else {
detsum = detleft + detright;
}
}
else if (detleft < 0.0) {
if (detright >= 0.0) {
return det;
}
else {
detsum = -detleft - detright;
}
}
else {
return det;
}
errbound = ccwerrboundA * detsum;
if ((det >= errbound) || (-det >= errbound)) {
return det;
}
return counterclockwiseadapt(pa, pb, pc, detsum);
}
/*****************************************************************************/
/* */
/* incircle() Return a positive value if the point pd lies inside the */
/* circle passing through pa, pb, and pc; a negative value if */
/* it lies outside; and zero if the four points are cocircular.*/
/* The points pa, pb, and pc must be in counterclockwise */
/* order, or the sign of the result will be reversed. */
/* */
/* Uses exact arithmetic if necessary to ensure a correct answer. The */
/* result returned is the determinant of a matrix. This determinant is */
/* computed adaptively, in the sense that exact arithmetic is used only to */
/* the degree it is needed to ensure that the returned value has the */
/* correct sign. Hence, this function is usually quite fast, but will run */
/* more slowly when the input points are cocircular or nearly so. */
/* */
/* See my Robust Predicates paper for details. */
/* */
/*****************************************************************************/
REAL incircleadapt(point pa,
point pb,
point pc,
point pd,
REAL permanent)
{
INEXACT REAL adx, bdx, cdx, ady, bdy, cdy;
REAL det, errbound;
INEXACT REAL bdxcdy1, cdxbdy1, cdxady1, adxcdy1, adxbdy1, bdxady1;
REAL bdxcdy0, cdxbdy0, cdxady0, adxcdy0, adxbdy0, bdxady0;
REAL bc[4], ca[4], ab[4];
INEXACT REAL bc3, ca3, ab3;
REAL axbc[8], axxbc[16], aybc[8], ayybc[16], adet[32];
int axbclen, axxbclen, aybclen, ayybclen, alen;
REAL bxca[8], bxxca[16], byca[8], byyca[16], bdet[32];
int bxcalen, bxxcalen, bycalen, byycalen, blen;
REAL cxab[8], cxxab[16], cyab[8], cyyab[16], cdet[32];
int cxablen, cxxablen, cyablen, cyyablen, clen;
REAL abdet[64];
int ablen;
REAL fin1[1152], fin2[1152];
REAL *finnow, *finother, *finswap;
int finlength;
REAL adxtail, bdxtail, cdxtail, adytail, bdytail, cdytail;
INEXACT REAL adxadx1, adyady1, bdxbdx1, bdybdy1, cdxcdx1, cdycdy1;
REAL adxadx0, adyady0, bdxbdx0, bdybdy0, cdxcdx0, cdycdy0;
REAL aa[4], bb[4], cc[4];
INEXACT REAL aa3, bb3, cc3;
INEXACT REAL ti1, tj1;
REAL ti0, tj0;
REAL u[4], v[4];
INEXACT REAL u3, v3;
REAL temp8[8], temp16a[16], temp16b[16], temp16c[16];
REAL temp32a[32], temp32b[32], temp48[48], temp64[64];
int temp8len, temp16alen, temp16blen, temp16clen;
int temp32alen, temp32blen, temp48len, temp64len;
REAL axtbb[8], axtcc[8], aytbb[8], aytcc[8];
int axtbblen, axtcclen, aytbblen, aytcclen;
REAL bxtaa[8], bxtcc[8], bytaa[8], bytcc[8];
int bxtaalen, bxtcclen, bytaalen, bytcclen;
REAL cxtaa[8], cxtbb[8], cytaa[8], cytbb[8];
int cxtaalen, cxtbblen, cytaalen, cytbblen;
REAL axtbc[8], aytbc[8], bxtca[8], bytca[8], cxtab[8], cytab[8];
int axtbclen=0, aytbclen=0, bxtcalen=0, bytcalen=0, cxtablen=0, cytablen=0;
REAL axtbct[16], aytbct[16], bxtcat[16], bytcat[16], cxtabt[16], cytabt[16];
int axtbctlen, aytbctlen, bxtcatlen, bytcatlen, cxtabtlen, cytabtlen;
REAL axtbctt[8], aytbctt[8], bxtcatt[8];
REAL bytcatt[8], cxtabtt[8], cytabtt[8];
int axtbcttlen, aytbcttlen, bxtcattlen, bytcattlen, cxtabttlen, cytabttlen;
REAL abt[8], bct[8], cat[8];
int abtlen, bctlen, catlen;
REAL abtt[4], bctt[4], catt[4];
int abttlen, bcttlen, cattlen;
INEXACT REAL abtt3, bctt3, catt3;
REAL negate;
INEXACT REAL bvirt;
REAL avirt, bround, around;
INEXACT REAL c;
INEXACT REAL abig;
REAL ahi, alo, bhi, blo;
REAL err1, err2, err3;
INEXACT REAL _i, _j;
REAL _0;
adx = (REAL) (pa[0] - pd[0]);
bdx = (REAL) (pb[0] - pd[0]);
cdx = (REAL) (pc[0] - pd[0]);
ady = (REAL) (pa[1] - pd[1]);
bdy = (REAL) (pb[1] - pd[1]);
cdy = (REAL) (pc[1] - pd[1]);
Two_Product(bdx, cdy, bdxcdy1, bdxcdy0);
Two_Product(cdx, bdy, cdxbdy1, cdxbdy0);
Two_Two_Diff(bdxcdy1, bdxcdy0, cdxbdy1, cdxbdy0, bc3, bc[2], bc[1], bc[0]);
bc[3] = bc3;
axbclen = scale_expansion_zeroelim(4, bc, adx, axbc);
axxbclen = scale_expansion_zeroelim(axbclen, axbc, adx, axxbc);
aybclen = scale_expansion_zeroelim(4, bc, ady, aybc);
ayybclen = scale_expansion_zeroelim(aybclen, aybc, ady, ayybc);
alen = fast_expansion_sum_zeroelim(axxbclen, axxbc, ayybclen, ayybc, adet);
Two_Product(cdx, ady, cdxady1, cdxady0);
Two_Product(adx, cdy, adxcdy1, adxcdy0);
Two_Two_Diff(cdxady1, cdxady0, adxcdy1, adxcdy0, ca3, ca[2], ca[1], ca[0]);
ca[3] = ca3;
bxcalen = scale_expansion_zeroelim(4, ca, bdx, bxca);
bxxcalen = scale_expansion_zeroelim(bxcalen, bxca, bdx, bxxca);
bycalen = scale_expansion_zeroelim(4, ca, bdy, byca);
byycalen = scale_expansion_zeroelim(bycalen, byca, bdy, byyca);
blen = fast_expansion_sum_zeroelim(bxxcalen, bxxca, byycalen, byyca, bdet);
Two_Product(adx, bdy, adxbdy1, adxbdy0);
Two_Product(bdx, ady, bdxady1, bdxady0);
Two_Two_Diff(adxbdy1, adxbdy0, bdxady1, bdxady0, ab3, ab[2], ab[1], ab[0]);
ab[3] = ab3;
cxablen = scale_expansion_zeroelim(4, ab, cdx, cxab);
cxxablen = scale_expansion_zeroelim(cxablen, cxab, cdx, cxxab);
cyablen = scale_expansion_zeroelim(4, ab, cdy, cyab);
cyyablen = scale_expansion_zeroelim(cyablen, cyab, cdy, cyyab);
clen = fast_expansion_sum_zeroelim(cxxablen, cxxab, cyyablen, cyyab, cdet);
ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet);
finlength = fast_expansion_sum_zeroelim(ablen, abdet, clen, cdet, fin1);
det = estimate(finlength, fin1);
errbound = iccerrboundB * permanent;
if ((det >= errbound) || (-det >= errbound)) {
return det;
}
Two_Diff_Tail(pa[0], pd[0], adx, adxtail);
Two_Diff_Tail(pa[1], pd[1], ady, adytail);
Two_Diff_Tail(pb[0], pd[0], bdx, bdxtail);
Two_Diff_Tail(pb[1], pd[1], bdy, bdytail);
Two_Diff_Tail(pc[0], pd[0], cdx, cdxtail);
Two_Diff_Tail(pc[1], pd[1], cdy, cdytail);
if ((adxtail == 0.0) && (bdxtail == 0.0) && (cdxtail == 0.0)
&& (adytail == 0.0) && (bdytail == 0.0) && (cdytail == 0.0)) {
return det;
}
errbound = iccerrboundC * permanent + resulterrbound * Absolute(det);
det += ((adx * adx + ady * ady) * ((bdx * cdytail + cdy * bdxtail)
- (bdy * cdxtail + cdx * bdytail))
+ 2.0 * (adx * adxtail + ady * adytail) * (bdx * cdy - bdy * cdx))
+ ((bdx * bdx + bdy * bdy) * ((cdx * adytail + ady * cdxtail)
- (cdy * adxtail + adx * cdytail))
+ 2.0 * (bdx * bdxtail + bdy * bdytail) * (cdx * ady - cdy * adx))
+ ((cdx * cdx + cdy * cdy) * ((adx * bdytail + bdy * adxtail)
- (ady * bdxtail + bdx * adytail))
+ 2.0 * (cdx * cdxtail + cdy * cdytail) * (adx * bdy - ady * bdx));
if ((det >= errbound) || (-det >= errbound)) {
return det;
}
finnow = fin1;
finother = fin2;
if ((bdxtail != 0.0) || (bdytail != 0.0)
|| (cdxtail != 0.0) || (cdytail != 0.0)) {
Square(adx, adxadx1, adxadx0);
Square(ady, adyady1, adyady0);
Two_Two_Sum(adxadx1, adxadx0, adyady1, adyady0, aa3, aa[2], aa[1], aa[0]);
aa[3] = aa3;
}
if ((cdxtail != 0.0) || (cdytail != 0.0)
|| (adxtail != 0.0) || (adytail != 0.0)) {
Square(bdx, bdxbdx1, bdxbdx0);
Square(bdy, bdybdy1, bdybdy0);
Two_Two_Sum(bdxbdx1, bdxbdx0, bdybdy1, bdybdy0, bb3, bb[2], bb[1], bb[0]);
bb[3] = bb3;
}
if ((adxtail != 0.0) || (adytail != 0.0)
|| (bdxtail != 0.0) || (bdytail != 0.0)) {
Square(cdx, cdxcdx1, cdxcdx0);
Square(cdy, cdycdy1, cdycdy0);
Two_Two_Sum(cdxcdx1, cdxcdx0, cdycdy1, cdycdy0, cc3, cc[2], cc[1], cc[0]);
cc[3] = cc3;
}
if (adxtail != 0.0) {
axtbclen = scale_expansion_zeroelim(4, bc, adxtail, axtbc);
temp16alen = scale_expansion_zeroelim(axtbclen, axtbc, 2.0 * adx, temp16a);
axtcclen = scale_expansion_zeroelim(4, cc, adxtail, axtcc);
temp16blen = scale_expansion_zeroelim(axtcclen, axtcc, bdy, temp16b);
axtbblen = scale_expansion_zeroelim(4, bb, adxtail, axtbb);
temp16clen = scale_expansion_zeroelim(axtbblen, axtbb, -cdy, temp16c);
temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
temp16blen, temp16b, temp32a);
temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
temp32alen, temp32a, temp48);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
temp48, finother);
finswap = finnow; finnow = finother; finother = finswap;
}
if (adytail != 0.0) {
aytbclen = scale_expansion_zeroelim(4, bc, adytail, aytbc);
temp16alen = scale_expansion_zeroelim(aytbclen, aytbc, 2.0 * ady, temp16a);
aytbblen = scale_expansion_zeroelim(4, bb, adytail, aytbb);
temp16blen = scale_expansion_zeroelim(aytbblen, aytbb, cdx, temp16b);
aytcclen = scale_expansion_zeroelim(4, cc, adytail, aytcc);
temp16clen = scale_expansion_zeroelim(aytcclen, aytcc, -bdx, temp16c);
temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
temp16blen, temp16b, temp32a);
temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
temp32alen, temp32a, temp48);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
temp48, finother);
finswap = finnow; finnow = finother; finother = finswap;
}
if (bdxtail != 0.0) {
bxtcalen = scale_expansion_zeroelim(4, ca, bdxtail, bxtca);
temp16alen = scale_expansion_zeroelim(bxtcalen, bxtca, 2.0 * bdx, temp16a);
bxtaalen = scale_expansion_zeroelim(4, aa, bdxtail, bxtaa);
temp16blen = scale_expansion_zeroelim(bxtaalen, bxtaa, cdy, temp16b);
bxtcclen = scale_expansion_zeroelim(4, cc, bdxtail, bxtcc);
temp16clen = scale_expansion_zeroelim(bxtcclen, bxtcc, -ady, temp16c);
temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
temp16blen, temp16b, temp32a);
temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
temp32alen, temp32a, temp48);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
temp48, finother);
finswap = finnow; finnow = finother; finother = finswap;
}
if (bdytail != 0.0) {
bytcalen = scale_expansion_zeroelim(4, ca, bdytail, bytca);
temp16alen = scale_expansion_zeroelim(bytcalen, bytca, 2.0 * bdy, temp16a);
bytcclen = scale_expansion_zeroelim(4, cc, bdytail, bytcc);
temp16blen = scale_expansion_zeroelim(bytcclen, bytcc, adx, temp16b);
bytaalen = scale_expansion_zeroelim(4, aa, bdytail, bytaa);
temp16clen = scale_expansion_zeroelim(bytaalen, bytaa, -cdx, temp16c);
temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
temp16blen, temp16b, temp32a);
temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
temp32alen, temp32a, temp48);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
temp48, finother);
finswap = finnow; finnow = finother; finother = finswap;
}
if (cdxtail != 0.0) {
cxtablen = scale_expansion_zeroelim(4, ab, cdxtail, cxtab);
temp16alen = scale_expansion_zeroelim(cxtablen, cxtab, 2.0 * cdx, temp16a);
cxtbblen = scale_expansion_zeroelim(4, bb, cdxtail, cxtbb);
temp16blen = scale_expansion_zeroelim(cxtbblen, cxtbb, ady, temp16b);
cxtaalen = scale_expansion_zeroelim(4, aa, cdxtail, cxtaa);
temp16clen = scale_expansion_zeroelim(cxtaalen, cxtaa, -bdy, temp16c);
temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
temp16blen, temp16b, temp32a);
temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
temp32alen, temp32a, temp48);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
temp48, finother);
finswap = finnow; finnow = finother; finother = finswap;
}
if (cdytail != 0.0) {
cytablen = scale_expansion_zeroelim(4, ab, cdytail, cytab);
temp16alen = scale_expansion_zeroelim(cytablen, cytab, 2.0 * cdy, temp16a);
cytaalen = scale_expansion_zeroelim(4, aa, cdytail, cytaa);
temp16blen = scale_expansion_zeroelim(cytaalen, cytaa, bdx, temp16b);
cytbblen = scale_expansion_zeroelim(4, bb, cdytail, cytbb);
temp16clen = scale_expansion_zeroelim(cytbblen, cytbb, -adx, temp16c);
temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
temp16blen, temp16b, temp32a);
temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
temp32alen, temp32a, temp48);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
temp48, finother);
finswap = finnow; finnow = finother; finother = finswap;
}
if ((adxtail != 0.0) || (adytail != 0.0)) {
if ((bdxtail != 0.0) || (bdytail != 0.0)
|| (cdxtail != 0.0) || (cdytail != 0.0)) {
Two_Product(bdxtail, cdy, ti1, ti0);
Two_Product(bdx, cdytail, tj1, tj0);
Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]);
u[3] = u3;
negate = -bdy;
Two_Product(cdxtail, negate, ti1, ti0);
negate = -bdytail;
Two_Product(cdx, negate, tj1, tj0);
Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]);
v[3] = v3;
bctlen = fast_expansion_sum_zeroelim(4, u, 4, v, bct);
Two_Product(bdxtail, cdytail, ti1, ti0);
Two_Product(cdxtail, bdytail, tj1, tj0);
Two_Two_Diff(ti1, ti0, tj1, tj0, bctt3, bctt[2], bctt[1], bctt[0]);
bctt[3] = bctt3;
bcttlen = 4;
}
else {
bct[0] = 0.0;
bctlen = 1;
bctt[0] = 0.0;
bcttlen = 1;
}
if (adxtail != 0.0) {
temp16alen = scale_expansion_zeroelim(axtbclen, axtbc, adxtail, temp16a);
axtbctlen = scale_expansion_zeroelim(bctlen, bct, adxtail, axtbct);
temp32alen = scale_expansion_zeroelim(axtbctlen, axtbct, 2.0 * adx, temp32a);
temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
temp32alen, temp32a, temp48);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
temp48, finother);
finswap = finnow; finnow = finother; finother = finswap;
if (bdytail != 0.0) {
temp8len = scale_expansion_zeroelim(4, cc, adxtail, temp8);
temp16alen = scale_expansion_zeroelim(temp8len, temp8, bdytail, temp16a);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
temp16a, finother);
finswap = finnow; finnow = finother; finother = finswap;
}
if (cdytail != 0.0) {
temp8len = scale_expansion_zeroelim(4, bb, -adxtail, temp8);
temp16alen = scale_expansion_zeroelim(temp8len, temp8, cdytail, temp16a);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
temp16a, finother);
finswap = finnow; finnow = finother; finother = finswap;
}
temp32alen = scale_expansion_zeroelim(axtbctlen, axtbct, adxtail, temp32a);
axtbcttlen = scale_expansion_zeroelim(bcttlen, bctt, adxtail, axtbctt);
temp16alen = scale_expansion_zeroelim(axtbcttlen, axtbctt, 2.0 * adx, temp16a);
temp16blen = scale_expansion_zeroelim(axtbcttlen, axtbctt, adxtail, temp16b);
temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
temp16blen, temp16b, temp32b);
temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
temp32blen, temp32b, temp64);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
temp64, finother);
finswap = finnow; finnow = finother; finother = finswap;
}
if (adytail != 0.0) {
temp16alen = scale_expansion_zeroelim(aytbclen, aytbc, adytail, temp16a);
aytbctlen = scale_expansion_zeroelim(bctlen, bct, adytail, aytbct);
temp32alen = scale_expansion_zeroelim(aytbctlen, aytbct, 2.0 * ady, temp32a);
temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
temp32alen, temp32a, temp48);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
temp48, finother);
finswap = finnow; finnow = finother; finother = finswap;
temp32alen = scale_expansion_zeroelim(aytbctlen, aytbct, adytail, temp32a);
aytbcttlen = scale_expansion_zeroelim(bcttlen, bctt, adytail, aytbctt);
temp16alen = scale_expansion_zeroelim(aytbcttlen, aytbctt, 2.0 * ady, temp16a);
temp16blen = scale_expansion_zeroelim(aytbcttlen, aytbctt, adytail, temp16b);
temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
temp16blen, temp16b, temp32b);
temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
temp32blen, temp32b, temp64);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
temp64, finother);
finswap = finnow; finnow = finother; finother = finswap;
}
}
if ((bdxtail != 0.0) || (bdytail != 0.0)) {
if ((cdxtail != 0.0) || (cdytail != 0.0)
|| (adxtail != 0.0) || (adytail != 0.0)) {
Two_Product(cdxtail, ady, ti1, ti0);
Two_Product(cdx, adytail, tj1, tj0);
Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]);
u[3] = u3;
negate = -cdy;
Two_Product(adxtail, negate, ti1, ti0);
negate = -cdytail;
Two_Product(adx, negate, tj1, tj0);
Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]);
v[3] = v3;
catlen = fast_expansion_sum_zeroelim(4, u, 4, v, cat);
Two_Product(cdxtail, adytail, ti1, ti0);
Two_Product(adxtail, cdytail, tj1, tj0);
Two_Two_Diff(ti1, ti0, tj1, tj0, catt3, catt[2], catt[1], catt[0]);
catt[3] = catt3;
cattlen = 4;
}
else {
cat[0] = 0.0;
catlen = 1;
catt[0] = 0.0;
cattlen = 1;
}
if (bdxtail != 0.0) {
temp16alen = scale_expansion_zeroelim(bxtcalen, bxtca, bdxtail, temp16a);
bxtcatlen = scale_expansion_zeroelim(catlen, cat, bdxtail, bxtcat);
temp32alen = scale_expansion_zeroelim(bxtcatlen, bxtcat, 2.0 * bdx, temp32a);
temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
temp32alen, temp32a, temp48);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
temp48, finother);
finswap = finnow; finnow = finother; finother = finswap;
if (cdytail != 0.0) {
temp8len = scale_expansion_zeroelim(4, aa, bdxtail, temp8);
temp16alen = scale_expansion_zeroelim(temp8len, temp8, cdytail, temp16a);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
temp16a, finother);
finswap = finnow; finnow = finother; finother = finswap;
}
if (adytail != 0.0) {
temp8len = scale_expansion_zeroelim(4, cc, -bdxtail, temp8);
temp16alen = scale_expansion_zeroelim(temp8len, temp8, adytail, temp16a);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
temp16a, finother);
finswap = finnow; finnow = finother; finother = finswap;
}
temp32alen = scale_expansion_zeroelim(bxtcatlen, bxtcat, bdxtail, temp32a);
bxtcattlen = scale_expansion_zeroelim(cattlen, catt, bdxtail, bxtcatt);
temp16alen = scale_expansion_zeroelim(bxtcattlen, bxtcatt, 2.0 * bdx, temp16a);
temp16blen = scale_expansion_zeroelim(bxtcattlen, bxtcatt, bdxtail, temp16b);
temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
temp16blen, temp16b, temp32b);
temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
temp32blen, temp32b, temp64);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
temp64, finother);
finswap = finnow; finnow = finother; finother = finswap;
}
if (bdytail != 0.0) {
temp16alen = scale_expansion_zeroelim(bytcalen, bytca, bdytail, temp16a);
bytcatlen = scale_expansion_zeroelim(catlen, cat, bdytail, bytcat);
temp32alen = scale_expansion_zeroelim(bytcatlen, bytcat, 2.0 * bdy, temp32a);
temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
temp32alen, temp32a, temp48);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
temp48, finother);
finswap = finnow; finnow = finother; finother = finswap;
temp32alen = scale_expansion_zeroelim(bytcatlen, bytcat, bdytail, temp32a);
bytcattlen = scale_expansion_zeroelim(cattlen, catt, bdytail, bytcatt);
temp16alen = scale_expansion_zeroelim(bytcattlen, bytcatt, 2.0 * bdy, temp16a);
temp16blen = scale_expansion_zeroelim(bytcattlen, bytcatt, bdytail, temp16b);
temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
temp16blen, temp16b, temp32b);
temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
temp32blen, temp32b, temp64);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
temp64, finother);
finswap = finnow; finnow = finother; finother = finswap;
}
}
if ((cdxtail != 0.0) || (cdytail != 0.0)) {
if ((adxtail != 0.0) || (adytail != 0.0)
|| (bdxtail != 0.0) || (bdytail != 0.0)) {
Two_Product(adxtail, bdy, ti1, ti0);
Two_Product(adx, bdytail, tj1, tj0);
Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]);
u[3] = u3;
negate = -ady;
Two_Product(bdxtail, negate, ti1, ti0);
negate = -adytail;
Two_Product(bdx, negate, tj1, tj0);
Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]);
v[3] = v3;
abtlen = fast_expansion_sum_zeroelim(4, u, 4, v, abt);
Two_Product(adxtail, bdytail, ti1, ti0);
Two_Product(bdxtail, adytail, tj1, tj0);
Two_Two_Diff(ti1, ti0, tj1, tj0, abtt3, abtt[2], abtt[1], abtt[0]);
abtt[3] = abtt3;
abttlen = 4;
}
else {
abt[0] = 0.0;
abtlen = 1;
abtt[0] = 0.0;
abttlen = 1;
}
if (cdxtail != 0.0) {
temp16alen = scale_expansion_zeroelim(cxtablen, cxtab, cdxtail, temp16a);
cxtabtlen = scale_expansion_zeroelim(abtlen, abt, cdxtail, cxtabt);
temp32alen = scale_expansion_zeroelim(cxtabtlen, cxtabt, 2.0 * cdx, temp32a);
temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
temp32alen, temp32a, temp48);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
temp48, finother);
finswap = finnow; finnow = finother; finother = finswap;
if (adytail != 0.0) {
temp8len = scale_expansion_zeroelim(4, bb, cdxtail, temp8);
temp16alen = scale_expansion_zeroelim(temp8len, temp8, adytail, temp16a);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
temp16a, finother);
finswap = finnow; finnow = finother; finother = finswap;
}
if (bdytail != 0.0) {
temp8len = scale_expansion_zeroelim(4, aa, -cdxtail, temp8);
temp16alen = scale_expansion_zeroelim(temp8len, temp8, bdytail, temp16a);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
temp16a, finother);
finswap = finnow; finnow = finother; finother = finswap;
}
temp32alen = scale_expansion_zeroelim(cxtabtlen, cxtabt, cdxtail, temp32a);
cxtabttlen = scale_expansion_zeroelim(abttlen, abtt, cdxtail, cxtabtt);
temp16alen = scale_expansion_zeroelim(cxtabttlen, cxtabtt, 2.0 * cdx, temp16a);
temp16blen = scale_expansion_zeroelim(cxtabttlen, cxtabtt, cdxtail, temp16b);
temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
temp16blen, temp16b, temp32b);
temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
temp32blen, temp32b, temp64);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
temp64, finother);
finswap = finnow; finnow = finother; finother = finswap;
}
if (cdytail != 0.0) {
temp16alen = scale_expansion_zeroelim(cytablen, cytab, cdytail, temp16a);
cytabtlen = scale_expansion_zeroelim(abtlen, abt, cdytail, cytabt);
temp32alen = scale_expansion_zeroelim(cytabtlen, cytabt, 2.0 * cdy, temp32a);
temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
temp32alen, temp32a, temp48);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
temp48, finother);
finswap = finnow; finnow = finother; finother = finswap;
temp32alen = scale_expansion_zeroelim(cytabtlen, cytabt, cdytail, temp32a);
cytabttlen = scale_expansion_zeroelim(abttlen, abtt, cdytail, cytabtt);
temp16alen = scale_expansion_zeroelim(cytabttlen, cytabtt, 2.0 * cdy, temp16a);
temp16blen = scale_expansion_zeroelim(cytabttlen, cytabtt, cdytail, temp16b);
temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
temp16blen, temp16b, temp32b);
temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
temp32blen, temp32b, temp64);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
temp64, finother);
finswap = finnow; finnow = finother; /* finother = finswap; */
}
}
return finnow[finlength - 1];
}
REAL incircle(point pa,
point pb,
point pc,
point pd)
{
REAL adx, bdx, cdx, ady, bdy, cdy;
REAL bdxcdy, cdxbdy, cdxady, adxcdy, adxbdy, bdxady;
REAL alift, blift, clift;
REAL det;
REAL permanent, errbound;
incirclecount++;
adx = pa[0] - pd[0];
bdx = pb[0] - pd[0];
cdx = pc[0] - pd[0];
ady = pa[1] - pd[1];
bdy = pb[1] - pd[1];
cdy = pc[1] - pd[1];
bdxcdy = bdx * cdy;
cdxbdy = cdx * bdy;
alift = adx * adx + ady * ady;
cdxady = cdx * ady;
adxcdy = adx * cdy;
blift = bdx * bdx + bdy * bdy;
adxbdy = adx * bdy;
bdxady = bdx * ady;
clift = cdx * cdx + cdy * cdy;
det = alift * (bdxcdy - cdxbdy)
+ blift * (cdxady - adxcdy)
+ clift * (adxbdy - bdxady);
if (noexact) {
return det;
}
permanent = (Absolute(bdxcdy) + Absolute(cdxbdy)) * alift
+ (Absolute(cdxady) + Absolute(adxcdy)) * blift
+ (Absolute(adxbdy) + Absolute(bdxady)) * clift;
errbound = iccerrboundA * permanent;
if ((det > errbound) || (-det > errbound)) {
return det;
}
return incircleadapt(pa, pb, pc, pd, permanent);
}
/** **/
/** **/
/********* Determinant evaluation routines end here *********/
/*****************************************************************************/
/* */
/* triangleinit() Initialize some variables. */
/* */
/*****************************************************************************/
void triangleinit(void)
{
points.maxitems = triangles.maxitems = shelles.maxitems = viri.maxitems =
badsegments.maxitems = badtriangles.maxitems = splaynodes.maxitems = 0l;
points.itembytes = triangles.itembytes = shelles.itembytes = viri.itembytes =
badsegments.itembytes = badtriangles.itembytes = splaynodes.itembytes = 0;
recenttri.tri = (triangle *) NULL; /* No triangle has been visited yet. */
samples = 1; /* Point location should take at least one sample. */
checksegments = 0; /* There are no segments in the triangulation yet. */
incirclecount = counterclockcount = hyperbolacount = 0;
circumcentercount = circletopcount = 0;
randomseed = 1;
exactinit(); /* Initialize exact arithmetic constants. */
}
/*****************************************************************************/
/* */
/* randomnation() Generate a random number between 0 and `choices' - 1. */
/* */
/* This is a simple linear congruential random number generator. Hence, it */
/* is a bad random number generator, but good enough for most randomized */
/* geometric algorithms. */
/* */
/*****************************************************************************/
unsigned long randomnation(unsigned int choices)
{
randomseed = (randomseed * 1366l + 150889l) % 714025l;
return randomseed / (714025l / choices + 1);
}
/********* Mesh quality testing routines begin here *********/
/** **/
/** **/
/*****************************************************************************/
/* */
/* checkmesh() Test the mesh for topological consistency. */
/* */
/*****************************************************************************/
#ifndef REDUCED
void checkmesh(void)
{
struct triedge triangleloop;
struct triedge oppotri, oppooppotri;
point triorg, tridest, triapex;
point oppoorg, oppodest;
int horrors;
int saveexact;
triangle ptr; /* Temporary variable used by sym(). */
/* Temporarily turn on exact arithmetic if it's off. */
saveexact = noexact;
noexact = 0;
if (!quiet) {
printf(" Checking consistency of mesh...\n");
}
horrors = 0;
/* Run through the list of triangles, checking each one. */
traversalinit(&triangles);
triangleloop.tri = triangletraverse();
while (triangleloop.tri != (triangle *) NULL) {
/* Check all three edges of the triangle. */
for (triangleloop.orient = 0; triangleloop.orient < 3; triangleloop.orient++) {
org(triangleloop, triorg);
dest(triangleloop, tridest);
if (triangleloop.orient == 0) { /* Only test for inversion once. */
/* Test if the triangle is flat or inverted. */
apex(triangleloop, triapex);
if (counterclockwise(triorg, tridest, triapex) <= 0.0) {
printf(" !! !! Inverted ");
printtriangle(&triangleloop);
horrors++;
}
}
/* Find the neighboring triangle on this edge. */
sym(triangleloop, oppotri);
if (oppotri.tri != dummytri) {
/* Check that the triangle's neighbor knows it's a neighbor. */
sym(oppotri, oppooppotri);
if ((triangleloop.tri != oppooppotri.tri)
|| (triangleloop.orient != oppooppotri.orient)) {
printf(" !! !! Asymmetric triangle-triangle bond:\n");
if (triangleloop.tri == oppooppotri.tri) {
printf(" (Right triangle, wrong orientation)\n");
}
printf(" First ");
printtriangle(&triangleloop);
printf(" Second (nonreciprocating) ");
printtriangle(&oppotri);
horrors++;
}
/* Check that both triangles agree on the identities */
/* of their shared vertices. */
org(oppotri, oppoorg);
dest(oppotri, oppodest);
if ((triorg != oppodest) || (tridest != oppoorg)) {
printf(" !! !! Mismatched edge coordinates between two triangles:\n");
printf(" First mismatched ");
printtriangle(&triangleloop);
printf(" Second mismatched ");
printtriangle(&oppotri);
horrors++;
}
}
}
triangleloop.tri = triangletraverse();
}
if (horrors == 0) {
if (!quiet) {
printf(" In my studied opinion, the mesh appears to be consistent.\n");
}
}
else if (horrors == 1) {
printf(" !! !! !! !! Precisely one festering wound discovered.\n");
}
else {
printf(" !! !! !! !! %d abominations witnessed.\n", horrors);
}
/* Restore the status of exact arithmetic. */
noexact = saveexact;
}
#endif /* not REDUCED */
/*****************************************************************************/
/* */
/* checkdelaunay() Ensure that the mesh is (constrained) Delaunay. */
/* */
/*****************************************************************************/
#ifndef REDUCED
void checkdelaunay(void)
{
struct triedge triangleloop;
struct triedge oppotri;
struct edge opposhelle;
point triorg, tridest, triapex;
point oppoapex;
int shouldbedelaunay;
int horrors;
int saveexact;
triangle ptr; /* Temporary variable used by sym(). */
shelle sptr; /* Temporary variable used by tspivot(). */
/* Temporarily turn on exact arithmetic if it's off. */
saveexact = noexact;
noexact = 0;
if (!quiet) {
printf(" Checking Delaunay property of mesh...\n");
}
horrors = 0;
/* Run through the list of triangles, checking each one. */
traversalinit(&triangles);
triangleloop.tri = triangletraverse();
while (triangleloop.tri != (triangle *) NULL) {
/* Check all three edges of the triangle. */
for (triangleloop.orient = 0; triangleloop.orient < 3; triangleloop.orient++) {
org(triangleloop, triorg);
dest(triangleloop, tridest);
apex(triangleloop, triapex);
sym(triangleloop, oppotri);
apex(oppotri, oppoapex);
/* Only test that the edge is locally Delaunay if there is an */
/* adjoining triangle whose pointer is larger (to ensure that */
/* each pair isn't tested twice). */
shouldbedelaunay = (oppotri.tri != dummytri)
&& (triapex != (point) NULL) && (oppoapex != (point) NULL)
&& (triangleloop.tri < oppotri.tri);
if (checksegments && shouldbedelaunay) {
/* If a shell edge separates the triangles, then the edge is */
/* constrained, so no local Delaunay test should be done. */
tspivot(triangleloop, opposhelle);
if (opposhelle.sh != dummysh){
shouldbedelaunay = 0;
}
}
if (shouldbedelaunay) {
if (incircle(triorg, tridest, triapex, oppoapex) > 0.0) {
printf(" !! !! Non-Delaunay pair of triangles:\n");
printf(" First non-Delaunay ");
printtriangle(&triangleloop);
printf(" Second non-Delaunay ");
printtriangle(&oppotri);
horrors++;
}
}
}
triangleloop.tri = triangletraverse();
}
if (horrors == 0) {
if (!quiet) {
printf(" By virtue of my perceptive intelligence, I declare the mesh Delaunay.\n");
}
}
else if (horrors == 1) {
printf(" !! !! !! !! Precisely one terrifying transgression identified.\n");
}
else {
printf(" !! !! !! !! %d obscenities viewed with horror.\n", horrors);
}
/* Restore the status of exact arithmetic. */
noexact = saveexact;
}
#endif /* not REDUCED */
/*****************************************************************************/
/* */
/* enqueuebadtri() Add a bad triangle to the end of a queue. */
/* */
/* The queue is actually a set of 64 queues. I use multiple queues to give */
/* priority to smaller angles. I originally implemented a heap, but the */
/* queues are (to my surprise) much faster. */
/* */
/*****************************************************************************/
#ifndef CDT_ONLY
void enqueuebadtri(struct triedge *instri,
REAL angle,
point insapex,
point insorg,
point insdest)
{
struct badface *newface;
int queuenumber;
if (verbose > 2) {
printf(" Queueing bad triangle:\n");
printf(" (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n", insorg[0],
insorg[1], insdest[0], insdest[1], insapex[0], insapex[1]);
}
/* Allocate space for the bad triangle. */
newface = (struct badface *) poolalloc(&badtriangles);
triedgecopy(*instri, newface->badfacetri);
newface->key = angle;
newface->faceapex = insapex;
newface->faceorg = insorg;
newface->facedest = insdest;
newface->nextface = (struct badface *) NULL;
/* Determine the appropriate queue to put the bad triangle into. */
if (angle > 0.6) {
queuenumber = (int) (160.0 * (angle - 0.6));
if (queuenumber > 63) {
queuenumber = 63;
}
}
else {
/* It's not a bad angle; put the triangle in the lowest-priority queue. */
queuenumber = 0;
}
/* Add the triangle to the end of a queue. */
*queuetail[queuenumber] = newface;
/* Maintain a pointer to the NULL pointer at the end of the queue. */
queuetail[queuenumber] = &newface->nextface;
}
#endif /* not CDT_ONLY */
/*****************************************************************************/
/* */
/* dequeuebadtri() Remove a triangle from the front of the queue. */
/* */
/*****************************************************************************/
#ifndef CDT_ONLY
struct badface *dequeuebadtri(void)
{
struct badface *result;
int queuenumber;
/* Look for a nonempty queue. */
for (queuenumber = 63; queuenumber >= 0; queuenumber--) {
result = queuefront[queuenumber];
if (result != (struct badface *) NULL) {
/* Remove the triangle from the queue. */
queuefront[queuenumber] = result->nextface;
/* Maintain a pointer to the NULL pointer at the end of the queue. */
if (queuefront[queuenumber] == (struct badface *) NULL) {
queuetail[queuenumber] = &queuefront[queuenumber];
}
return result;
}
}
return (struct badface *) NULL;
}
#endif /* not CDT_ONLY */
/*****************************************************************************/
/* */
/* checkedge4encroach() Check a segment to see if it is encroached; add */
/* it to the list if it is. */
/* */
/* An encroached segment is an unflippable edge that has a point in its */
/* diametral circle (that is, it faces an angle greater than 90 degrees). */
/* This definition is due to Ruppert. */
/* */
/* Returns a nonzero value if the edge is encroached. */
/* */
/*****************************************************************************/
#ifndef CDT_ONLY
int checkedge4encroach(struct edge *testedge)
{
struct triedge neighbortri;
struct edge testsym;
struct edge *badedge;
int addtolist;
int sides;
point eorg, edest, eapex;
triangle ptr; /* Temporary variable used by stpivot(). */
addtolist = 0;
sides = 0;
sorg(*testedge, eorg);
sdest(*testedge, edest);
/* Check one neighbor of the shell edge. */
stpivot(*testedge, neighbortri);
/* Does the neighbor exist, or is this a boundary edge? */
if (neighbortri.tri != dummytri) {
sides++;
/* Find a vertex opposite this edge. */
apex(neighbortri, eapex);
/* Check whether the vertex is inside the diametral circle of the */
/* shell edge. Pythagoras' Theorem is used to check whether the */
/* angle at the vertex is greater than 90 degrees. */
if (eapex[0] * (eorg[0] + edest[0]) + eapex[1] * (eorg[1] + edest[1]) >
eapex[0] * eapex[0] + eorg[0] * edest[0] +
eapex[1] * eapex[1] + eorg[1] * edest[1]) {
addtolist = 1;
}
}
/* Check the other neighbor of the shell edge. */
ssym(*testedge, testsym);
stpivot(testsym, neighbortri);
/* Does the neighbor exist, or is this a boundary edge? */
if (neighbortri.tri != dummytri) {
sides++;
/* Find the other vertex opposite this edge. */
apex(neighbortri, eapex);
/* Check whether the vertex is inside the diametral circle of the */
/* shell edge. Pythagoras' Theorem is used to check whether the */
/* angle at the vertex is greater than 90 degrees. */
if (eapex[0] * (eorg[0] + edest[0]) +
eapex[1] * (eorg[1] + edest[1]) >
eapex[0] * eapex[0] + eorg[0] * edest[0] +
eapex[1] * eapex[1] + eorg[1] * edest[1]) {
addtolist += 2;
}
}
if (addtolist && (!nobisect || ((nobisect == 1) && (sides == 2)))) {
if (verbose > 2) {
printf(" Queueing encroached segment (%.12g, %.12g) (%.12g, %.12g).\n",
eorg[0], eorg[1], edest[0], edest[1]);
}
/* Add the shell edge to the list of encroached segments. */
/* Be sure to get the orientation right. */
badedge = (struct edge *) poolalloc(&badsegments);
if (addtolist == 1) {
shellecopy(*testedge, *badedge);
}
else {
shellecopy(testsym, *badedge);
}
}
return addtolist;
}
#endif /* not CDT_ONLY */
/*****************************************************************************/
/* */
/* testtriangle() Test a face for quality measures. */
/* */
/* Tests a triangle to see if it satisfies the minimum angle condition and */
/* the maximum area condition. Triangles that aren't up to spec are added */
/* to the bad triangle queue. */
/* */
/*****************************************************************************/
#ifndef CDT_ONLY
void testtriangle(struct triedge *testtri)
{
struct triedge sametesttri;
struct edge edge1, edge2;
point torg, tdest, tapex;
point anglevertex;
REAL dxod, dyod, dxda, dyda, dxao, dyao;
REAL dxod2, dyod2, dxda2, dyda2, dxao2, dyao2;
REAL apexlen, orglen, destlen;
REAL angle;
REAL area;
shelle sptr; /* Temporary variable used by tspivot(). */
org(*testtri, torg);
dest(*testtri, tdest);
apex(*testtri, tapex);
dxod = torg[0] - tdest[0];
dyod = torg[1] - tdest[1];
dxda = tdest[0] - tapex[0];
dyda = tdest[1] - tapex[1];
dxao = tapex[0] - torg[0];
dyao = tapex[1] - torg[1];
dxod2 = dxod * dxod;
dyod2 = dyod * dyod;
dxda2 = dxda * dxda;
dyda2 = dyda * dyda;
dxao2 = dxao * dxao;
dyao2 = dyao * dyao;
/* Find the lengths of the triangle's three edges. */
apexlen = dxod2 + dyod2;
orglen = dxda2 + dyda2;
destlen = dxao2 + dyao2;
if ((apexlen < orglen) && (apexlen < destlen)) {
/* The edge opposite the apex is shortest. */
/* Find the square of the cosine of the angle at the apex. */
angle = dxda * dxao + dyda * dyao;
angle = angle * angle / (orglen * destlen);
anglevertex = tapex;
lnext(*testtri, sametesttri);
tspivot(sametesttri, edge1);
lnextself(sametesttri);
tspivot(sametesttri, edge2);
}
else if (orglen < destlen) {
/* The edge opposite the origin is shortest. */
/* Find the square of the cosine of the angle at the origin. */
angle = dxod * dxao + dyod * dyao;
angle = angle * angle / (apexlen * destlen);
anglevertex = torg;
tspivot(*testtri, edge1);
lprev(*testtri, sametesttri);
tspivot(sametesttri, edge2);
}
else {
/* The edge opposite the destination is shortest. */
/* Find the square of the cosine of the angle at the destination. */
angle = dxod * dxda + dyod * dyda;
angle = angle * angle / (apexlen * orglen);
anglevertex = tdest;
tspivot(*testtri, edge1);
lnext(*testtri, sametesttri);
tspivot(sametesttri, edge2);
}
/* Check if both edges that form the angle are segments. */
if ((edge1.sh != dummysh) && (edge2.sh != dummysh)) {
/* The angle is a segment intersection. */
if ((angle > 0.9924) && !quiet) { /* Roughly 5 degrees. */
if (angle > 1.0) {
/* Beware of a floating exception in acos(). */
angle = 1.0;
}
/* Find the actual angle in degrees, for printing. */
angle = acos(sqrt(angle)) * (180.0 / PI);
printf("Warning: Small angle (%.4g degrees) between segments at point\n", angle);
printf(" (%.12g, %.12g)\n", anglevertex[0], anglevertex[1]);
}
/* Don't add this bad triangle to the list; there's nothing that */
/* can be done about a small angle between two segments. */
angle = 0.0;
}
/* Check whether the angle is smaller than permitted. */
if (angle > goodangle) {
/* Add this triangle to the list of bad triangles. */
enqueuebadtri(testtri, angle, tapex, torg, tdest);
return;
}
if (vararea || fixedarea) {
/* Check whether the area is larger than permitted. */
area = 0.5 * (dxod * dyda - dyod * dxda);
if (fixedarea && (area > maxarea)) {
/* Add this triangle to the list of bad triangles. */
enqueuebadtri(testtri, angle, tapex, torg, tdest);
}
else if (vararea) {
/* Nonpositive area constraints are treated as unconstrained. */
if ((area > areabound(*testtri)) && (areabound(*testtri) > 0.0)) {
/* Add this triangle to the list of bad triangles. */
enqueuebadtri(testtri, angle, tapex, torg, tdest);
}
}
}
}
#endif /* not CDT_ONLY */
/** **/
/** **/
/********* Mesh quality testing routines end here *********/
/********* Point location routines begin here *********/
/** **/
/** **/
/*****************************************************************************/
/* */
/* makepointmap() Construct a mapping from points to triangles to improve */
/* the speed of point location for segment insertion. */
/* */
/* Traverses all the triangles, and provides each corner of each triangle */
/* with a pointer to that triangle. Of course, pointers will be */
/* overwritten by other pointers because (almost) each point is a corner */
/* of several triangles, but in the end every point will point to some */
/* triangle that contains it. */
/* */
/*****************************************************************************/
void makepointmap(void)
{
struct triedge triangleloop;
point triorg;
if (verbose) {
printf(" Constructing mapping from points to triangles.\n");
}
traversalinit(&triangles);
triangleloop.tri = triangletraverse();
while (triangleloop.tri != (triangle *) NULL) {
/* Check all three points of the triangle. */
for (triangleloop.orient = 0; triangleloop.orient < 3; triangleloop.orient++) {
org(triangleloop, triorg);
setpoint2tri(triorg, encode(triangleloop));
}
triangleloop.tri = triangletraverse();
}
}
/*****************************************************************************/
/* */
/* preciselocate() Find a triangle or edge containing a given point. */
/* */
/* Begins its search from `searchtri'. It is important that `searchtri' */
/* be a handle with the property that `searchpoint' is strictly to the left */
/* of the edge denoted by `searchtri', or is collinear with that edge and */
/* does not intersect that edge. (In particular, `searchpoint' should not */
/* be the origin or destination of that edge.) */
/* */
/* These conditions are imposed because preciselocate() is normally used in */
/* one of two situations: */
/* */
/* (1) To try to find the location to insert a new point. Normally, we */
/* know an edge that the point is strictly to the left of. In the */
/* incremental Delaunay algorithm, that edge is a bounding box edge. */
/* In Ruppert's Delaunay refinement algorithm for quality meshing, */
/* that edge is the shortest edge of the triangle whose circumcenter */
/* is being inserted. */
/* */
/* (2) To try to find an existing point. In this case, any edge on the */
/* convex hull is a good starting edge. The possibility that the */
/* vertex one seeks is an endpoint of the starting edge must be */
/* screened out before preciselocate() is called. */
/* */
/* On completion, `searchtri' is a triangle that contains `searchpoint'. */
/* */
/* This implementation differs from that given by Guibas and Stolfi. It */
/* walks from triangle to triangle, crossing an edge only if `searchpoint' */
/* is on the other side of the line containing that edge. After entering */
/* a triangle, there are two edges by which one can leave that triangle. */
/* If both edges are valid (`searchpoint' is on the other side of both */
/* edges), one of the two is chosen by drawing a line perpendicular to */
/* the entry edge (whose endpoints are `forg' and `fdest') passing through */
/* `fapex'. Depending on which side of this perpendicular `searchpoint' */
/* falls on, an exit edge is chosen. */
/* */
/* This implementation is empirically faster than the Guibas and Stolfi */
/* point location routine (which I originally used), which tends to spiral */
/* in toward its target. */
/* */
/* Returns ONVERTEX if the point lies on an existing vertex. `searchtri' */
/* is a handle whose origin is the existing vertex. */
/* */
/* Returns ONEDGE if the point lies on a mesh edge. `searchtri' is a */
/* handle whose primary edge is the edge on which the point lies. */
/* */
/* Returns INTRIANGLE if the point lies strictly within a triangle. */
/* `searchtri' is a handle on the triangle that contains the point. */
/* */
/* Returns OUTSIDE if the point lies outside the mesh. `searchtri' is a */
/* handle whose primary edge the point is to the right of. This might */
/* occur when the circumcenter of a triangle falls just slightly outside */
/* the mesh due to floating-point roundoff error. It also occurs when */
/* seeking a hole or region point that a foolish user has placed outside */
/* the mesh. */
/* */
/* WARNING: This routine is designed for convex triangulations, and will */
/* not generally work after the holes and concavities have been carved. */
/* However, it can still be used to find the circumcenter of a triangle, as */
/* long as the search is begun from the triangle in question. */
/* */
/*****************************************************************************/
enum locateresult preciselocate(point searchpoint,
struct triedge *searchtri)
{
struct triedge backtracktri;
point forg, fdest, fapex;
point swappoint;
REAL orgorient, destorient;
int moveleft;
triangle ptr; /* Temporary variable used by sym(). */
if (verbose > 2) {
printf(" Searching for point (%.12g, %.12g).\n",
searchpoint[0], searchpoint[1]);
}
/* Where are we? */
org(*searchtri, forg);
dest(*searchtri, fdest);
apex(*searchtri, fapex);
while (1) {
if (verbose > 2) {
printf(" At (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
forg[0], forg[1], fdest[0], fdest[1], fapex[0], fapex[1]);
}
/* Check whether the apex is the point we seek. */
if ((fapex[0] == searchpoint[0]) && (fapex[1] == searchpoint[1])) {
lprevself(*searchtri);
return ONVERTEX;
}
/* Does the point lie on the other side of the line defined by the */
/* triangle edge opposite the triangle's destination? */
destorient = counterclockwise(forg, fapex, searchpoint);
/* Does the point lie on the other side of the line defined by the */
/* triangle edge opposite the triangle's origin? */
orgorient = counterclockwise(fapex, fdest, searchpoint);
if (destorient > 0.0) {
if (orgorient > 0.0) {
/* Move left if the inner product of (fapex - searchpoint) and */
/* (fdest - forg) is positive. This is equivalent to drawing */
/* a line perpendicular to the line (forg, fdest) passing */
/* through `fapex', and determining which side of this line */
/* `searchpoint' falls on. */
moveleft = (fapex[0] - searchpoint[0]) * (fdest[0] - forg[0]) +
(fapex[1] - searchpoint[1]) * (fdest[1] - forg[1]) > 0.0;
}
else {
moveleft = 1;
}
}
else {
if (orgorient > 0.0) {
moveleft = 0;
}
else {
/* The point we seek must be on the boundary of or inside this */
/* triangle. */
if (destorient == 0.0) {
lprevself(*searchtri);
return ONEDGE;
}
if (orgorient == 0.0) {
lnextself(*searchtri);
return ONEDGE;
}
return INTRIANGLE;
}
}
/* Move to another triangle. Leave a trace `backtracktri' in case */
/* floating-point roundoff or some such bogey causes us to walk */
/* off a boundary of the triangulation. We can just bounce off */
/* the boundary as if it were an elastic band. */
if (moveleft) {
lprev(*searchtri, backtracktri);
fdest = fapex;
}
else {
lnext(*searchtri, backtracktri);
forg = fapex;
}
sym(backtracktri, *searchtri);
/* Check for walking off the edge. */
if (searchtri->tri == dummytri) {
/* Turn around. */
triedgecopy(backtracktri, *searchtri);
swappoint = forg;
forg = fdest;
fdest = swappoint;
apex(*searchtri, fapex);
/* Check if the point really is beyond the triangulation boundary. */
destorient = counterclockwise(forg, fapex, searchpoint);
orgorient = counterclockwise(fapex, fdest, searchpoint);
if ((orgorient < 0.0) && (destorient < 0.0)) {
return OUTSIDE;
}
}
else {
apex(*searchtri, fapex);
}
}
}
/*****************************************************************************/
/* */
/* locate() Find a triangle or edge containing a given point. */
/* */
/* Searching begins from one of: the input `searchtri', a recently */
/* encountered triangle `recenttri', or from a triangle chosen from a */
/* random sample. The choice is made by determining which triangle's */
/* origin is closest to the point we are searcing for. Normally, */
/* `searchtri' should be a handle on the convex hull of the triangulation. */
/* */
/* Details on the random sampling method can be found in the Mucke, Saias, */
/* and Zhu paper cited in the header of this code. */
/* */
/* On completion, `searchtri' is a triangle that contains `searchpoint'. */
/* */
/* Returns ONVERTEX if the point lies on an existing vertex. `searchtri' */
/* is a handle whose origin is the existing vertex. */
/* */
/* Returns ONEDGE if the point lies on a mesh edge. `searchtri' is a */
/* handle whose primary edge is the edge on which the point lies. */
/* */
/* Returns INTRIANGLE if the point lies strictly within a triangle. */
/* `searchtri' is a handle on the triangle that contains the point. */
/* */
/* Returns OUTSIDE if the point lies outside the mesh. `searchtri' is a */
/* handle whose primary edge the point is to the right of. This might */
/* occur when the circumcenter of a triangle falls just slightly outside */
/* the mesh due to floating-point roundoff error. It also occurs when */
/* seeking a hole or region point that a foolish user has placed outside */
/* the mesh. */
/* */
/* WARNING: This routine is designed for convex triangulations, and will */
/* not generally work after the holes and concavities have been carved. */
/* */
/*****************************************************************************/
enum locateresult locate(point searchpoint,
struct triedge *searchtri)
{
VOID **sampleblock;
triangle *firsttri;
struct triedge sampletri;
point torg, tdest;
intptr_t alignptr;
REAL searchdist, dist;
REAL ahead;
long sampleblocks, samplesperblock, samplenum;
long triblocks;
long i, j;
triangle ptr; /* Temporary variable used by sym(). */
if (verbose > 2) {
printf(" Randomly sampling for a triangle near point (%.12g, %.12g).\n",
searchpoint[0], searchpoint[1]);
}
/* Record the distance from the suggested starting triangle to the */
/* point we seek. */
org(*searchtri, torg);
searchdist = (searchpoint[0] - torg[0]) * (searchpoint[0] - torg[0])
+ (searchpoint[1] - torg[1]) * (searchpoint[1] - torg[1]);
if (verbose > 2) {
printf(" Boundary triangle has origin (%.12g, %.12g).\n",
torg[0], torg[1]);
}
/* If a recently encountered triangle has been recorded and has not been */
/* deallocated, test it as a good starting point. */
if (recenttri.tri != (triangle *) NULL) {
if (recenttri.tri[3] != (triangle) NULL) {
org(recenttri, torg);
if ((torg[0] == searchpoint[0]) && (torg[1] == searchpoint[1])) {
triedgecopy(recenttri, *searchtri);
return ONVERTEX;
}
dist = (searchpoint[0] - torg[0]) * (searchpoint[0] - torg[0])
+ (searchpoint[1] - torg[1]) * (searchpoint[1] - torg[1]);
if (dist < searchdist) {
triedgecopy(recenttri, *searchtri);
searchdist = dist;
if (verbose > 2) {
printf(" Choosing recent triangle with origin (%.12g, %.12g).\n",
torg[0], torg[1]);
}
}
}
}
/* The number of random samples taken is proportional to the cube root of */
/* the number of triangles in the mesh. The next bit of code assumes */
/* that the number of triangles increases monotonically. */
while (SAMPLEFACTOR * samples * samples * samples < triangles.items) {
samples++;
}
triblocks = (triangles.maxitems + TRIPERBLOCK - 1) / TRIPERBLOCK;
samplesperblock = 1 + (samples / triblocks);
sampleblocks = samples / samplesperblock;
sampleblock = triangles.firstblock;
sampletri.orient = 0;
for (i = 0; i < sampleblocks; i++) {
alignptr = (intptr_t) (sampleblock + 1);
firsttri = (triangle *) (alignptr + (intptr_t) triangles.alignbytes
- (alignptr % (intptr_t) triangles.alignbytes));
for (j = 0; j < samplesperblock; j++) {
if (i == triblocks - 1) {
samplenum = randomnation((int)
(triangles.maxitems - (i * TRIPERBLOCK)));
}
else {
samplenum = randomnation(TRIPERBLOCK);
}
sampletri.tri = (triangle *)
(firsttri + (samplenum * triangles.itemwords));
if (sampletri.tri[3] != (triangle) NULL) {
org(sampletri, torg);
dist = (searchpoint[0] - torg[0]) * (searchpoint[0] - torg[0])
+ (searchpoint[1] - torg[1]) * (searchpoint[1] - torg[1]);
if (dist < searchdist) {
triedgecopy(sampletri, *searchtri);
searchdist = dist;
if (verbose > 2) {
printf(" Choosing triangle with origin (%.12g, %.12g).\n",
torg[0], torg[1]);
}
}
}
}
sampleblock = (VOID **) *sampleblock;
}
/* Where are we? */
org(*searchtri, torg);
dest(*searchtri, tdest);
/* Check the starting triangle's vertices. */
if ((torg[0] == searchpoint[0]) && (torg[1] == searchpoint[1])) {
return ONVERTEX;
}
if ((tdest[0] == searchpoint[0]) && (tdest[1] == searchpoint[1])) {
lnextself(*searchtri);
return ONVERTEX;
}
/* Orient `searchtri' to fit the preconditions of calling preciselocate(). */
ahead = counterclockwise(torg, tdest, searchpoint);
if (ahead < 0.0) {
/* Turn around so that `searchpoint' is to the left of the */
/* edge specified by `searchtri'. */
symself(*searchtri);
}
else if (ahead == 0.0) {
/* Check if `searchpoint' is between `torg' and `tdest'. */
if (((torg[0] < searchpoint[0]) == (searchpoint[0] < tdest[0]))
&& ((torg[1] < searchpoint[1]) == (searchpoint[1] < tdest[1]))) {
return ONEDGE;
}
}
return preciselocate(searchpoint, searchtri);
}
/** **/
/** **/
/********* Point location routines end here *********/
/********* Mesh transformation routines begin here *********/
/** **/
/** **/
/*****************************************************************************/
/* */
/* insertshelle() Create a new shell edge and insert it between two */
/* triangles. */
/* */
/* The new shell edge is inserted at the edge described by the handle */
/* `tri'. Its vertices are properly initialized. The marker `shellemark' */
/* is applied to the shell edge and, if appropriate, its vertices. */
/* */
/*****************************************************************************/
void insertshelle(struct triedge *tri, /* Edge at which to insert the new shell edge. */
int shellemark) /* Marker for the new shell edge. */
{
struct triedge oppotri;
struct edge newshelle;
point triorg, tridest;
triangle ptr; /* Temporary variable used by sym(). */
shelle sptr; /* Temporary variable used by tspivot(). */
/* Mark points if possible. */
org(*tri, triorg);
dest(*tri, tridest);
if (pointmark(triorg) == 0) {
setpointmark(triorg, shellemark);
}
if (pointmark(tridest) == 0) {
setpointmark(tridest, shellemark);
}
/* Check if there's already a shell edge here. */
tspivot(*tri, newshelle);
if (newshelle.sh == dummysh) {
/* Make new shell edge and initialize its vertices. */
makeshelle(&newshelle);
setsorg(newshelle, tridest);
setsdest(newshelle, triorg);
/* Bond new shell edge to the two triangles it is sandwiched between. */
/* Note that the facing triangle `oppotri' might be equal to */
/* `dummytri' (outer space), but the new shell edge is bonded to it */
/* all the same. */
tsbond(*tri, newshelle);
sym(*tri, oppotri);
ssymself(newshelle);
tsbond(oppotri, newshelle);
setmark(newshelle, shellemark);
if (verbose > 2) {
printf(" Inserting new ");
printshelle(&newshelle);
}
}
else {
if (mark(newshelle) == 0) {
setmark(newshelle, shellemark);
}
}
}
/*****************************************************************************/
/* */
/* Terminology */
/* */
/* A "local transformation" replaces a small set of triangles with another */
/* set of triangles. This may or may not involve inserting or deleting a */
/* point. */
/* */
/* The term "casing" is used to describe the set of triangles that are */
/* attached to the triangles being transformed, but are not transformed */
/* themselves. Think of the casing as a fixed hollow structure inside */
/* which all the action happens. A "casing" is only defined relative to */
/* a single transformation; each occurrence of a transformation will */
/* involve a different casing. */
/* */
/* A "shell" is similar to a "casing". The term "shell" describes the set */
/* of shell edges (if any) that are attached to the triangles being */
/* transformed. However, I sometimes use "shell" to refer to a single */
/* shell edge, so don't get confused. */
/* */
/*****************************************************************************/
/*****************************************************************************/
/* */
/* flip() Transform two triangles to two different triangles by flipping */
/* an edge within a quadrilateral. */
/* */
/* Imagine the original triangles, abc and bad, oriented so that the */
/* shared edge ab lies in a horizontal plane, with the point b on the left */
/* and the point a on the right. The point c lies below the edge, and the */
/* point d lies above the edge. The `flipedge' handle holds the edge ab */
/* of triangle abc, and is directed left, from vertex a to vertex b. */
/* */
/* The triangles abc and bad are deleted and replaced by the triangles cdb */
/* and dca. The triangles that represent abc and bad are NOT deallocated; */
/* they are reused for dca and cdb, respectively. Hence, any handles that */
/* may have held the original triangles are still valid, although not */
/* directed as they were before. */
/* */
/* Upon completion of this routine, the `flipedge' handle holds the edge */
/* dc of triangle dca, and is directed down, from vertex d to vertex c. */
/* (Hence, the two triangles have rotated counterclockwise.) */
/* */
/* WARNING: This transformation is geometrically valid only if the */
/* quadrilateral adbc is convex. Furthermore, this transformation is */
/* valid only if there is not a shell edge between the triangles abc and */
/* bad. This routine does not check either of these preconditions, and */
/* it is the responsibility of the calling routine to ensure that they are */
/* met. If they are not, the streets shall be filled with wailing and */
/* gnashing of teeth. */
/* */
/*****************************************************************************/
void flip(struct triedge *flipedge) /* Handle for the triangle abc. */
{
struct triedge botleft, botright;
struct triedge topleft, topright;
struct triedge top;
struct triedge botlcasing, botrcasing;
struct triedge toplcasing, toprcasing;
struct edge botlshelle, botrshelle;
struct edge toplshelle, toprshelle;
point leftpoint, rightpoint, botpoint;
point farpoint;
triangle ptr; /* Temporary variable used by sym(). */
shelle sptr; /* Temporary variable used by tspivot(). */
/* Identify the vertices of the quadrilateral. */
org(*flipedge, rightpoint);
dest(*flipedge, leftpoint);
apex(*flipedge, botpoint);
sym(*flipedge, top);
#ifdef SELF_CHECK
if (top.tri == dummytri) {
printf("Internal error in flip(): Attempt to flip on boundary.\n");
lnextself(*flipedge);
return;
}
if (checksegments) {
tspivot(*flipedge, toplshelle);
if (toplshelle.sh != dummysh) {
printf("Internal error in flip(): Attempt to flip a segment.\n");
lnextself(*flipedge);
return;
}
}
#endif /* SELF_CHECK */
apex(top, farpoint);
/* Identify the casing of the quadrilateral. */
lprev(top, topleft);
sym(topleft, toplcasing);
lnext(top, topright);
sym(topright, toprcasing);
lnext(*flipedge, botleft);
sym(botleft, botlcasing);
lprev(*flipedge, botright);
sym(botright, botrcasing);
/* Rotate the quadrilateral one-quarter turn counterclockwise. */
bond(topleft, botlcasing);
bond(botleft, botrcasing);
bond(botright, toprcasing);
bond(topright, toplcasing);
if (checksegments) {
/* Check for shell edges and rebond them to the quadrilateral. */
tspivot(topleft, toplshelle);
tspivot(botleft, botlshelle);
tspivot(botright, botrshelle);
tspivot(topright, toprshelle);
if (toplshelle.sh == dummysh) {
tsdissolve(topright);
}
else {
tsbond(topright, toplshelle);
}
if (botlshelle.sh == dummysh) {
tsdissolve(topleft);
}
else {
tsbond(topleft, botlshelle);
}
if (botrshelle.sh == dummysh) {
tsdissolve(botleft);
}
else {
tsbond(botleft, botrshelle);
}
if (toprshelle.sh == dummysh) {
tsdissolve(botright);
}
else {
tsbond(botright, toprshelle);
}
}
/* New point assignments for the rotated quadrilateral. */
setorg(*flipedge, farpoint);
setdest(*flipedge, botpoint);
setapex(*flipedge, rightpoint);
setorg(top, botpoint);
setdest(top, farpoint);
setapex(top, leftpoint);
if (verbose > 2) {
printf(" Edge flip results in left ");
lnextself(topleft);
printtriangle(&topleft);
printf(" and right ");
printtriangle(flipedge);
}
}
/*****************************************************************************/
/* */
/* insertsite() Insert a vertex into a Delaunay triangulation, */
/* performing flips as necessary to maintain the Delaunay */
/* property. */
/* */
/* The point `insertpoint' is located. If `searchtri.tri' is not NULL, */
/* the search for the containing triangle begins from `searchtri'. If */
/* `searchtri.tri' is NULL, a full point location procedure is called. */
/* If `insertpoint' is found inside a triangle, the triangle is split into */
/* three; if `insertpoint' lies on an edge, the edge is split in two, */
/* thereby splitting the two adjacent triangles into four. Edge flips are */
/* used to restore the Delaunay property. If `insertpoint' lies on an */
/* existing vertex, no action is taken, and the value DUPLICATEPOINT is */
/* returned. On return, `searchtri' is set to a handle whose origin is the */
/* existing vertex. */
/* */
/* Normally, the parameter `splitedge' is set to NULL, implying that no */
/* segment should be split. In this case, if `insertpoint' is found to */
/* lie on a segment, no action is taken, and the value VIOLATINGPOINT is */
/* returned. On return, `searchtri' is set to a handle whose primary edge */
/* is the violated segment. */
/* */
/* If the calling routine wishes to split a segment by inserting a point in */
/* it, the parameter `splitedge' should be that segment. In this case, */
/* `searchtri' MUST be the triangle handle reached by pivoting from that */
/* segment; no point location is done. */
/* */
/* `segmentflaws' and `triflaws' are flags that indicate whether or not */
/* there should be checks for the creation of encroached segments or bad */
/* quality faces. If a newly inserted point encroaches upon segments, */
/* these segments are added to the list of segments to be split if */
/* `segmentflaws' is set. If bad triangles are created, these are added */
/* to the queue if `triflaws' is set. */
/* */
/* If a duplicate point or violated segment does not prevent the point */
/* from being inserted, the return value will be ENCROACHINGPOINT if the */
/* point encroaches upon a segment (and checking is enabled), or */
/* SUCCESSFULPOINT otherwise. In either case, `searchtri' is set to a */
/* handle whose origin is the newly inserted vertex. */
/* */
/* insertsite() does not use flip() for reasons of speed; some */
/* information can be reused from edge flip to edge flip, like the */
/* locations of shell edges. */
/* */
/*****************************************************************************/
enum insertsiteresult insertsite(point insertpoint,
struct triedge *searchtri,
struct edge *splitedge,
int segmentflaws,
int triflaws)
{
struct triedge horiz;
struct triedge top;
struct triedge botleft, botright;
struct triedge topleft, topright;
struct triedge newbotleft, newbotright;
struct triedge newtopright;
struct triedge botlcasing, botrcasing;
struct triedge toplcasing = {0,0}, toprcasing = {0,0};
struct triedge testtri;
struct edge botlshelle, botrshelle;
struct edge toplshelle, toprshelle;
struct edge brokenshelle;
struct edge checkshelle;
struct edge rightedge;
struct edge newedge;
struct edge *encroached;
point first;
point leftpoint, rightpoint, botpoint, toppoint, farpoint;
REAL attrib;
REAL area;
enum insertsiteresult success;
enum locateresult intersect;
int doflip;
int mirrorflag;
int i;
triangle ptr; /* Temporary variable used by sym(). */
shelle sptr; /* Temporary variable used by spivot() and tspivot(). */
if (verbose > 1) {
printf(" Inserting (%.12g, %.12g).\n", insertpoint[0], insertpoint[1]);
}
if (splitedge == (struct edge *) NULL) {
/* Find the location of the point to be inserted. Check if a good */
/* starting triangle has already been provided by the caller. */
if (searchtri->tri == (triangle *) NULL) {
/* Find a boundary triangle. */
horiz.tri = dummytri;
horiz.orient = 0;
symself(horiz);
/* Search for a triangle containing `insertpoint'. */
intersect = locate(insertpoint, &horiz);
}
else {
/* Start searching from the triangle provided by the caller. */
triedgecopy(*searchtri, horiz);
intersect = preciselocate(insertpoint, &horiz);
}
}
else {
/* The calling routine provides the edge in which the point is inserted. */
triedgecopy(*searchtri, horiz);
intersect = ONEDGE;
}
if (intersect == ONVERTEX) {
/* There's already a vertex there. Return in `searchtri' a triangle */
/* whose origin is the existing vertex. */
triedgecopy(horiz, *searchtri);
triedgecopy(horiz, recenttri);
return DUPLICATEPOINT;
}
if ((intersect == ONEDGE) || (intersect == OUTSIDE)) {
/* The vertex falls on an edge or boundary. */
if (checksegments && (splitedge == (struct edge *) NULL)) {
/* Check whether the vertex falls on a shell edge. */
tspivot(horiz, brokenshelle);
if (brokenshelle.sh != dummysh) {
/* The vertex falls on a shell edge. */
if (segmentflaws) {
if (nobisect == 0) {
/* Add the shell edge to the list of encroached segments. */
encroached = (struct edge *) poolalloc(&badsegments);
shellecopy(brokenshelle, *encroached);
}
else if ((nobisect == 1) && (intersect == ONEDGE)) {
/* This segment may be split only if it is an internal boundary. */
sym(horiz, testtri);
if (testtri.tri != dummytri) {
/* Add the shell edge to the list of encroached segments. */
encroached = (struct edge *) poolalloc(&badsegments);
shellecopy(brokenshelle, *encroached);
}
}
}
/* Return a handle whose primary edge contains the point, */
/* which has not been inserted. */
triedgecopy(horiz, *searchtri);
triedgecopy(horiz, recenttri);
return VIOLATINGPOINT;
}
}
/* Insert the point on an edge, dividing one triangle into two (if */
/* the edge lies on a boundary) or two triangles into four. */
lprev(horiz, botright);
sym(botright, botrcasing);
sym(horiz, topright);
/* Is there a second triangle? (Or does this edge lie on a boundary?) */
mirrorflag = topright.tri != dummytri;
if (mirrorflag) {
lnextself(topright);
sym(topright, toprcasing);
maketriangle(&newtopright);
}
else {
/* Splitting the boundary edge increases the number of boundary edges. */
hullsize++;
}
maketriangle(&newbotright);
/* Set the vertices of changed and new triangles. */
org(horiz, rightpoint);
dest(horiz, leftpoint);
apex(horiz, botpoint);
setorg(newbotright, botpoint);
setdest(newbotright, rightpoint);
setapex(newbotright, insertpoint);
setorg(horiz, insertpoint);
for (i = 0; i < eextras; i++) {
/* Set the element attributes of a new triangle. */
setelemattribute(newbotright, i, elemattribute(botright, i));
}
if (vararea) {
/* Set the area constraint of a new triangle. */
setareabound(newbotright, areabound(botright));
}
if (mirrorflag) {
dest(topright, toppoint);
setorg(newtopright, rightpoint);
setdest(newtopright, toppoint);
setapex(newtopright, insertpoint);
setorg(topright, insertpoint);
for (i = 0; i < eextras; i++) {
/* Set the element attributes of another new triangle. */
setelemattribute(newtopright, i, elemattribute(topright, i));
}
if (vararea) {
/* Set the area constraint of another new triangle. */
setareabound(newtopright, areabound(topright));
}
}
/* There may be shell edges that need to be bonded */
/* to the new triangle(s). */
if (checksegments) {
tspivot(botright, botrshelle);
if (botrshelle.sh != dummysh) {
tsdissolve(botright);
tsbond(newbotright, botrshelle);
}
if (mirrorflag) {
tspivot(topright, toprshelle);
if (toprshelle.sh != dummysh) {
tsdissolve(topright);
tsbond(newtopright, toprshelle);
}
}
}
/* Bond the new triangle(s) to the surrounding triangles. */
bond(newbotright, botrcasing);
lprevself(newbotright);
bond(newbotright, botright);
lprevself(newbotright);
if (mirrorflag) {
bond(newtopright, toprcasing);
lnextself(newtopright);
bond(newtopright, topright);
lnextself(newtopright);
bond(newtopright, newbotright);
}
if (splitedge != (struct edge *) NULL) {
/* Split the shell edge into two. */
setsdest(*splitedge, insertpoint);
ssymself(*splitedge);
spivot(*splitedge, rightedge);
insertshelle(&newbotright, mark(*splitedge));
tspivot(newbotright, newedge);
sbond(*splitedge, newedge);
ssymself(newedge);
sbond(newedge, rightedge);
ssymself(*splitedge);
}
#ifdef SELF_CHECK
if (counterclockwise(rightpoint, leftpoint, botpoint) < 0.0) {
printf("Internal error in insertsite():\n");
printf(" Clockwise triangle prior to edge point insertion (bottom).\n");
}
if (mirrorflag) {
if (counterclockwise(leftpoint, rightpoint, toppoint) < 0.0) {
printf("Internal error in insertsite():\n");
printf(" Clockwise triangle prior to edge point insertion (top).\n");
}
if (counterclockwise(rightpoint, toppoint, insertpoint) < 0.0) {
printf("Internal error in insertsite():\n");
printf(" Clockwise triangle after edge point insertion (top right).\n"
);
}
if (counterclockwise(toppoint, leftpoint, insertpoint) < 0.0) {
printf("Internal error in insertsite():\n");
printf(" Clockwise triangle after edge point insertion (top left).\n"
);
}
}
if (counterclockwise(leftpoint, botpoint, insertpoint) < 0.0) {
printf("Internal error in insertsite():\n");
printf(" Clockwise triangle after edge point insertion (bottom left).\n"
);
}
if (counterclockwise(botpoint, rightpoint, insertpoint) < 0.0) {
printf("Internal error in insertsite():\n");
printf(" Clockwise triangle after edge point insertion (bottom right).\n");
}
#endif /* SELF_CHECK */
if (verbose > 2) {
printf(" Updating bottom left ");
printtriangle(&botright);
if (mirrorflag) {
printf(" Updating top left ");
printtriangle(&topright);
printf(" Creating top right ");
printtriangle(&newtopright);
}
printf(" Creating bottom right ");
printtriangle(&newbotright);
}
/* Position `horiz' on the first edge to check for */
/* the Delaunay property. */
lnextself(horiz);
}
else {
/* Insert the point in a triangle, splitting it into three. */
lnext(horiz, botleft);
lprev(horiz, botright);
sym(botleft, botlcasing);
sym(botright, botrcasing);
maketriangle(&newbotleft);
maketriangle(&newbotright);
/* Set the vertices of changed and new triangles. */
org(horiz, rightpoint);
dest(horiz, leftpoint);
apex(horiz, botpoint);
setorg(newbotleft, leftpoint);
setdest(newbotleft, botpoint);
setapex(newbotleft, insertpoint);
setorg(newbotright, botpoint);
setdest(newbotright, rightpoint);
setapex(newbotright, insertpoint);
setapex(horiz, insertpoint);
for (i = 0; i < eextras; i++) {
/* Set the element attributes of the new triangles. */
attrib = elemattribute(horiz, i);
setelemattribute(newbotleft, i, attrib);
setelemattribute(newbotright, i, attrib);
}
if (vararea) {
/* Set the area constraint of the new triangles. */
area = areabound(horiz);
setareabound(newbotleft, area);
setareabound(newbotright, area);
}
/* There may be shell edges that need to be bonded */
/* to the new triangles. */
if (checksegments) {
tspivot(botleft, botlshelle);
if (botlshelle.sh != dummysh) {
tsdissolve(botleft);
tsbond(newbotleft, botlshelle);
}
tspivot(botright, botrshelle);
if (botrshelle.sh != dummysh) {
tsdissolve(botright);
tsbond(newbotright, botrshelle);
}
}
/* Bond the new triangles to the surrounding triangles. */
bond(newbotleft, botlcasing);
bond(newbotright, botrcasing);
lnextself(newbotleft);
lprevself(newbotright);
bond(newbotleft, newbotright);
lnextself(newbotleft);
bond(botleft, newbotleft);
lprevself(newbotright);
bond(botright, newbotright);
#ifdef SELF_CHECK
if (counterclockwise(rightpoint, leftpoint, botpoint) < 0.0) {
printf("Internal error in insertsite():\n");
printf(" Clockwise triangle prior to point insertion.\n");
}
if (counterclockwise(rightpoint, leftpoint, insertpoint) < 0.0) {
printf("Internal error in insertsite():\n");
printf(" Clockwise triangle after point insertion (top).\n");
}
if (counterclockwise(leftpoint, botpoint, insertpoint) < 0.0) {
printf("Internal error in insertsite():\n");
printf(" Clockwise triangle after point insertion (left).\n");
}
if (counterclockwise(botpoint, rightpoint, insertpoint) < 0.0) {
printf("Internal error in insertsite():\n");
printf(" Clockwise triangle after point insertion (right).\n");
}
#endif /* SELF_CHECK */
if (verbose > 2) {
printf(" Updating top ");
printtriangle(&horiz);
printf(" Creating left ");
printtriangle(&newbotleft);
printf(" Creating right ");
printtriangle(&newbotright);
}
}
/* The insertion is successful by default, unless an encroached */
/* edge is found. */
success = SUCCESSFULPOINT;
/* Circle around the newly inserted vertex, checking each edge opposite */
/* it for the Delaunay property. Non-Delaunay edges are flipped. */
/* `horiz' is always the edge being checked. `first' marks where to */
/* stop circling. */
org(horiz, first);
rightpoint = first;
dest(horiz, leftpoint);
/* Circle until finished. */
while (1) {
/* By default, the edge will be flipped. */
doflip = 1;
if (checksegments) {
/* Check for a segment, which cannot be flipped. */
tspivot(horiz, checkshelle);
if (checkshelle.sh != dummysh) {
/* The edge is a segment and cannot be flipped. */
doflip = 0;
#ifndef CDT_ONLY
if (segmentflaws) {
/* Does the new point encroach upon this segment? */
if (checkedge4encroach(&checkshelle)) {
success = ENCROACHINGPOINT;
}
}
#endif /* not CDT_ONLY */
}
}
if (doflip) {
/* Check if the edge is a boundary edge. */
sym(horiz, top);
if (top.tri == dummytri) {
/* The edge is a boundary edge and cannot be flipped. */
doflip = 0;
}
else {
/* Find the point on the other side of the edge. */
apex(top, farpoint);
/* In the incremental Delaunay triangulation algorithm, any of */
/* `leftpoint', `rightpoint', and `farpoint' could be vertices */
/* of the triangular bounding box. These vertices must be */
/* treated as if they are infinitely distant, even though their */
/* "coordinates" are not. */
if ((leftpoint == infpoint1) ||
(leftpoint == infpoint2) ||
(leftpoint == infpoint3)) {
/* `leftpoint' is infinitely distant. Check the convexity of */
/* the boundary of the triangulation. 'farpoint' might be */
/* infinite as well, but trust me, this same condition */
/* should be applied. */
doflip = counterclockwise(insertpoint, rightpoint, farpoint) > 0.0;
}
else if ((rightpoint == infpoint1) ||
(rightpoint == infpoint2) ||
(rightpoint == infpoint3)) {
/* `rightpoint' is infinitely distant. Check the convexity of */
/* the boundary of the triangulation. 'farpoint' might be */
/* infinite as well, but trust me, this same condition */
/* should be applied. */
doflip = counterclockwise(farpoint, leftpoint, insertpoint) > 0.0;
}
else if ((farpoint == infpoint1) ||
(farpoint == infpoint2) ||
(farpoint == infpoint3)) {
/* `farpoint' is infinitely distant and cannot be inside */
/* the circumcircle of the triangle `horiz'. */
doflip = 0;
}
else {
/* Test whether the edge is locally Delaunay. */
doflip = incircle(leftpoint, insertpoint, rightpoint, farpoint)
> 0.0;
}
if (doflip) {
/* We made it! Flip the edge `horiz' by rotating its containing */
/* quadrilateral (the two triangles adjacent to `horiz'). */
/* Identify the casing of the quadrilateral. */
lprev(top, topleft);
sym(topleft, toplcasing);
lnext(top, topright);
sym(topright, toprcasing);
lnext(horiz, botleft);
sym(botleft, botlcasing);
lprev(horiz, botright);
sym(botright, botrcasing);
/* Rotate the quadrilateral one-quarter turn counterclockwise. */
bond(topleft, botlcasing);
bond(botleft, botrcasing);
bond(botright, toprcasing);
bond(topright, toplcasing);
if (checksegments) {
/* Check for shell edges and rebond them to the quadrilateral. */
tspivot(topleft, toplshelle);
tspivot(botleft, botlshelle);
tspivot(botright, botrshelle);
tspivot(topright, toprshelle);
if (toplshelle.sh == dummysh) {
tsdissolve(topright);
}
else {
tsbond(topright, toplshelle);
}
if (botlshelle.sh == dummysh) {
tsdissolve(topleft);
}
else {
tsbond(topleft, botlshelle);
}
if (botrshelle.sh == dummysh) {
tsdissolve(botleft);
}
else {
tsbond(botleft, botrshelle);
}
if (toprshelle.sh == dummysh) {
tsdissolve(botright);
}
else {
tsbond(botright, toprshelle);
}
}
/* New point assignments for the rotated quadrilateral. */
setorg(horiz, farpoint);
setdest(horiz, insertpoint);
setapex(horiz, rightpoint);
setorg(top, insertpoint);
setdest(top, farpoint);
setapex(top, leftpoint);
for (i = 0; i < eextras; i++) {
/* Take the average of the two triangles' attributes. */
attrib = 0.5 * (elemattribute(top, i) + elemattribute(horiz, i));
setelemattribute(top, i, attrib);
setelemattribute(horiz, i, attrib);
}
if (vararea) {
if ((areabound(top) <= 0.0) || (areabound(horiz) <= 0.0)) {
area = -1.0;
}
else {
/* Take the average of the two triangles' area constraints. */
/* This prevents small area constraints from migrating a */
/* long, long way from their original location due to flips. */
area = 0.5 * (areabound(top) + areabound(horiz));
}
setareabound(top, area);
setareabound(horiz, area);
}
#ifdef SELF_CHECK
if (insertpoint != (point) NULL) {
if (counterclockwise(leftpoint, insertpoint, rightpoint) < 0.0) {
printf("Internal error in insertsite():\n");
printf(" Clockwise triangle prior to edge flip (bottom).\n");
}
/* The following test has been removed because constrainededge() */
/* sometimes generates inverted triangles that insertsite() */
/* removes. */
/*
if (counterclockwise(rightpoint, farpoint, leftpoint) < 0.0) {
printf("Internal error in insertsite():\n");
printf(" Clockwise triangle prior to edge flip (top).\n");
}
*/
if (counterclockwise(farpoint, leftpoint, insertpoint) < 0.0) {
printf("Internal error in insertsite():\n");
printf(" Clockwise triangle after edge flip (left).\n");
}
if (counterclockwise(insertpoint, rightpoint, farpoint) < 0.0) {
printf("Internal error in insertsite():\n");
printf(" Clockwise triangle after edge flip (right).\n");
}
}
#endif /* SELF_CHECK */
if (verbose > 2) {
printf(" Edge flip results in left ");
lnextself(topleft);
printtriangle(&topleft);
printf(" and right ");
printtriangle(&horiz);
}
/* On the next iterations, consider the two edges that were */
/* exposed (this is, are now visible to the newly inserted */
/* point) by the edge flip. */
lprevself(horiz);
leftpoint = farpoint;
}
}
}
if (!doflip) {
/* The handle `horiz' is accepted as locally Delaunay. */
#ifndef CDT_ONLY
if (triflaws) {
/* Check the triangle `horiz' for quality. */
testtriangle(&horiz);
}
#endif /* not CDT_ONLY */
/* Look for the next edge around the newly inserted point. */
lnextself(horiz);
sym(horiz, testtri);
/* Check for finishing a complete revolution about the new point, or */
/* falling off the edge of the triangulation. The latter will */
/* happen when a point is inserted at a boundary. */
if ((leftpoint == first) || (testtri.tri == dummytri)) {
/* We're done. Return a triangle whose origin is the new point. */
lnext(horiz, *searchtri);
lnext(horiz, recenttri);
return success;
}
/* Finish finding the next edge around the newly inserted point. */
lnext(testtri, horiz);
rightpoint = leftpoint;
dest(horiz, leftpoint);
}
}
}
/*****************************************************************************/
/* */
/* triangulatepolygon() Find the Delaunay triangulation of a polygon that */
/* has a certain "nice" shape. This includes the */
/* polygons that result from deletion of a point or */
/* insertion of a segment. */
/* */
/* This is a conceptually difficult routine. The starting assumption is */
/* that we have a polygon with n sides. n - 1 of these sides are currently */
/* represented as edges in the mesh. One side, called the "base", need not */
/* be. */
/* */
/* Inside the polygon is a structure I call a "fan", consisting of n - 1 */
/* triangles that share a common origin. For each of these triangles, the */
/* edge opposite the origin is one of the sides of the polygon. The */
/* primary edge of each triangle is the edge directed from the origin to */
/* the destination; note that this is not the same edge that is a side of */
/* the polygon. `firstedge' is the primary edge of the first triangle. */
/* From there, the triangles follow in counterclockwise order about the */
/* polygon, until `lastedge', the primary edge of the last triangle. */
/* `firstedge' and `lastedge' are probably connected to other triangles */
/* beyond the extremes of the fan, but their identity is not important, as */
/* long as the fan remains connected to them. */
/* */
/* Imagine the polygon oriented so that its base is at the bottom. This */
/* puts `firstedge' on the far right, and `lastedge' on the far left. */
/* The right vertex of the base is the destination of `firstedge', and the */
/* left vertex of the base is the apex of `lastedge'. */
/* */
/* The challenge now is to find the right sequence of edge flips to */
/* transform the fan into a Delaunay triangulation of the polygon. Each */
/* edge flip effectively removes one triangle from the fan, committing it */
/* to the polygon. The resulting polygon has one fewer edge. If `doflip' */
/* is set, the final flip will be performed, resulting in a fan of one */
/* (useless?) triangle. If `doflip' is not set, the final flip is not */
/* performed, resulting in a fan of two triangles, and an unfinished */
/* triangular polygon that is not yet filled out with a single triangle. */
/* On completion of the routine, `lastedge' is the last remaining triangle, */
/* or the leftmost of the last two. */
/* */
/* Although the flips are performed in the order described above, the */
/* decisions about what flips to perform are made in precisely the reverse */
/* order. The recursive triangulatepolygon() procedure makes a decision, */
/* uses up to two recursive calls to triangulate the "subproblems" */
/* (polygons with fewer edges), and then performs an edge flip. */
/* */
/* The "decision" it makes is which vertex of the polygon should be */
/* connected to the base. This decision is made by testing every possible */
/* vertex. Once the best vertex is found, the two edges that connect this */
/* vertex to the base become the bases for two smaller polygons. These */
/* are triangulated recursively. Unfortunately, this approach can take */
/* O(n^2) time not only in the worst case, but in many common cases. It's */
/* rarely a big deal for point deletion, where n is rarely larger than ten, */
/* but it could be a big deal for segment insertion, especially if there's */
/* a lot of long segments that each cut many triangles. I ought to code */
/* a faster algorithm some time. */
/* */
/* The `edgecount' parameter is the number of sides of the polygon, */
/* including its base. `triflaws' is a flag that determines whether the */
/* new triangles should be tested for quality, and enqueued if they are */
/* bad. */
/* */
/*****************************************************************************/
void triangulatepolygon(struct triedge *firstedge,
struct triedge *lastedge,
int edgecount,
int doflip,
int triflaws)
{
struct triedge testtri;
struct triedge besttri;
struct triedge tempedge;
point leftbasepoint, rightbasepoint;
point testpoint;
point bestpoint;
int bestnumber;
int i;
triangle ptr; /* Temporary variable used by sym(), onext(), and oprev(). */
/* Identify the base vertices. */
apex(*lastedge, leftbasepoint);
dest(*firstedge, rightbasepoint);
if (verbose > 2) {
printf(" Triangulating interior polygon at edge\n");
printf(" (%.12g, %.12g) (%.12g, %.12g)\n", leftbasepoint[0],
leftbasepoint[1], rightbasepoint[0], rightbasepoint[1]);
}
/* Find the best vertex to connect the base to. */
onext(*firstedge, besttri);
dest(besttri, bestpoint);
triedgecopy(besttri, testtri);
bestnumber = 1;
for (i = 2; i <= edgecount - 2; i++) {
onextself(testtri);
dest(testtri, testpoint);
/* Is this a better vertex? */
if (incircle(leftbasepoint, rightbasepoint, bestpoint, testpoint) > 0.0) {
triedgecopy(testtri, besttri);
bestpoint = testpoint;
bestnumber = i;
}
}
if (verbose > 2) {
printf(" Connecting edge to (%.12g, %.12g)\n", bestpoint[0],
bestpoint[1]);
}
if (bestnumber > 1) {
/* Recursively triangulate the smaller polygon on the right. */
oprev(besttri, tempedge);
triangulatepolygon(firstedge, &tempedge, bestnumber + 1, 1, triflaws);
}
if (bestnumber < edgecount - 2) {
/* Recursively triangulate the smaller polygon on the left. */
sym(besttri, tempedge);
triangulatepolygon(&besttri, lastedge, edgecount - bestnumber, 1, triflaws);
/* Find `besttri' again; it may have been lost to edge flips. */
sym(tempedge, besttri);
}
if (doflip) {
/* Do one final edge flip. */
flip(&besttri);
#ifndef CDT_ONLY
if (triflaws) {
/* Check the quality of the newly committed triangle. */
sym(besttri, testtri);
testtriangle(&testtri);
}
#endif /* not CDT_ONLY */
}
/* Return the base triangle. */
triedgecopy(besttri, *lastedge);
}
/*****************************************************************************/
/* */
/* deletesite() Delete a vertex from a Delaunay triangulation, ensuring */
/* that the triangulation remains Delaunay. */
/* */
/* The origin of `deltri' is deleted. The union of the triangles adjacent */
/* to this point is a polygon, for which the Delaunay triangulation is */
/* found. Two triangles are removed from the mesh. */
/* */
/* Only interior points that do not lie on segments (shell edges) or */
/* boundaries may be deleted. */
/* */
/*****************************************************************************/
#ifndef CDT_ONLY
void deletesite(struct triedge *deltri)
{
struct triedge countingtri;
struct triedge firstedge, lastedge;
struct triedge deltriright;
struct triedge lefttri, righttri;
struct triedge leftcasing, rightcasing;
struct edge leftshelle, rightshelle;
point delpoint;
point neworg;
int edgecount;
triangle ptr; /* Temporary variable used by sym(), onext(), and oprev(). */
shelle sptr; /* Temporary variable used by tspivot(). */
org(*deltri, delpoint);
if (verbose > 1) {
printf(" Deleting (%.12g, %.12g).\n", delpoint[0], delpoint[1]);
}
pointdealloc(delpoint);
/* Count the degree of the point being deleted. */
onext(*deltri, countingtri);
edgecount = 1;
while (!triedgeequal(*deltri, countingtri)) {
#ifdef SELF_CHECK
if (countingtri.tri == dummytri) {
printf("Internal error in deletesite():\n");
printf(" Attempt to delete boundary point.\n");
internalerror();
}
#endif /* SELF_CHECK */
edgecount++;
onextself(countingtri);
}
#ifdef SELF_CHECK
if (edgecount < 3) {
printf("Internal error in deletesite():\n Point has degree %d.\n",
edgecount);
internalerror();
}
#endif /* SELF_CHECK */
if (edgecount > 3) {
/* Triangulate the polygon defined by the union of all triangles */
/* adjacent to the point being deleted. Check the quality of */
/* the resulting triangles. */
onext(*deltri, firstedge);
oprev(*deltri, lastedge);
triangulatepolygon(&firstedge, &lastedge, edgecount, 0, !nobisect);
}
/* Splice out two triangles. */
lprev(*deltri, deltriright);
dnext(*deltri, lefttri);
sym(lefttri, leftcasing);
oprev(deltriright, righttri);
sym(righttri, rightcasing);
bond(*deltri, leftcasing);
bond(deltriright, rightcasing);
tspivot(lefttri, leftshelle);
if (leftshelle.sh != dummysh) {
tsbond(*deltri, leftshelle);
}
tspivot(righttri, rightshelle);
if (rightshelle.sh != dummysh) {
tsbond(deltriright, rightshelle);
}
/* Set the new origin of `deltri' and check its quality. */
org(lefttri, neworg);
setorg(*deltri, neworg);
if (!nobisect) {
testtriangle(deltri);
}
/* Delete the two spliced-out triangles. */
triangledealloc(lefttri.tri);
triangledealloc(righttri.tri);
}
#endif /* not CDT_ONLY */
/** **/
/** **/
/********* Mesh transformation routines end here *********/
/********* Divide-and-conquer Delaunay triangulation begins here *********/
/** **/
/** **/
/*****************************************************************************/
/* */
/* The divide-and-conquer bounding box */
/* */
/* I originally implemented the divide-and-conquer and incremental Delaunay */
/* triangulations using the edge-based data structure presented by Guibas */
/* and Stolfi. Switching to a triangle-based data structure doubled the */
/* speed. However, I had to think of a few extra tricks to maintain the */
/* elegance of the original algorithms. */
/* */
/* The "bounding box" used by my variant of the divide-and-conquer */
/* algorithm uses one triangle for each edge of the convex hull of the */
/* triangulation. These bounding triangles all share a common apical */
/* vertex, which is represented by NULL and which represents nothing. */
/* The bounding triangles are linked in a circular fan about this NULL */
/* vertex, and the edges on the convex hull of the triangulation appear */
/* opposite the NULL vertex. You might find it easiest to imagine that */
/* the NULL vertex is a point in 3D space behind the center of the */
/* triangulation, and that the bounding triangles form a sort of cone. */
/* */
/* This bounding box makes it easy to represent degenerate cases. For */
/* instance, the triangulation of two vertices is a single edge. This edge */
/* is represented by two bounding box triangles, one on each "side" of the */
/* edge. These triangles are also linked together in a fan about the NULL */
/* vertex. */
/* */
/* The bounding box also makes it easy to traverse the convex hull, as the */
/* divide-and-conquer algorithm needs to do. */
/* */
/*****************************************************************************/
/*****************************************************************************/
/* */
/* pointsort() Sort an array of points by x-coordinate, using the */
/* y-coordinate as a secondary key. */
/* */
/* Uses quicksort. Randomized O(n log n) time. No, I did not make any of */
/* the usual quicksort mistakes. */
/* */
/*****************************************************************************/
void pointsort(point *sortarray,
int arraysize)
{
int left, right;
int pivot;
REAL pivotx, pivoty;
point temp;
if (arraysize == 2) {
/* Recursive base case. */
if ((sortarray[0][0] > sortarray[1][0]) ||
((sortarray[0][0] == sortarray[1][0]) &&
(sortarray[0][1] > sortarray[1][1]))) {
temp = sortarray[1];
sortarray[1] = sortarray[0];
sortarray[0] = temp;
}
return;
}
/* Choose a random pivot to split the array. */
pivot = (int) randomnation(arraysize);
pivotx = sortarray[pivot][0];
pivoty = sortarray[pivot][1];
/* Split the array. */
left = -1;
right = arraysize;
while (left < right) {
/* Search for a point whose x-coordinate is too large for the left. */
do {
left++;
} while ((left <= right) && ((sortarray[left][0] < pivotx) ||
((sortarray[left][0] == pivotx) &&
(sortarray[left][1] < pivoty))));
/* Search for a point whose x-coordinate is too small for the right. */
do {
right--;
} while ((left <= right) && ((sortarray[right][0] > pivotx) ||
((sortarray[right][0] == pivotx) &&
(sortarray[right][1] > pivoty))));
if (left < right) {
/* Swap the left and right points. */
temp = sortarray[left];
sortarray[left] = sortarray[right];
sortarray[right] = temp;
}
}
if (left > 1) {
/* Recursively sort the left subset. */
pointsort(sortarray, left);
}
if (right < arraysize - 2) {
/* Recursively sort the right subset. */
pointsort(&sortarray[right + 1], arraysize - right - 1);
}
}
/*****************************************************************************/
/* */
/* pointmedian() An order statistic algorithm, almost. Shuffles an array */
/* of points so that the first `median' points occur */
/* lexicographically before the remaining points. */
/* */
/* Uses the x-coordinate as the primary key if axis == 0; the y-coordinate */
/* if axis == 1. Very similar to the pointsort() procedure, but runs in */
/* randomized linear time. */
/* */
/*****************************************************************************/
void pointmedian(point *sortarray,
int arraysize,
int median,
int axis)
{
int left, right;
int pivot;
REAL pivot1, pivot2;
point temp;
if (arraysize == 2) {
/* Recursive base case. */
if ((sortarray[0][axis] > sortarray[1][axis]) ||
((sortarray[0][axis] == sortarray[1][axis]) &&
(sortarray[0][1 - axis] > sortarray[1][1 - axis]))) {
temp = sortarray[1];
sortarray[1] = sortarray[0];
sortarray[0] = temp;
}
return;
}
/* Choose a random pivot to split the array. */
pivot = (int) randomnation(arraysize);
pivot1 = sortarray[pivot][axis];
pivot2 = sortarray[pivot][1 - axis];
/* Split the array. */
left = -1;
right = arraysize;
while (left < right) {
/* Search for a point whose x-coordinate is too large for the left. */
do {
left++;
} while ((left <= right) && ((sortarray[left][axis] < pivot1) ||
((sortarray[left][axis] == pivot1) &&
(sortarray[left][1 - axis] < pivot2))));
/* Search for a point whose x-coordinate is too small for the right. */
do {
right--;
} while ((left <= right) && ((sortarray[right][axis] > pivot1) ||
((sortarray[right][axis] == pivot1) &&
(sortarray[right][1 - axis] > pivot2))));
if (left < right) {
/* Swap the left and right points. */
temp = sortarray[left];
sortarray[left] = sortarray[right];
sortarray[right] = temp;
}
}
/* Unlike in pointsort(), at most one of the following */
/* conditionals is true. */
if (left > median) {
/* Recursively shuffle the left subset. */
pointmedian(sortarray, left, median, axis);
}
if (right < median - 1) {
/* Recursively shuffle the right subset. */
pointmedian(&sortarray[right + 1], arraysize - right - 1,
median - right - 1, axis);
}
}
/*****************************************************************************/
/* */
/* alternateaxes() Sorts the points as appropriate for the divide-and- */
/* conquer algorithm with alternating cuts. */
/* */
/* Partitions by x-coordinate if axis == 0; by y-coordinate if axis == 1. */
/* For the base case, subsets containing only two or three points are */
/* always sorted by x-coordinate. */
/* */
/*****************************************************************************/
void alternateaxes(point *sortarray,
int arraysize,
int axis)
{
int divider;
divider = arraysize >> 1;
if (arraysize <= 3) {
/* Recursive base case: subsets of two or three points will be */
/* handled specially, and should always be sorted by x-coordinate. */
axis = 0;
}
/* Partition with a horizontal or vertical cut. */
pointmedian(sortarray, arraysize, divider, axis);
/* Recursively partition the subsets with a cross cut. */
if (arraysize - divider >= 2) {
if (divider >= 2) {
alternateaxes(sortarray, divider, 1 - axis);
}
alternateaxes(&sortarray[divider], arraysize - divider, 1 - axis);
}
}
/*****************************************************************************/
/* */
/* mergehulls() Merge two adjacent Delaunay triangulations into a */
/* single Delaunay triangulation. */
/* */
/* This is similar to the algorithm given by Guibas and Stolfi, but uses */
/* a triangle-based, rather than edge-based, data structure. */
/* */
/* The algorithm walks up the gap between the two triangulations, knitting */
/* them together. As they are merged, some of their bounding triangles */
/* are converted into real triangles of the triangulation. The procedure */
/* pulls each hull's bounding triangles apart, then knits them together */
/* like the teeth of two gears. The Delaunay property determines, at each */
/* step, whether the next "tooth" is a bounding triangle of the left hull */
/* or the right. When a bounding triangle becomes real, its apex is */
/* changed from NULL to a real point. */
/* */
/* Only two new triangles need to be allocated. These become new bounding */
/* triangles at the top and bottom of the seam. They are used to connect */
/* the remaining bounding triangles (those that have not been converted */
/* into real triangles) into a single fan. */
/* */
/* On entry, `farleft' and `innerleft' are bounding triangles of the left */
/* triangulation. The origin of `farleft' is the leftmost vertex, and */
/* the destination of `innerleft' is the rightmost vertex of the */
/* triangulation. Similarly, `innerright' and `farright' are bounding */
/* triangles of the right triangulation. The origin of `innerright' and */
/* destination of `farright' are the leftmost and rightmost vertices. */
/* */
/* On completion, the origin of `farleft' is the leftmost vertex of the */
/* merged triangulation, and the destination of `farright' is the rightmost */
/* vertex. */
/* */
/*****************************************************************************/
void mergehulls(struct triedge *farleft,
struct triedge *innerleft,
struct triedge *innerright,
struct triedge *farright,
int axis)
{
struct triedge leftcand, rightcand;
struct triedge baseedge;
struct triedge nextedge;
struct triedge sidecasing, topcasing, outercasing;
struct triedge checkedge;
point innerleftdest;
point innerrightorg;
point innerleftapex, innerrightapex;
point farleftpt, farrightpt;
point farleftapex, farrightapex;
point lowerleft, lowerright;
point upperleft, upperright;
point nextapex;
point checkvertex;
int changemade;
int badedge;
int leftfinished, rightfinished;
triangle ptr; /* Temporary variable used by sym(). */
dest(*innerleft, innerleftdest);
apex(*innerleft, innerleftapex);
org(*innerright, innerrightorg);
apex(*innerright, innerrightapex);
/* Special treatment for horizontal cuts. */
if (dwyer && (axis == 1)) {
org(*farleft, farleftpt);
apex(*farleft, farleftapex);
dest(*farright, farrightpt);
apex(*farright, farrightapex);
/* The pointers to the extremal points are shifted to point to the */
/* topmost and bottommost point of each hull, rather than the */
/* leftmost and rightmost points. */
while (farleftapex[1] < farleftpt[1]) {
lnextself(*farleft);
symself(*farleft);
farleftpt = farleftapex;
apex(*farleft, farleftapex);
}
sym(*innerleft, checkedge);
apex(checkedge, checkvertex);
while (checkvertex[1] > innerleftdest[1]) {
lnext(checkedge, *innerleft);
innerleftapex = innerleftdest;
innerleftdest = checkvertex;
sym(*innerleft, checkedge);
apex(checkedge, checkvertex);
}
while (innerrightapex[1] < innerrightorg[1]) {
lnextself(*innerright);
symself(*innerright);
innerrightorg = innerrightapex;
apex(*innerright, innerrightapex);
}
sym(*farright, checkedge);
apex(checkedge, checkvertex);
while (checkvertex[1] > farrightpt[1]) {
lnext(checkedge, *farright);
/*farrightapex = farrightpt;*/
farrightpt = checkvertex;
sym(*farright, checkedge);
apex(checkedge, checkvertex);
}
}
/* Find a line tangent to and below both hulls. */
do {
changemade = 0;
/* Make innerleftdest the "bottommost" point of the left hull. */
if (counterclockwise(innerleftdest, innerleftapex, innerrightorg) > 0.0) {
lprevself(*innerleft);
symself(*innerleft);
innerleftdest = innerleftapex;
apex(*innerleft, innerleftapex);
changemade = 1;
}
/* Make innerrightorg the "bottommost" point of the right hull. */
if (counterclockwise(innerrightapex, innerrightorg, innerleftdest) > 0.0) {
lnextself(*innerright);
symself(*innerright);
innerrightorg = innerrightapex;
apex(*innerright, innerrightapex);
changemade = 1;
}
} while (changemade);
/* Find the two candidates to be the next "gear tooth". */
sym(*innerleft, leftcand);
sym(*innerright, rightcand);
/* Create the bottom new bounding triangle. */
maketriangle(&baseedge);
/* Connect it to the bounding boxes of the left and right triangulations. */
bond(baseedge, *innerleft);
lnextself(baseedge);
bond(baseedge, *innerright);
lnextself(baseedge);
setorg(baseedge, innerrightorg);
setdest(baseedge, innerleftdest);
/* Apex is intentionally left NULL. */
if (verbose > 2) {
printf(" Creating base bounding ");
printtriangle(&baseedge);
}
/* Fix the extreme triangles if necessary. */
org(*farleft, farleftpt);
if (innerleftdest == farleftpt) {
lnext(baseedge, *farleft);
}
dest(*farright, farrightpt);
if (innerrightorg == farrightpt) {
lprev(baseedge, *farright);
}
/* The vertices of the current knitting edge. */
lowerleft = innerleftdest;
lowerright = innerrightorg;
/* The candidate vertices for knitting. */
apex(leftcand, upperleft);
apex(rightcand, upperright);
/* Walk up the gap between the two triangulations, knitting them together. */
while (1) {
/* Have we reached the top? (This isn't quite the right question, */
/* because even though the left triangulation might seem finished now, */
/* moving up on the right triangulation might reveal a new point of */
/* the left triangulation. And vice-versa.) */
leftfinished = counterclockwise(upperleft, lowerleft, lowerright) <= 0.0;
rightfinished = counterclockwise(upperright, lowerleft, lowerright) <= 0.0;
if (leftfinished && rightfinished) {
/* Create the top new bounding triangle. */
maketriangle(&nextedge);
setorg(nextedge, lowerleft);
setdest(nextedge, lowerright);
/* Apex is intentionally left NULL. */
/* Connect it to the bounding boxes of the two triangulations. */
bond(nextedge, baseedge);
lnextself(nextedge);
bond(nextedge, rightcand);
lnextself(nextedge);
bond(nextedge, leftcand);
if (verbose > 2) {
printf(" Creating top bounding ");
printtriangle(&baseedge);
}
/* Special treatment for horizontal cuts. */
if (dwyer && (axis == 1)) {
org(*farleft, farleftpt);
apex(*farleft, farleftapex);
dest(*farright, farrightpt);
apex(*farright, farrightapex);
sym(*farleft, checkedge);
apex(checkedge, checkvertex);
/* The pointers to the extremal points are restored to the leftmost */
/* and rightmost points (rather than topmost and bottommost). */
while (checkvertex[0] < farleftpt[0]) {
lprev(checkedge, *farleft);
/*farleftapex = farleftpt;*/
farleftpt = checkvertex;
sym(*farleft, checkedge);
apex(checkedge, checkvertex);
}
while (farrightapex[0] > farrightpt[0]) {
lprevself(*farright);
symself(*farright);
farrightpt = farrightapex;
apex(*farright, farrightapex);
}
}
return;
}
/* Consider eliminating edges from the left triangulation. */
if (!leftfinished) {
/* What vertex would be exposed if an edge were deleted? */
lprev(leftcand, nextedge);
symself(nextedge);
apex(nextedge, nextapex);
/* If nextapex is NULL, then no vertex would be exposed; the */
/* triangulation would have been eaten right through. */
if (nextapex != (point) NULL) {
/* Check whether the edge is Delaunay. */
badedge = incircle(lowerleft, lowerright, upperleft, nextapex) > 0.0;
while (badedge) {
/* Eliminate the edge with an edge flip. As a result, the */
/* left triangulation will have one more boundary triangle. */
lnextself(nextedge);
sym(nextedge, topcasing);
lnextself(nextedge);
sym(nextedge, sidecasing);
bond(nextedge, topcasing);
bond(leftcand, sidecasing);
lnextself(leftcand);
sym(leftcand, outercasing);
lprevself(nextedge);
bond(nextedge, outercasing);
/* Correct the vertices to reflect the edge flip. */
setorg(leftcand, lowerleft);
setdest(leftcand, NULL);
setapex(leftcand, nextapex);
setorg(nextedge, NULL);
setdest(nextedge, upperleft);
setapex(nextedge, nextapex);
/* Consider the newly exposed vertex. */
upperleft = nextapex;
/* What vertex would be exposed if another edge were deleted? */
triedgecopy(sidecasing, nextedge);
apex(nextedge, nextapex);
if (nextapex != (point) NULL) {
/* Check whether the edge is Delaunay. */
badedge = incircle(lowerleft, lowerright, upperleft, nextapex)
> 0.0;
}
else {
/* Avoid eating right through the triangulation. */
badedge = 0;
}
}
}
}
/* Consider eliminating edges from the right triangulation. */
if (!rightfinished) {
/* What vertex would be exposed if an edge were deleted? */
lnext(rightcand, nextedge);
symself(nextedge);
apex(nextedge, nextapex);
/* If nextapex is NULL, then no vertex would be exposed; the */
/* triangulation would have been eaten right through. */
if (nextapex != (point) NULL) {
/* Check whether the edge is Delaunay. */
badedge = incircle(lowerleft, lowerright, upperright, nextapex) > 0.0;
while (badedge) {
/* Eliminate the edge with an edge flip. As a result, the */
/* right triangulation will have one more boundary triangle. */
lprevself(nextedge);
sym(nextedge, topcasing);
lprevself(nextedge);
sym(nextedge, sidecasing);
bond(nextedge, topcasing);
bond(rightcand, sidecasing);
lprevself(rightcand);
sym(rightcand, outercasing);
lnextself(nextedge);
bond(nextedge, outercasing);
/* Correct the vertices to reflect the edge flip. */
setorg(rightcand, NULL);
setdest(rightcand, lowerright);
setapex(rightcand, nextapex);
setorg(nextedge, upperright);
setdest(nextedge, NULL);
setapex(nextedge, nextapex);
/* Consider the newly exposed vertex. */
upperright = nextapex;
/* What vertex would be exposed if another edge were deleted? */
triedgecopy(sidecasing, nextedge);
apex(nextedge, nextapex);
if (nextapex != (point) NULL) {
/* Check whether the edge is Delaunay. */
badedge = incircle(lowerleft, lowerright, upperright, nextapex)
> 0.0;
}
else {
/* Avoid eating right through the triangulation. */
badedge = 0;
}
}
}
}
if (leftfinished || (!rightfinished &&
(incircle(upperleft, lowerleft, lowerright, upperright) > 0.0))) {
/* Knit the triangulations, adding an edge from `lowerleft' */
/* to `upperright'. */
bond(baseedge, rightcand);
lprev(rightcand, baseedge);
setdest(baseedge, lowerleft);
lowerright = upperright;
sym(baseedge, rightcand);
apex(rightcand, upperright);
}
else {
/* Knit the triangulations, adding an edge from `upperleft' */
/* to `lowerright'. */
bond(baseedge, leftcand);
lnext(leftcand, baseedge);
setorg(baseedge, lowerright);
lowerleft = upperleft;
sym(baseedge, leftcand);
apex(leftcand, upperleft);
}
if (verbose > 2) {
printf(" Connecting ");
printtriangle(&baseedge);
}
}
}
/*****************************************************************************/
/* */
/* divconqrecurse() Recursively form a Delaunay triangulation by the */
/* divide-and-conquer method. */
/* */
/* Recursively breaks down the problem into smaller pieces, which are */
/* knitted together by mergehulls(). The base cases (problems of two or */
/* three points) are handled specially here. */
/* */
/* On completion, `farleft' and `farright' are bounding triangles such that */
/* the origin of `farleft' is the leftmost vertex (breaking ties by */
/* choosing the highest leftmost vertex), and the destination of */
/* `farright' is the rightmost vertex (breaking ties by choosing the */
/* lowest rightmost vertex). */
/* */
/*****************************************************************************/
void divconqrecurse(point *sortarray,
int vertices,
int axis,
struct triedge *farleft,
struct triedge *farright)
{
struct triedge midtri, tri1, tri2, tri3;
struct triedge innerleft, innerright;
REAL area;
int divider;
if (verbose > 2) {
printf(" Triangulating %d points.\n", vertices);
}
if (vertices == 2) {
/* The triangulation of two vertices is an edge. An edge is */
/* represented by two bounding triangles. */
maketriangle(farleft);
setorg(*farleft, sortarray[0]);
setdest(*farleft, sortarray[1]);
/* The apex is intentionally left NULL. */
maketriangle(farright);
setorg(*farright, sortarray[1]);
setdest(*farright, sortarray[0]);
/* The apex is intentionally left NULL. */
bond(*farleft, *farright);
lprevself(*farleft);
lnextself(*farright);
bond(*farleft, *farright);
lprevself(*farleft);
lnextself(*farright);
bond(*farleft, *farright);
if (verbose > 2) {
printf(" Creating ");
printtriangle(farleft);
printf(" Creating ");
printtriangle(farright);
}
/* Ensure that the origin of `farleft' is sortarray[0]. */
lprev(*farright, *farleft);
return;
}
else if (vertices == 3) {
/* The triangulation of three vertices is either a triangle (with */
/* three bounding triangles) or two edges (with four bounding */
/* triangles). In either case, four triangles are created. */
maketriangle(&midtri);
maketriangle(&tri1);
maketriangle(&tri2);
maketriangle(&tri3);
area = counterclockwise(sortarray[0], sortarray[1], sortarray[2]);
if (area == 0.0) {
/* Three collinear points; the triangulation is two edges. */
setorg(midtri, sortarray[0]);
setdest(midtri, sortarray[1]);
setorg(tri1, sortarray[1]);
setdest(tri1, sortarray[0]);
setorg(tri2, sortarray[2]);
setdest(tri2, sortarray[1]);
setorg(tri3, sortarray[1]);
setdest(tri3, sortarray[2]);
/* All apices are intentionally left NULL. */
bond(midtri, tri1);
bond(tri2, tri3);
lnextself(midtri);
lprevself(tri1);
lnextself(tri2);
lprevself(tri3);
bond(midtri, tri3);
bond(tri1, tri2);
lnextself(midtri);
lprevself(tri1);
lnextself(tri2);
lprevself(tri3);
bond(midtri, tri1);
bond(tri2, tri3);
/* Ensure that the origin of `farleft' is sortarray[0]. */
triedgecopy(tri1, *farleft);
/* Ensure that the destination of `farright' is sortarray[2]. */
triedgecopy(tri2, *farright);
}
else {
/* The three points are not collinear; the triangulation is one */
/* triangle, namely `midtri'. */
setorg(midtri, sortarray[0]);
setdest(tri1, sortarray[0]);
setorg(tri3, sortarray[0]);
/* Apices of tri1, tri2, and tri3 are left NULL. */
if (area > 0.0) {
/* The vertices are in counterclockwise order. */
setdest(midtri, sortarray[1]);
setorg(tri1, sortarray[1]);
setdest(tri2, sortarray[1]);
setapex(midtri, sortarray[2]);
setorg(tri2, sortarray[2]);
setdest(tri3, sortarray[2]);
}
else {
/* The vertices are in clockwise order. */
setdest(midtri, sortarray[2]);
setorg(tri1, sortarray[2]);
setdest(tri2, sortarray[2]);
setapex(midtri, sortarray[1]);
setorg(tri2, sortarray[1]);
setdest(tri3, sortarray[1]);
}
/* The topology does not depend on how the vertices are ordered. */
bond(midtri, tri1);
lnextself(midtri);
bond(midtri, tri2);
lnextself(midtri);
bond(midtri, tri3);
lprevself(tri1);
lnextself(tri2);
bond(tri1, tri2);
lprevself(tri1);
lprevself(tri3);
bond(tri1, tri3);
lnextself(tri2);
lprevself(tri3);
bond(tri2, tri3);
/* Ensure that the origin of `farleft' is sortarray[0]. */
triedgecopy(tri1, *farleft);
/* Ensure that the destination of `farright' is sortarray[2]. */
if (area > 0.0) {
triedgecopy(tri2, *farright);
}
else {
lnext(*farleft, *farright);
}
}
if (verbose > 2) {
printf(" Creating ");
printtriangle(&midtri);
printf(" Creating ");
printtriangle(&tri1);
printf(" Creating ");
printtriangle(&tri2);
printf(" Creating ");
printtriangle(&tri3);
}
return;
}
else {
/* Split the vertices in half. */
divider = vertices >> 1;
/* Recursively triangulate each half. */
divconqrecurse(sortarray, divider, 1 - axis, farleft, &innerleft);
divconqrecurse(&sortarray[divider], vertices - divider, 1 - axis,
&innerright, farright);
if (verbose > 1) {
printf(" Joining triangulations with %d and %d vertices.\n", divider,
vertices - divider);
}
/* Merge the two triangulations into one. */
mergehulls(farleft, &innerleft, &innerright, farright, axis);
}
}
long removeghosts(struct triedge *startghost)
{
struct triedge searchedge;
struct triedge dissolveedge;
struct triedge deadtri;
point markorg;
long hullsize;
triangle ptr; /* Temporary variable used by sym(). */
if (verbose) {
printf(" Removing ghost triangles.\n");
}
/* Find an edge on the convex hull to start point location from. */
lprev(*startghost, searchedge);
symself(searchedge);
dummytri[0] = encode(searchedge);
/* Remove the bounding box and count the convex hull edges. */
triedgecopy(*startghost, dissolveedge);
hullsize = 0;
do {
hullsize++;
lnext(dissolveedge, deadtri);
lprevself(dissolveedge);
symself(dissolveedge);
/* If no PSLG is involved, set the boundary markers of all the points */
/* on the convex hull. If a PSLG is used, this step is done later. */
if (!poly) {
/* Watch out for the case where all the input points are collinear. */
if (dissolveedge.tri != dummytri) {
org(dissolveedge, markorg);
if (pointmark(markorg) == 0) {
setpointmark(markorg, 1);
}
}
}
/* Remove a bounding triangle from a convex hull triangle. */
dissolve(dissolveedge);
/* Find the next bounding triangle. */
sym(deadtri, dissolveedge);
/* Delete the bounding triangle. */
triangledealloc(deadtri.tri);
} while (!triedgeequal(dissolveedge, *startghost));
return hullsize;
}
/*****************************************************************************/
/* */
/* divconqdelaunay() Form a Delaunay triangulation by the divide-and- */
/* conquer method. */
/* */
/* Sorts the points, calls a recursive procedure to triangulate them, and */
/* removes the bounding box, setting boundary markers as appropriate. */
/* */
/*****************************************************************************/
long divconqdelaunay(void)
{
point *sortarray;
struct triedge hullleft, hullright;
int divider;
int i, j;
/* Allocate an array of pointers to points for sorting. */
sortarray = (point *) malloc(inpoints * sizeof(point));
if (sortarray == (point *) NULL) {
printf("Error: Out of memory.\n");
exit(1);
}
traversalinit(&points);
for (i = 0; i < inpoints; i++) {
sortarray[i] = pointtraverse();
}
if (verbose) {
printf(" Sorting points.\n");
}
/* Sort the points. */
pointsort(sortarray, inpoints);
/* Discard duplicate points, which can really mess up the algorithm. */
i = 0;
for (j = 1; j < inpoints; j++) {
if ((sortarray[i][0] == sortarray[j][0])
&& (sortarray[i][1] == sortarray[j][1])) {
if (!quiet) {
printf("Warning: A duplicate point at (%.12g, %.12g) appeared and was ignored.\n",
sortarray[j][0], sortarray[j][1]);
}
/* Commented out - would eliminate point from output .node file, but causes
a failure if some segment has this point as an endpoint.
setpointmark(sortarray[j], DEADPOINT);
*/
}
else {
i++;
sortarray[i] = sortarray[j];
}
}
i++;
if (dwyer) {
/* Re-sort the array of points to accommodate alternating cuts. */
divider = i >> 1;
if (i - divider >= 2) {
if (divider >= 2) {
alternateaxes(sortarray, divider, 1);
}
alternateaxes(&sortarray[divider], i - divider, 1);
}
}
if (verbose) {
printf(" Forming triangulation.\n");
}
/* Form the Delaunay triangulation. */
divconqrecurse(sortarray, i, 0, &hullleft, &hullright);
free(sortarray);
return removeghosts(&hullleft);
}
/** **/
/** **/
/********* Divide-and-conquer Delaunay triangulation ends here *********/
/********* Incremental Delaunay triangulation begins here *********/
/** **/
/** **/
/*****************************************************************************/
/* */
/* boundingbox() Form an "infinite" bounding triangle to insert points */
/* into. */
/* */
/* The points at "infinity" are assigned finite coordinates, which are used */
/* by the point location routines, but (mostly) ignored by the Delaunay */
/* edge flip routines. */
/* */
/*****************************************************************************/
#ifndef REDUCED
void boundingbox(void)
{
struct triedge inftri; /* Handle for the triangular bounding box. */
REAL width;
if (verbose) {
printf(" Creating triangular bounding box.\n");
}
/* Find the width (or height, whichever is larger) of the triangulation. */
width = xmax - xmin;
if (ymax - ymin > width) {
width = ymax - ymin;
}
if (width == 0.0) {
width = 1.0;
}
/* Create the vertices of the bounding box. */
infpoint1 = (point) malloc(points.itembytes);
infpoint2 = (point) malloc(points.itembytes);
infpoint3 = (point) malloc(points.itembytes);
if ((infpoint1 == (point) NULL) || (infpoint2 == (point) NULL)
|| (infpoint3 == (point) NULL)) {
printf("Error: Out of memory.\n");
exit(1);
}
infpoint1[0] = xmin - 50.0 * width;
infpoint1[1] = ymin - 40.0 * width;
infpoint2[0] = xmax + 50.0 * width;
infpoint2[1] = ymin - 40.0 * width;
infpoint3[0] = 0.5 * (xmin + xmax);
infpoint3[1] = ymax + 60.0 * width;
/* Create the bounding box. */
maketriangle(&inftri);
setorg(inftri, infpoint1);
setdest(inftri, infpoint2);
setapex(inftri, infpoint3);
/* Link dummytri to the bounding box so we can always find an */
/* edge to begin searching (point location) from. */
dummytri[0] = (triangle) inftri.tri;
if (verbose > 2) {
printf(" Creating ");
printtriangle(&inftri);
}
}
#endif /* not REDUCED */
/*****************************************************************************/
/* */
/* removebox() Remove the "infinite" bounding triangle, setting boundary */
/* markers as appropriate. */
/* */
/* The triangular bounding box has three boundary triangles (one for each */
/* side of the bounding box), and a bunch of triangles fanning out from */
/* the three bounding box vertices (one triangle for each edge of the */
/* convex hull of the inner mesh). This routine removes these triangles. */
/* */
/*****************************************************************************/
#ifndef REDUCED
long removebox(void)
{
struct triedge deadtri;
struct triedge searchedge;
struct triedge checkedge;
struct triedge nextedge, finaledge, dissolveedge;
point markorg;
long hullsize;
triangle ptr; /* Temporary variable used by sym(). */
if (verbose) {
printf(" Removing triangular bounding box.\n");
}
/* Find a boundary triangle. */
nextedge.tri = dummytri;
nextedge.orient = 0;
symself(nextedge);
/* Mark a place to stop. */
lprev(nextedge, finaledge);
lnextself(nextedge);
symself(nextedge);
/* Find a triangle (on the boundary of the point set) that isn't */
/* a bounding box triangle. */
lprev(nextedge, searchedge);
symself(searchedge);
/* Check whether nextedge is another boundary triangle */
/* adjacent to the first one. */
lnext(nextedge, checkedge);
symself(checkedge);
if (checkedge.tri == dummytri) {
/* Go on to the next triangle. There are only three boundary */
/* triangles, and this next triangle cannot be the third one, */
/* so it's safe to stop here. */
lprevself(searchedge);
symself(searchedge);
}
/* Find a new boundary edge to search from, as the current search */
/* edge lies on a bounding box triangle and will be deleted. */
dummytri[0] = encode(searchedge);
hullsize = -2l;
while (!triedgeequal(nextedge, finaledge)) {
hullsize++;
lprev(nextedge, dissolveedge);
symself(dissolveedge);
/* If not using a PSLG, the vertices should be marked now. */
/* (If using a PSLG, markhull() will do the job.) */
if (!poly) {
/* Be careful! One must check for the case where all the input */
/* points are collinear, and thus all the triangles are part of */
/* the bounding box. Otherwise, the setpointmark() call below */
/* will cause a bad pointer reference. */
if (dissolveedge.tri != dummytri) {
org(dissolveedge, markorg);
if (pointmark(markorg) == 0) {
setpointmark(markorg, 1);
}
}
}
/* Disconnect the bounding box triangle from the mesh triangle. */
dissolve(dissolveedge);
lnext(nextedge, deadtri);
sym(deadtri, nextedge);
/* Get rid of the bounding box triangle. */
triangledealloc(deadtri.tri);
/* Do we need to turn the corner? */
if (nextedge.tri == dummytri) {
/* Turn the corner. */
triedgecopy(dissolveedge, nextedge);
}
}
triangledealloc(finaledge.tri);
free(infpoint1); /* Deallocate the bounding box vertices. */
free(infpoint2);
free(infpoint3);
return hullsize;
}
#endif /* not REDUCED */
/*****************************************************************************/
/* */
/* incrementaldelaunay() Form a Delaunay triangulation by incrementally */
/* adding vertices. */
/* */
/*****************************************************************************/
#ifndef REDUCED
long incrementaldelaunay(void)
{
struct triedge starttri;
point pointloop;
/* Create a triangular bounding box. */
boundingbox();
if (verbose) {
printf(" Incrementally inserting points.\n");
}
traversalinit(&points);
pointloop = pointtraverse();
while (pointloop != (point) NULL) {
/* Find a boundary triangle to search from. */
starttri.tri = (triangle *) NULL;
if (insertsite(pointloop, &starttri, (struct edge *) NULL, 0, 0) ==
DUPLICATEPOINT) {
if (!quiet) {
printf("Warning: A duplicate point at (%.12g, %.12g) appeared and was ignored.\n",
pointloop[0], pointloop[1]);
}
/* Commented out - would eliminate point from output .node file.
setpointmark(pointloop, DEADPOINT);
*/
}
pointloop = pointtraverse();
}
/* Remove the bounding box. */
return removebox();
}
#endif /* not REDUCED */
/** **/
/** **/
/********* Incremental Delaunay triangulation ends here *********/
/********* Sweepline Delaunay triangulation begins here *********/
/** **/
/** **/
#ifndef REDUCED
void eventheapinsert(struct event **heap,
int heapsize,
struct event *newevent)
{
REAL eventx, eventy;
int eventnum;
int parent;
int notdone;
eventx = newevent->xkey;
eventy = newevent->ykey;
eventnum = heapsize;
notdone = eventnum > 0;
while (notdone) {
parent = (eventnum - 1) >> 1;
if ((heap[parent]->ykey < eventy) ||
((heap[parent]->ykey == eventy)
&& (heap[parent]->xkey <= eventx))) {
notdone = 0;
}
else {
heap[eventnum] = heap[parent];
heap[eventnum]->heapposition = eventnum;
eventnum = parent;
notdone = eventnum > 0;
}
}
heap[eventnum] = newevent;
newevent->heapposition = eventnum;
}
#endif /* not REDUCED */
#ifndef REDUCED
void eventheapify(struct event **heap,
int heapsize,
int eventnum)
{
struct event *thisevent;
REAL eventx, eventy;
int leftchild, rightchild;
int smallest;
int notdone;
thisevent = heap[eventnum];
eventx = thisevent->xkey;
eventy = thisevent->ykey;
leftchild = 2 * eventnum + 1;
notdone = leftchild < heapsize;
while (notdone) {
if ((heap[leftchild]->ykey < eventy) ||
((heap[leftchild]->ykey == eventy)
&& (heap[leftchild]->xkey < eventx))) {
smallest = leftchild;
}
else {
smallest = eventnum;
}
rightchild = leftchild + 1;
if (rightchild < heapsize) {
if ((heap[rightchild]->ykey < heap[smallest]->ykey) ||
((heap[rightchild]->ykey == heap[smallest]->ykey)
&& (heap[rightchild]->xkey < heap[smallest]->xkey))) {
smallest = rightchild;
}
}
if (smallest == eventnum) {
notdone = 0;
}
else {
heap[eventnum] = heap[smallest];
heap[eventnum]->heapposition = eventnum;
heap[smallest] = thisevent;
thisevent->heapposition = smallest;
eventnum = smallest;
leftchild = 2 * eventnum + 1;
notdone = leftchild < heapsize;
}
}
}
#endif /* not REDUCED */
#ifndef REDUCED
void eventheapdelete(struct event **heap,
int heapsize,
int eventnum)
{
struct event *moveevent;
REAL eventx, eventy;
int parent;
int notdone;
moveevent = heap[heapsize - 1];
if (eventnum > 0) {
eventx = moveevent->xkey;
eventy = moveevent->ykey;
do {
parent = (eventnum - 1) >> 1;
if ((heap[parent]->ykey < eventy) ||
((heap[parent]->ykey == eventy)
&& (heap[parent]->xkey <= eventx))) {
notdone = 0;
}
else {
heap[eventnum] = heap[parent];
heap[eventnum]->heapposition = eventnum;
eventnum = parent;
notdone = eventnum > 0;
}
} while (notdone);
}
heap[eventnum] = moveevent;
moveevent->heapposition = eventnum;
eventheapify(heap, heapsize - 1, eventnum);
}
#endif /* not REDUCED */
#ifndef REDUCED
void createeventheap(struct event ***eventheap,
struct event **events,
struct event **freeevents)
{
point thispoint;
int maxevents;
int i;
maxevents = (3 * inpoints) / 2;
*eventheap = (struct event **) malloc(maxevents * sizeof(struct event *));
if (*eventheap == (struct event **) NULL) {
printf("Error: Out of memory.\n");
exit(1);
}
*events = (struct event *) malloc(maxevents * sizeof(struct event));
if (*events == (struct event *) NULL) {
printf("Error: Out of memory.\n");
exit(1);
}
traversalinit(&points);
for (i = 0; i < inpoints; i++) {
thispoint = pointtraverse();
(*events)[i].eventptr = (VOID *) thispoint;
(*events)[i].xkey = thispoint[0];
(*events)[i].ykey = thispoint[1];
eventheapinsert(*eventheap, i, *events + i);
}
*freeevents = (struct event *) NULL;
for (i = maxevents - 1; i >= inpoints; i--) {
(*events)[i].eventptr = (VOID *) *freeevents;
*freeevents = *events + i;
}
}
#endif /* not REDUCED */
#ifndef REDUCED
int rightofhyperbola(struct triedge *fronttri,
point newsite)
{
point leftpoint, rightpoint;
REAL dxa, dya, dxb, dyb;
hyperbolacount++;
dest(*fronttri, leftpoint);
apex(*fronttri, rightpoint);
if ((leftpoint[1] < rightpoint[1])
|| ((leftpoint[1] == rightpoint[1]) && (leftpoint[0] < rightpoint[0]))) {
if (newsite[0] >= rightpoint[0]) {
return 1;
}
}
else {
if (newsite[0] <= leftpoint[0]) {
return 0;
}
}
dxa = leftpoint[0] - newsite[0];
dya = leftpoint[1] - newsite[1];
dxb = rightpoint[0] - newsite[0];
dyb = rightpoint[1] - newsite[1];
return dya * (dxb * dxb + dyb * dyb) > dyb * (dxa * dxa + dya * dya);
}
#endif /* not REDUCED */
#ifndef REDUCED
REAL circletop(point pa,
point pb,
point pc,
REAL ccwabc)
{
REAL xac, yac, xbc, ybc, xab, yab;
REAL aclen2, bclen2, ablen2;
circletopcount++;
xac = pa[0] - pc[0];
yac = pa[1] - pc[1];
xbc = pb[0] - pc[0];
ybc = pb[1] - pc[1];
xab = pa[0] - pb[0];
yab = pa[1] - pb[1];
aclen2 = xac * xac + yac * yac;
bclen2 = xbc * xbc + ybc * ybc;
ablen2 = xab * xab + yab * yab;
return pc[1] + (xac * bclen2 - xbc * aclen2 + sqrt(aclen2 * bclen2 * ablen2))
/ (2.0 * ccwabc);
}
#endif /* not REDUCED */
#ifndef REDUCED
void check4deadevent(struct triedge *checktri,
struct event **freeevents,
struct event **eventheap,
int *heapsize)
{
struct event *deadevent;
point eventpoint;
int eventnum;
org(*checktri, eventpoint);
if (eventpoint != (point) NULL) {
deadevent = (struct event *) eventpoint;
eventnum = deadevent->heapposition;
deadevent->eventptr = (VOID *) *freeevents;
*freeevents = deadevent;
eventheapdelete(eventheap, *heapsize, eventnum);
(*heapsize)--;
setorg(*checktri, NULL);
}
}
#endif /* not REDUCED */
#ifndef REDUCED
struct splaynode *splay(struct splaynode *splaytree,
point searchpoint,
struct triedge *searchtri)
{
struct splaynode *child, *grandchild;
struct splaynode *lefttree, *righttree;
struct splaynode *leftright;
point checkpoint;
int rightofroot, rightofchild;
if (splaytree == (struct splaynode *) NULL) {
return (struct splaynode *) NULL;
}
dest(splaytree->keyedge, checkpoint);
if (checkpoint == splaytree->keydest) {
rightofroot = rightofhyperbola(&splaytree->keyedge, searchpoint);
if (rightofroot) {
triedgecopy(splaytree->keyedge, *searchtri);
child = splaytree->rchild;
}
else {
child = splaytree->lchild;
}
if (child == (struct splaynode *) NULL) {
return splaytree;
}
dest(child->keyedge, checkpoint);
if (checkpoint != child->keydest) {
child = splay(child, searchpoint, searchtri);
if (child == (struct splaynode *) NULL) {
if (rightofroot) {
splaytree->rchild = (struct splaynode *) NULL;
}
else {
splaytree->lchild = (struct splaynode *) NULL;
}
return splaytree;
}
}
rightofchild = rightofhyperbola(&child->keyedge, searchpoint);
if (rightofchild) {
triedgecopy(child->keyedge, *searchtri);
grandchild = splay(child->rchild, searchpoint, searchtri);
child->rchild = grandchild;
}
else {
grandchild = splay(child->lchild, searchpoint, searchtri);
child->lchild = grandchild;
}
if (grandchild == (struct splaynode *) NULL) {
if (rightofroot) {
splaytree->rchild = child->lchild;
child->lchild = splaytree;
}
else {
splaytree->lchild = child->rchild;
child->rchild = splaytree;
}
return child;
}
if (rightofchild) {
if (rightofroot) {
splaytree->rchild = child->lchild;
child->lchild = splaytree;
}
else {
splaytree->lchild = grandchild->rchild;
grandchild->rchild = splaytree;
}
child->rchild = grandchild->lchild;
grandchild->lchild = child;
}
else {
if (rightofroot) {
splaytree->rchild = grandchild->lchild;
grandchild->lchild = splaytree;
}
else {
splaytree->lchild = child->rchild;
child->rchild = splaytree;
}
child->lchild = grandchild->rchild;
grandchild->rchild = child;
}
return grandchild;
}
else {
lefttree = splay(splaytree->lchild, searchpoint, searchtri);
righttree = splay(splaytree->rchild, searchpoint, searchtri);
pooldealloc(&splaynodes, (VOID *) splaytree);
if (lefttree == (struct splaynode *) NULL) {
return righttree;
}
else if (righttree == (struct splaynode *) NULL) {
return lefttree;
}
else if (lefttree->rchild == (struct splaynode *) NULL) {
lefttree->rchild = righttree->lchild;
righttree->lchild = lefttree;
return righttree;
}
else if (righttree->lchild == (struct splaynode *) NULL) {
righttree->lchild = lefttree->rchild;
lefttree->rchild = righttree;
return lefttree;
}
else {
/* printf("Holy Toledo!!!\n"); */
leftright = lefttree->rchild;
while (leftright->rchild != (struct splaynode *) NULL) {
leftright = leftright->rchild;
}
leftright->rchild = righttree;
return lefttree;
}
}
}
#endif /* not REDUCED */
#ifndef REDUCED
struct splaynode *splayinsert(struct splaynode *splayroot,
struct triedge *newkey,
point searchpoint)
{
struct splaynode *newsplaynode;
newsplaynode = (struct splaynode *) poolalloc(&splaynodes);
triedgecopy(*newkey, newsplaynode->keyedge);
dest(*newkey, newsplaynode->keydest);
if (splayroot == (struct splaynode *) NULL) {
newsplaynode->lchild = (struct splaynode *) NULL;
newsplaynode->rchild = (struct splaynode *) NULL;
}
else if (rightofhyperbola(&splayroot->keyedge, searchpoint)) {
newsplaynode->lchild = splayroot;
newsplaynode->rchild = splayroot->rchild;
splayroot->rchild = (struct splaynode *) NULL;
}
else {
newsplaynode->lchild = splayroot->lchild;
newsplaynode->rchild = splayroot;
splayroot->lchild = (struct splaynode *) NULL;
}
return newsplaynode;
}
#endif /* not REDUCED */
#ifndef REDUCED
struct splaynode *circletopinsert(struct splaynode *splayroot,
struct triedge *newkey,
point pa,
point pb,
point pc,
REAL topy)
{
REAL ccwabc;
REAL xac, yac, xbc, ybc;
REAL aclen2, bclen2;
REAL searchpoint[2];
struct triedge dummytri;
ccwabc = counterclockwise(pa, pb, pc);
xac = pa[0] - pc[0];
yac = pa[1] - pc[1];
xbc = pb[0] - pc[0];
ybc = pb[1] - pc[1];
aclen2 = xac * xac + yac * yac;
bclen2 = xbc * xbc + ybc * ybc;
searchpoint[0] = pc[0] - (yac * bclen2 - ybc * aclen2) / (2.0 * ccwabc);
searchpoint[1] = topy;
return splayinsert(splay(splayroot, (point) searchpoint, &dummytri), newkey,
(point) searchpoint);
}
#endif /* not REDUCED */
#ifndef REDUCED
struct splaynode *frontlocate(struct splaynode *splayroot,
struct triedge *bottommost,
point searchpoint,
struct triedge *searchtri,
int *farright)
{
int farrightflag;
triangle ptr; /* Temporary variable used by onext(). */
triedgecopy(*bottommost, *searchtri);
splayroot = splay(splayroot, searchpoint, searchtri);
farrightflag = 0;
while (!farrightflag && rightofhyperbola(searchtri, searchpoint)) {
onextself(*searchtri);
farrightflag = triedgeequal(*searchtri, *bottommost);
}
*farright = farrightflag;
return splayroot;
}
#endif /* not REDUCED */
#ifndef REDUCED
long sweeplinedelaunay(void)
{
struct event **eventheap;
struct event *events;
struct event *freeevents;
struct event *nextevent;
struct event *newevent;
struct splaynode *splayroot;
struct triedge bottommost;
struct triedge searchtri;
struct triedge fliptri;
struct triedge lefttri, righttri, farlefttri, farrighttri;
struct triedge inserttri;
point firstpoint, secondpoint;
point nextpoint, lastpoint;
point connectpoint;
point leftpoint, midpoint, rightpoint;
REAL lefttest, righttest;
int heapsize;
int check4events, farrightflag;
triangle ptr; /* Temporary variable used by sym(), onext(), and oprev(). */
poolinit(&splaynodes, (int)sizeof(struct splaynode),
SPLAYNODEPERBLOCK, POINTER, 0);
splayroot = (struct splaynode *) NULL;
if (verbose) {
printf(" Placing points in event heap.\n");
}
createeventheap(&eventheap, &events, &freeevents);
heapsize = inpoints;
if (verbose) {
printf(" Forming triangulation.\n");
}
maketriangle(&lefttri);
maketriangle(&righttri);
bond(lefttri, righttri);
lnextself(lefttri);
lprevself(righttri);
bond(lefttri, righttri);
lnextself(lefttri);
lprevself(righttri);
bond(lefttri, righttri);
firstpoint = (point) eventheap[0]->eventptr;
eventheap[0]->eventptr = (VOID *) freeevents;
freeevents = eventheap[0];
eventheapdelete(eventheap, heapsize, 0);
heapsize--;
do {
if (heapsize == 0) {
printf("Error: Input points are all identical.\n");
exit(1);
}
secondpoint = (point) eventheap[0]->eventptr;
eventheap[0]->eventptr = (VOID *) freeevents;
freeevents = eventheap[0];
eventheapdelete(eventheap, heapsize, 0);
heapsize--;
if ((firstpoint[0] == secondpoint[0])
&& (firstpoint[1] == secondpoint[1])) {
printf("Warning: A duplicate point at (%.12g, %.12g) appeared and was ignored.\n",
secondpoint[0], secondpoint[1]);
/* Commented out - would eliminate point from output .node file.
setpointmark(secondpoint, DEADPOINT);
*/
}
} while ((firstpoint[0] == secondpoint[0])
&& (firstpoint[1] == secondpoint[1]));
setorg(lefttri, firstpoint);
setdest(lefttri, secondpoint);
setorg(righttri, secondpoint);
setdest(righttri, firstpoint);
lprev(lefttri, bottommost);
lastpoint = secondpoint;
while (heapsize > 0) {
nextevent = eventheap[0];
eventheapdelete(eventheap, heapsize, 0);
heapsize--;
check4events = 1;
if (nextevent->xkey < xmin) {
decode(nextevent->eventptr, fliptri);
oprev(fliptri, farlefttri);
check4deadevent(&farlefttri, &freeevents, eventheap, &heapsize);
onext(fliptri, farrighttri);
check4deadevent(&farrighttri, &freeevents, eventheap, &heapsize);
if (triedgeequal(farlefttri, bottommost)) {
lprev(fliptri, bottommost);
}
flip(&fliptri);
setapex(fliptri, NULL);
lprev(fliptri, lefttri);
lnext(fliptri, righttri);
sym(lefttri, farlefttri);
if (randomnation(SAMPLERATE) == 0) {
symself(fliptri);
dest(fliptri, leftpoint);
apex(fliptri, midpoint);
org(fliptri, rightpoint);
splayroot = circletopinsert(splayroot, &lefttri, leftpoint, midpoint,
rightpoint, nextevent->ykey);
}
}
else {
nextpoint = (point) nextevent->eventptr;
if ((nextpoint[0] == lastpoint[0]) && (nextpoint[1] == lastpoint[1])) {
printf("Warning: A duplicate point at (%.12g, %.12g) appeared and was ignored.\n",
nextpoint[0], nextpoint[1]);
/* Commented out - would eliminate point from output .node file.
setpointmark(nextpoint, DEADPOINT);
*/
check4events = 0;
}
else {
lastpoint = nextpoint;
splayroot = frontlocate(splayroot, &bottommost, nextpoint, &searchtri,
&farrightflag);
/*
triedgecopy(bottommost, searchtri);
farrightflag = 0;
while (!farrightflag && rightofhyperbola(&searchtri, nextpoint)) {
onextself(searchtri);
farrightflag = triedgeequal(searchtri, bottommost);
}
*/
check4deadevent(&searchtri, &freeevents, eventheap, &heapsize);
triedgecopy(searchtri, farrighttri);
sym(searchtri, farlefttri);
maketriangle(&lefttri);
maketriangle(&righttri);
dest(farrighttri, connectpoint);
setorg(lefttri, connectpoint);
setdest(lefttri, nextpoint);
setorg(righttri, nextpoint);
setdest(righttri, connectpoint);
bond(lefttri, righttri);
lnextself(lefttri);
lprevself(righttri);
bond(lefttri, righttri);
lnextself(lefttri);
lprevself(righttri);
bond(lefttri, farlefttri);
bond(righttri, farrighttri);
if (!farrightflag && triedgeequal(farrighttri, bottommost)) {
triedgecopy(lefttri, bottommost);
}
if (randomnation(SAMPLERATE) == 0) {
splayroot = splayinsert(splayroot, &lefttri, nextpoint);
}
else if (randomnation(SAMPLERATE) == 0) {
lnext(righttri, inserttri);
splayroot = splayinsert(splayroot, &inserttri, nextpoint);
}
}
}
nextevent->eventptr = (VOID *) freeevents;
freeevents = nextevent;
if (check4events) {
apex(farlefttri, leftpoint);
dest(lefttri, midpoint);
apex(lefttri, rightpoint);
lefttest = counterclockwise(leftpoint, midpoint, rightpoint);
if (lefttest > 0.0) {
newevent = freeevents;
freeevents = (struct event *) freeevents->eventptr;
newevent->xkey = xminextreme;
newevent->ykey = circletop(leftpoint, midpoint, rightpoint, lefttest);
newevent->eventptr = (VOID *) encode(lefttri);
eventheapinsert(eventheap, heapsize, newevent);
heapsize++;
setorg(lefttri, newevent);
}
apex(righttri, leftpoint);
org(righttri, midpoint);
apex(farrighttri, rightpoint);
righttest = counterclockwise(leftpoint, midpoint, rightpoint);
if (righttest > 0.0) {
newevent = freeevents;
freeevents = (struct event *) freeevents->eventptr;
newevent->xkey = xminextreme;
newevent->ykey = circletop(leftpoint, midpoint, rightpoint, righttest);
newevent->eventptr = (VOID *) encode(farrighttri);
eventheapinsert(eventheap, heapsize, newevent);
heapsize++;
setorg(farrighttri, newevent);
}
}
}
pooldeinit(&splaynodes);
lprevself(bottommost);
return removeghosts(&bottommost);
}
#endif /* not REDUCED */
/** **/
/** **/
/********* Sweepline Delaunay triangulation ends here *********/
/********* General mesh construction routines begin here *********/
/** **/
/** **/
/*****************************************************************************/
/* */
/* delaunay() Form a Delaunay triangulation. */
/* */
/*****************************************************************************/
long delaunay(void)
{
eextras = 0;
initializetrisegpools();
#ifdef REDUCED
if (!quiet) {
printf("Constructing Delaunay triangulation by divide-and-conquer method.\n");
}
return divconqdelaunay();
#else /* not REDUCED */
if (!quiet) {
printf("Constructing Delaunay triangulation ");
if (incremental) {
printf("by incremental method.\n");
}
else if (sweepline) {
printf("by sweepline method.\n");
}
else {
printf("by divide-and-conquer method.\n");
}
}
if (incremental) {
return incrementaldelaunay();
}
else if (sweepline) {
return sweeplinedelaunay();
}
else {
return divconqdelaunay();
}
#endif /* not REDUCED */
}
/*****************************************************************************/
/* */
/* reconstruct() Reconstruct a triangulation from its .ele (and possibly */
/* .poly) file. Used when the -r switch is used. */
/* */
/* Reads an .ele file and reconstructs the original mesh. If the -p switch */
/* is used, this procedure will also read a .poly file and reconstruct the */
/* shell edges of the original mesh. If the -a switch is used, this */
/* procedure will also read an .area file and set a maximum area constraint */
/* on each triangle. */
/* */
/* Points that are not corners of triangles, such as nodes on edges of */
/* subparametric elements, are discarded. */
/* */
/* This routine finds the adjacencies between triangles (and shell edges) */
/* by forming one stack of triangles for each vertex. Each triangle is on */
/* three different stacks simultaneously. Each triangle's shell edge */
/* pointers are used to link the items in each stack. This memory-saving */
/* feature makes the code harder to read. The most important thing to keep */
/* in mind is that each triangle is removed from a stack precisely when */
/* the corresponding pointer is adjusted to refer to a shell edge rather */
/* than the next triangle of the stack. */
/* */
/*****************************************************************************/
#ifndef CDT_ONLY
#ifdef TRILIBRARY
int reconstruct(int *trianglelist,
REAL *triangleattriblist,
REAL *trianglearealist,
int elements,
int corners,
int attribs,
int *segmentlist,
int *segmentmarkerlist,
int numberofsegments)
#else /* not TRILIBRARY */
long reconstruct(char *elefilename,
char *areafilename,
char *polyfilename,
FILE *polyfile)
#endif /* not TRILIBRARY */
{
#ifdef TRILIBRARY
int pointindex;
int attribindex;
#else /* not TRILIBRARY */
FILE *elefile;
FILE *areafile;
char inputline[INPUTLINESIZE];
char *stringptr;
int areaelements;
#endif /* not TRILIBRARY */
struct triedge triangleloop;
struct triedge triangleleft;
struct triedge checktri;
struct triedge checkleft;
struct triedge checkneighbor;
struct edge shelleloop;
triangle *vertexarray;
triangle *prevlink;
triangle nexttri;
point tdest, tapex;
point checkdest, checkapex;
point shorg;
point killpoint;
REAL area;
int corner[3];
int end[2];
int killpointindex;
int incorners;
int segmentmarkers=0;
int boundmarker;
int aroundpoint;
long hullsize;
int notfound;
int elementnumber, segmentnumber;
int i, j;
triangle ptr; /* Temporary variable used by sym(). */
#ifdef TRILIBRARY
inelements = elements;
incorners = corners;
if (incorners < 3) {
printf("Error: Triangles must have at least 3 points.\n");
exit(1);
}
eextras = attribs;
#else /* not TRILIBRARY */
/* Read the triangles from an .ele file. */
if (!quiet) {
printf("Opening %s.\n", elefilename);
}
elefile = fopen(elefilename, "r");
if (elefile == (FILE *) NULL) {
printf(" Error: Cannot access file %s.\n", elefilename);
exit(1);
}
/* Read number of triangles, number of points per triangle, and */
/* number of triangle attributes from .ele file. */
stringptr = readline(inputline, elefile, elefilename);
inelements = (int) strtol (stringptr, &stringptr, 0);
stringptr = findfield(stringptr);
if (*stringptr == '\0') {
incorners = 3;
}
else {
incorners = (int) strtol (stringptr, &stringptr, 0);
if (incorners < 3) {
printf("Error: Triangles in %s must have at least 3 points.\n",
elefilename);
exit(1);
}
}
stringptr = findfield(stringptr);
if (*stringptr == '\0') {
eextras = 0;
}
else {
eextras = (int) strtol (stringptr, &stringptr, 0);
}
#endif /* not TRILIBRARY */
initializetrisegpools();
/* Create the triangles. */
for (elementnumber = 1; elementnumber <= inelements; elementnumber++) {
maketriangle(&triangleloop);
/* Mark the triangle as living. */
triangleloop.tri[3] = (triangle) triangleloop.tri;
}
if (poly) {
#ifdef TRILIBRARY
insegments = numberofsegments;
segmentmarkers = segmentmarkerlist != (int *) NULL;
#else /* not TRILIBRARY */
/* Read number of segments and number of segment */
/* boundary markers from .poly file. */
stringptr = readline(inputline, polyfile, inpolyfilename);
insegments = (int) strtol (stringptr, &stringptr, 0);
stringptr = findfield(stringptr);
if (*stringptr == '\0') {
segmentmarkers = 0;
}
else {
segmentmarkers = (int) strtol (stringptr, &stringptr, 0);
}
#endif /* not TRILIBRARY */
/* Create the shell edges. */
for (segmentnumber = 1; segmentnumber <= insegments; segmentnumber++) {
makeshelle(&shelleloop);
/* Mark the shell edge as living. */
shelleloop.sh[2] = (shelle) shelleloop.sh;
}
}
#ifdef TRILIBRARY
pointindex = 0;
attribindex = 0;
#else /* not TRILIBRARY */
if (vararea) {
/* Open an .area file, check for consistency with the .ele file. */
if (!quiet) {
printf("Opening %s.\n", areafilename);
}
areafile = fopen(areafilename, "r");
if (areafile == (FILE *) NULL) {
printf(" Error: Cannot access file %s.\n", areafilename);
exit(1);
}
stringptr = readline(inputline, areafile, areafilename);
areaelements = (int) strtol (stringptr, &stringptr, 0);
if (areaelements != inelements) {
printf("Error: %s and %s disagree on number of triangles.\n",
elefilename, areafilename);
exit(1);
}
}
#endif /* not TRILIBRARY */
if (!quiet) {
printf("Reconstructing mesh.\n");
}
/* Allocate a temporary array that maps each point to some adjacent */
/* triangle. I took care to allocate all the permanent memory for */
/* triangles and shell edges first. */
vertexarray = (triangle *) malloc(points.items * sizeof(triangle));
if (vertexarray == (triangle *) NULL) {
printf("Error: Out of memory.\n");
exit(1);
}
/* Each point is initially unrepresented. */
for (i = 0; i < points.items; i++) {
vertexarray[i] = (triangle) dummytri;
}
if (verbose) {
printf(" Assembling triangles.\n");
}
/* Read the triangles from the .ele file, and link */
/* together those that share an edge. */
traversalinit(&triangles);
triangleloop.tri = triangletraverse();
elementnumber = firstnumber;
while (triangleloop.tri != (triangle *) NULL) {
#ifdef TRILIBRARY
/* Copy the triangle's three corners. */
for (j = 0; j < 3; j++) {
corner[j] = trianglelist[pointindex++];
if ((corner[j] < firstnumber) || (corner[j] >= firstnumber + inpoints)) {
printf("Error: Triangle %d has an invalid vertex index.\n",
elementnumber);
exit(1);
}
}
#else /* not TRILIBRARY */
/* Read triangle number and the triangle's three corners. */
stringptr = readline(inputline, elefile, elefilename);
for (j = 0; j < 3; j++) {
stringptr = findfield(stringptr);
if (*stringptr == '\0') {
printf("Error: Triangle %d is missing point %d in %s.\n",
elementnumber, j + 1, elefilename);
exit(1);
}
else {
corner[j] = (int) strtol (stringptr, &stringptr, 0);
if ((corner[j] < firstnumber) ||
(corner[j] >= firstnumber + inpoints)) {
printf("Error: Triangle %d has an invalid vertex index.\n",
elementnumber);
exit(1);
}
}
}
#endif /* not TRILIBRARY */
/* Find out about (and throw away) extra nodes. */
for (j = 3; j < incorners; j++) {
#ifdef TRILIBRARY
killpointindex = trianglelist[pointindex++];
#else /* not TRILIBRARY */
stringptr = findfield(stringptr);
if (*stringptr != '\0') {
killpointindex = (int) strtol (stringptr, &stringptr, 0);
#endif /* not TRILIBRARY */
if ((killpointindex >= firstnumber) &&
(killpointindex < firstnumber + inpoints)) {
/* Delete the non-corner point if it's not already deleted. */
killpoint = getpoint(killpointindex);
if (pointmark(killpoint) != DEADPOINT) {
pointdealloc(killpoint);
}
}
#ifndef TRILIBRARY
}
#endif /* not TRILIBRARY */
}
/* Read the triangle's attributes. */
for (j = 0; j < eextras; j++) {
#ifdef TRILIBRARY
setelemattribute(triangleloop, j, triangleattriblist[attribindex++]);
#else /* not TRILIBRARY */
stringptr = findfield(stringptr);
if (*stringptr == '\0') {
setelemattribute(triangleloop, j, 0);
}
else {
setelemattribute(triangleloop, j,
(REAL) strtod (stringptr, &stringptr));
}
#endif /* not TRILIBRARY */
}
if (vararea) {
#ifdef TRILIBRARY
area = trianglearealist[elementnumber - firstnumber];
#else /* not TRILIBRARY */
/* Read an area constraint from the .area file. */
stringptr = readline(inputline, areafile, areafilename);
stringptr = findfield(stringptr);
if (*stringptr == '\0') {
area = -1.0; /* No constraint on this triangle. */
}
else {
area = (REAL) strtod(stringptr, &stringptr);
}
#endif /* not TRILIBRARY */
setareabound(triangleloop, area);
}
/* Set the triangle's vertices. */
triangleloop.orient = 0;
setorg(triangleloop, getpoint(corner[0]));
setdest(triangleloop, getpoint(corner[1]));
setapex(triangleloop, getpoint(corner[2]));
/* Try linking the triangle to others that share these vertices. */
for (triangleloop.orient = 0; triangleloop.orient < 3; triangleloop.orient++) {
/* Take the number for the origin of triangleloop. */
aroundpoint = corner[triangleloop.orient];
/* Look for other triangles having this vertex. */
nexttri = vertexarray[aroundpoint - firstnumber];
/* Link the current triangle to the next one in the stack. */
triangleloop.tri[6 + triangleloop.orient] = nexttri;
/* Push the current triangle onto the stack. */
vertexarray[aroundpoint - firstnumber] = encode(triangleloop);
decode(nexttri, checktri);
if (checktri.tri != dummytri) {
dest(triangleloop, tdest);
apex(triangleloop, tapex);
/* Look for other triangles that share an edge. */
do {
dest(checktri, checkdest);
apex(checktri, checkapex);
if (tapex == checkdest) {
/* The two triangles share an edge; bond them together. */
lprev(triangleloop, triangleleft);
bond(triangleleft, checktri);
}
if (tdest == checkapex) {
/* The two triangles share an edge; bond them together. */
lprev(checktri, checkleft);
bond(triangleloop, checkleft);
}
/* Find the next triangle in the stack. */
nexttri = checktri.tri[6 + checktri.orient];
decode(nexttri, checktri);
} while (checktri.tri != dummytri);
}
}
triangleloop.tri = triangletraverse();
elementnumber++;
}
#ifdef TRILIBRARY
pointindex = 0;
#else /* not TRILIBRARY */
fclose(elefile);
if (vararea) {
fclose(areafile);
}
#endif /* not TRILIBRARY */
hullsize = 0; /* Prepare to count the boundary edges. */
if (poly) {
if (verbose) {
printf(" Marking segments in triangulation.\n");
}
/* Read the segments from the .poly file, and link them */
/* to their neighboring triangles. */
boundmarker = 0;
traversalinit(&shelles);
shelleloop.sh = shelletraverse();
segmentnumber = firstnumber;
while (shelleloop.sh != (shelle *) NULL) {
#ifdef TRILIBRARY
end[0] = segmentlist[pointindex++];
end[1] = segmentlist[pointindex++];
if (segmentmarkers) {
boundmarker = segmentmarkerlist[segmentnumber - firstnumber];
}
#else /* not TRILIBRARY */
/* Read the endpoints of each segment, and possibly a boundary marker. */
stringptr = readline(inputline, polyfile, inpolyfilename);
/* Skip the first (segment number) field. */
stringptr = findfield(stringptr);
if (*stringptr == '\0') {
printf("Error: Segment %d has no endpoints in %s.\n", segmentnumber,
polyfilename);
exit(1);
}
else {
end[0] = (int) strtol (stringptr, &stringptr, 0);
}
stringptr = findfield(stringptr);
if (*stringptr == '\0') {
printf("Error: Segment %d is missing its second endpoint in %s.\n",
segmentnumber, polyfilename);
exit(1);
}
else {
end[1] = (int) strtol (stringptr, &stringptr, 0);
}
if (segmentmarkers) {
stringptr = findfield(stringptr);
if (*stringptr == '\0') {
boundmarker = 0;
}
else {
boundmarker = (int) strtol (stringptr, &stringptr, 0);
}
}
#endif /* not TRILIBRARY */
for (j = 0; j < 2; j++) {
if ((end[j] < firstnumber) || (end[j] >= firstnumber + inpoints)) {
printf("Error: Segment %d has an invalid vertex index.\n",
segmentnumber);
exit(1);
}
}
/* set the shell edge's vertices. */
shelleloop.shorient = 0;
setsorg(shelleloop, getpoint(end[0]));
setsdest(shelleloop, getpoint(end[1]));
setmark(shelleloop, boundmarker);
/* Try linking the shell edge to triangles that share these vertices. */
for (shelleloop.shorient = 0; shelleloop.shorient < 2;
shelleloop.shorient++) {
/* Take the number for the destination of shelleloop. */
aroundpoint = end[1 - shelleloop.shorient];
/* Look for triangles having this vertex. */
prevlink = &vertexarray[aroundpoint - firstnumber];
nexttri = vertexarray[aroundpoint - firstnumber];
decode(nexttri, checktri);
sorg(shelleloop, shorg);
notfound = 1;
/* Look for triangles having this edge. Note that I'm only */
/* comparing each triangle's destination with the shell edge; */
/* each triangle's apex is handled through a different vertex. */
/* Because each triangle appears on three vertices' lists, each */
/* occurrence of a triangle on a list can (and does) represent */
/* an edge. In this way, most edges are represented twice, and */
/* every triangle-segment bond is represented once. */
while (notfound && (checktri.tri != dummytri)) {
dest(checktri, checkdest);
if (shorg == checkdest) {
/* We have a match. Remove this triangle from the list. */
*prevlink = checktri.tri[6 + checktri.orient];
/* Bond the shell edge to the triangle. */
tsbond(checktri, shelleloop);
/* Check if this is a boundary edge. */
sym(checktri, checkneighbor);
if (checkneighbor.tri == dummytri) {
/* The next line doesn't insert a shell edge (because there's */
/* already one there), but it sets the boundary markers of */
/* the existing shell edge and its vertices. */
insertshelle(&checktri, 1);
hullsize++;
}
notfound = 0;
}
/* Find the next triangle in the stack. */
prevlink = &checktri.tri[6 + checktri.orient];
nexttri = checktri.tri[6 + checktri.orient];
decode(nexttri, checktri);
}
}
shelleloop.sh = shelletraverse();
segmentnumber++;
}
}
/* Mark the remaining edges as not being attached to any shell edge. */
/* Also, count the (yet uncounted) boundary edges. */
for (i = 0; i < points.items; i++) {
/* Search the stack of triangles adjacent to a point. */
nexttri = vertexarray[i];
decode(nexttri, checktri);
while (checktri.tri != dummytri) {
/* Find the next triangle in the stack before this */
/* information gets overwritten. */
nexttri = checktri.tri[6 + checktri.orient];
/* No adjacent shell edge. (This overwrites the stack info.) */
tsdissolve(checktri);
sym(checktri, checkneighbor);
if (checkneighbor.tri == dummytri) {
insertshelle(&checktri, 1);
hullsize++;
}
decode(nexttri, checktri);
}
}
free(vertexarray);
return hullsize;
}
#endif /* not CDT_ONLY */
/** **/
/** **/
/********* General mesh construction routines end here *********/
/********* Segment (shell edge) insertion begins here *********/
/** **/
/** **/
/*****************************************************************************/
/* */
/* finddirection() Find the first triangle on the path from one point */
/* to another. */
/* */
/* Finds the triangle that intersects a line segment drawn from the */
/* origin of `searchtri' to the point `endpoint', and returns the result */
/* in `searchtri'. The origin of `searchtri' does not change, even though */
/* the triangle returned may differ from the one passed in. This routine */
/* is used to find the direction to move in to get from one point to */
/* another. */
/* */
/* The return value notes whether the destination or apex of the found */
/* triangle is collinear with the two points in question. */
/* */
/*****************************************************************************/
enum finddirectionresult finddirection(struct triedge *searchtri,
point endpoint)
{
struct triedge checktri;
point startpoint;
point leftpoint, rightpoint;
REAL leftccw, rightccw;
int leftflag, rightflag;
triangle ptr; /* Temporary variable used by onext() and oprev(). */
org(*searchtri, startpoint);
dest(*searchtri, rightpoint);
apex(*searchtri, leftpoint);
/* Is `endpoint' to the left? */
leftccw = counterclockwise(endpoint, startpoint, leftpoint);
leftflag = leftccw > 0.0;
/* Is `endpoint' to the right? */
rightccw = counterclockwise(startpoint, endpoint, rightpoint);
rightflag = rightccw > 0.0;
if (leftflag && rightflag) {
/* `searchtri' faces directly away from `endpoint'. We could go */
/* left or right. Ask whether it's a triangle or a boundary */
/* on the left. */
onext(*searchtri, checktri);
if (checktri.tri == dummytri) {
leftflag = 0;
}
else {
rightflag = 0;
}
}
while (leftflag) {
/* Turn left until satisfied. */
onextself(*searchtri);
if (searchtri->tri == dummytri) {
printf("Internal error in finddirection(): Unable to find a\n");
printf(" triangle leading from (%.12g, %.12g) to", startpoint[0],
startpoint[1]);
printf(" (%.12g, %.12g).\n", endpoint[0], endpoint[1]);
internalerror();
}
apex(*searchtri, leftpoint);
rightccw = leftccw;
leftccw = counterclockwise(endpoint, startpoint, leftpoint);
leftflag = leftccw > 0.0;
}
while (rightflag) {
/* Turn right until satisfied. */
oprevself(*searchtri);
if (searchtri->tri == dummytri) {
printf("Internal error in finddirection(): Unable to find a\n");
printf(" triangle leading from (%.12g, %.12g) to", startpoint[0],
startpoint[1]);
printf(" (%.12g, %.12g).\n", endpoint[0], endpoint[1]);
internalerror();
}
dest(*searchtri, rightpoint);
leftccw = rightccw;
rightccw = counterclockwise(startpoint, endpoint, rightpoint);
rightflag = rightccw > 0.0;
}
if (leftccw == 0.0) {
return LEFTCOLLINEAR;
}
else if (rightccw == 0.0) {
return RIGHTCOLLINEAR;
}
else {
return WITHIN;
}
}
/*****************************************************************************/
/* */
/* segmentintersection() Find the intersection of an existing segment */
/* and a segment that is being inserted. Insert */
/* a point at the intersection, splitting an */
/* existing shell edge. */
/* */
/* The segment being inserted connects the apex of splittri to endpoint2. */
/* splitshelle is the shell edge being split, and MUST be opposite */
/* splittri. Hence, the edge being split connects the origin and */
/* destination of splittri. */
/* */
/* On completion, splittri is a handle having the newly inserted */
/* intersection point as its origin, and endpoint1 as its destination. */
/* */
/*****************************************************************************/
void segmentintersection(struct triedge *splittri,
struct edge *splitshelle,
point endpoint2)
{
point endpoint1;
point torg, tdest;
point leftpoint, rightpoint;
point newpoint;
enum insertsiteresult success;
/*enum finddirectionresult collinear;*/
REAL ex, ey;
REAL tx, ty;
REAL etx, ety;
REAL split, denom;
int i;
triangle ptr; /* Temporary variable used by onext(). */
/* Find the other three segment endpoints. */
apex(*splittri, endpoint1);
org(*splittri, torg);
dest(*splittri, tdest);
/* Segment intersection formulae; see the Antonio reference. */
tx = tdest[0] - torg[0];
ty = tdest[1] - torg[1];
ex = endpoint2[0] - endpoint1[0];
ey = endpoint2[1] - endpoint1[1];
etx = torg[0] - endpoint2[0];
ety = torg[1] - endpoint2[1];
denom = ty * ex - tx * ey;
if (denom == 0.0) {
printf("Internal error in segmentintersection():");
printf(" Attempt to find intersection of parallel segments.\n");
internalerror();
}
split = (ey * etx - ex * ety) / denom;
/* Create the new point. */
newpoint = (point) poolalloc(&points);
/* Interpolate its coordinate and attributes. */
for (i = 0; i < 2 + nextras; i++) {
newpoint[i] = torg[i] + split * (tdest[i] - torg[i]);
}
setpointmark(newpoint, mark(*splitshelle));
if (verbose > 1) {
printf(" Splitting edge (%.12g, %.12g) (%.12g, %.12g) at (%.12g, %.12g).\n",
torg[0], torg[1], tdest[0], tdest[1], newpoint[0], newpoint[1]);
}
/* Insert the intersection point. This should always succeed. */
success = insertsite(newpoint, splittri, splitshelle, 0, 0);
if (success != SUCCESSFULPOINT) {
printf("Internal error in segmentintersection():\n");
printf(" Failure to split a segment.\n");
internalerror();
}
if (steinerleft > 0) {
steinerleft--;
}
/* Inserting the point may have caused edge flips. We wish to rediscover */
/* the edge connecting endpoint1 to the new intersection point. */
/*collinear =*/ finddirection(splittri, endpoint1);
dest(*splittri, rightpoint);
apex(*splittri, leftpoint);
if ((leftpoint[0] == endpoint1[0]) && (leftpoint[1] == endpoint1[1])) {
onextself(*splittri);
}
else if ((rightpoint[0] != endpoint1[0]) ||
(rightpoint[1] != endpoint1[1])) {
printf("Internal error in segmentintersection():\n");
printf(" Topological inconsistency after splitting a segment.\n");
internalerror();
}
/* `splittri' should have destination endpoint1. */
}
/*****************************************************************************/
/* */
/* scoutsegment() Scout the first triangle on the path from one endpoint */
/* to another, and check for completion (reaching the */
/* second endpoint), a collinear point, and the */
/* intersection of two segments. */
/* */
/* Returns one if the entire segment is successfully inserted, and zero if */
/* the job must be finished by conformingedge() or constrainededge(). */
/* */
/* If the first triangle on the path has the second endpoint as its */
/* destination or apex, a shell edge is inserted and the job is done. */
/* */
/* If the first triangle on the path has a destination or apex that lies on */
/* the segment, a shell edge is inserted connecting the first endpoint to */
/* the collinear point, and the search is continued from the collinear */
/* point. */
/* */
/* If the first triangle on the path has a shell edge opposite its origin, */
/* then there is a segment that intersects the segment being inserted. */
/* Their intersection point is inserted, splitting the shell edge. */
/* */
/* Otherwise, return zero. */
/* */
/*****************************************************************************/
int scoutsegment(struct triedge *searchtri,
point endpoint2,
int newmark)
{
struct triedge crosstri;
struct edge crossedge;
point leftpoint, rightpoint;
/*point endpoint1;*/
enum finddirectionresult collinear;
shelle sptr; /* Temporary variable used by tspivot(). */
collinear = finddirection(searchtri, endpoint2);
dest(*searchtri, rightpoint);
apex(*searchtri, leftpoint);
if (((leftpoint[0] == endpoint2[0]) && (leftpoint[1] == endpoint2[1])) ||
((rightpoint[0] == endpoint2[0]) && (rightpoint[1] == endpoint2[1]))) {
/* The segment is already an edge in the mesh. */
if ((leftpoint[0] == endpoint2[0]) && (leftpoint[1] == endpoint2[1])) {
lprevself(*searchtri);
}
/* Insert a shell edge, if there isn't already one there. */
insertshelle(searchtri, newmark);
return 1;
}
else if (collinear == LEFTCOLLINEAR) {
/* We've collided with a point between the segment's endpoints. */
/* Make the collinear point be the triangle's origin. */
lprevself(*searchtri);
insertshelle(searchtri, newmark);
/* Insert the remainder of the segment. */
return scoutsegment(searchtri, endpoint2, newmark);
}
else if (collinear == RIGHTCOLLINEAR) {
/* We've collided with a point between the segment's endpoints. */
insertshelle(searchtri, newmark);
/* Make the collinear point be the triangle's origin. */
lnextself(*searchtri);
/* Insert the remainder of the segment. */
return scoutsegment(searchtri, endpoint2, newmark);
}
else {
lnext(*searchtri, crosstri);
tspivot(crosstri, crossedge);
/* Check for a crossing segment. */
if (crossedge.sh == dummysh) {
return 0;
}
else {
/*org(*searchtri, endpoint1);*/
/* Insert a point at the intersection. */
segmentintersection(&crosstri, &crossedge, endpoint2);
triedgecopy(crosstri, *searchtri);
insertshelle(searchtri, newmark);
/* Insert the remainder of the segment. */
return scoutsegment(searchtri, endpoint2, newmark);
}
}
}
/*****************************************************************************/
/* */
/* conformingedge() Force a segment into a conforming Delaunay */
/* triangulation by inserting a point at its midpoint, */
/* and recursively forcing in the two half-segments if */
/* necessary. */
/* */
/* Generates a sequence of edges connecting `endpoint1' to `endpoint2'. */
/* `newmark' is the boundary marker of the segment, assigned to each new */
/* splitting point and shell edge. */
/* */
/* Note that conformingedge() does not always maintain the conforming */
/* Delaunay property. Once inserted, segments are locked into place; */
/* points inserted later (to force other segments in) may render these */
/* fixed segments non-Delaunay. The conforming Delaunay property will be */
/* restored by enforcequality() by splitting encroached segments. */
/* */
/*****************************************************************************/
#ifndef REDUCED
#ifndef CDT_ONLY
void conformingedge(point endpoint1,
point endpoint2,
int newmark)
{
struct triedge searchtri1, searchtri2;
struct edge brokenshelle;
point newpoint;
point midpoint1, midpoint2;
enum insertsiteresult success;
int result1, result2;
int i;
shelle sptr; /* Temporary variable used by tspivot(). */
if (verbose > 2) {
printf("Forcing segment into triangulation by recursive splitting:\n");
printf(" (%.12g, %.12g) (%.12g, %.12g)\n", endpoint1[0], endpoint1[1],
endpoint2[0], endpoint2[1]);
}
/* Create a new point to insert in the middle of the segment. */
newpoint = (point) poolalloc(&points);
/* Interpolate coordinates and attributes. */
for (i = 0; i < 2 + nextras; i++) {
newpoint[i] = 0.5 * (endpoint1[i] + endpoint2[i]);
}
setpointmark(newpoint, newmark);
/* Find a boundary triangle to search from. */
searchtri1.tri = (triangle *) NULL;
/* Attempt to insert the new point. */
success = insertsite(newpoint, &searchtri1, (struct edge *) NULL, 0, 0);
if (success == DUPLICATEPOINT) {
if (verbose > 2) {
printf(" Segment intersects existing point (%.12g, %.12g).\n",
newpoint[0], newpoint[1]);
}
/* Use the point that's already there. */
pointdealloc(newpoint);
/*org(searchtri1, newpoint);*/
}
else {
if (success == VIOLATINGPOINT) {
if (verbose > 2) {
printf(" Two segments intersect at (%.12g, %.12g).\n",
newpoint[0], newpoint[1]);
}
/* By fluke, we've landed right on another segment. Split it. */
tspivot(searchtri1, brokenshelle);
success = insertsite(newpoint, &searchtri1, &brokenshelle, 0, 0);
if (success != SUCCESSFULPOINT) {
printf("Internal error in conformingedge():\n");
printf(" Failure to split a segment.\n");
internalerror();
}
}
/* The point has been inserted successfully. */
if (steinerleft > 0) {
steinerleft--;
}
}
triedgecopy(searchtri1, searchtri2);
result1 = scoutsegment(&searchtri1, endpoint1, newmark);
result2 = scoutsegment(&searchtri2, endpoint2, newmark);
if (!result1) {
/* The origin of searchtri1 may have changed if a collision with an */
/* intervening vertex on the segment occurred. */
org(searchtri1, midpoint1);
conformingedge(midpoint1, endpoint1, newmark);
}
if (!result2) {
/* The origin of searchtri2 may have changed if a collision with an */
/* intervening vertex on the segment occurred. */
org(searchtri2, midpoint2);
conformingedge(midpoint2, endpoint2, newmark);
}
}
#endif /* not CDT_ONLY */
#endif /* not REDUCED */
/*****************************************************************************/
/* */
/* delaunayfixup() Enforce the Delaunay condition at an edge, fanning out */
/* recursively from an existing point. Pay special */
/* attention to stacking inverted triangles. */
/* */
/* This is a support routine for inserting segments into a constrained */
/* Delaunay triangulation. */
/* */
/* The origin of fixuptri is treated as if it has just been inserted, and */
/* the local Delaunay condition needs to be enforced. It is only enforced */
/* in one sector, however, that being the angular range defined by */
/* fixuptri. */
/* */
/* This routine also needs to make decisions regarding the "stacking" of */
/* triangles. (Read the description of constrainededge() below before */
/* reading on here, so you understand the algorithm.) If the position of */
/* the new point (the origin of fixuptri) indicates that the vertex before */
/* it on the polygon is a reflex vertex, then "stack" the triangle by */
/* doing nothing. (fixuptri is an inverted triangle, which is how stacked */
/* triangles are identified.) */
/* */
/* Otherwise, check whether the vertex before that was a reflex vertex. */
/* If so, perform an edge flip, thereby eliminating an inverted triangle */
/* (popping it off the stack). The edge flip may result in the creation */
/* of a new inverted triangle, depending on whether or not the new vertex */
/* is visible to the vertex three edges behind on the polygon. */
/* */
/* If neither of the two vertices behind the new vertex are reflex */
/* vertices, fixuptri and fartri, the triangle opposite it, are not */
/* inverted; hence, ensure that the edge between them is locally Delaunay. */
/* */
/* `leftside' indicates whether or not fixuptri is to the left of the */
/* segment being inserted. (Imagine that the segment is pointing up from */
/* endpoint1 to endpoint2.) */
/* */
/*****************************************************************************/
void delaunayfixup(struct triedge *fixuptri,
int leftside)
{
struct triedge neartri;
struct triedge fartri;
struct edge faredge;
point nearpoint, leftpoint, rightpoint, farpoint;
triangle ptr; /* Temporary variable used by sym(). */
shelle sptr; /* Temporary variable used by tspivot(). */
lnext(*fixuptri, neartri);
sym(neartri, fartri);
/* Check if the edge opposite the origin of fixuptri can be flipped. */
if (fartri.tri == dummytri) {
return;
}
tspivot(neartri, faredge);
if (faredge.sh != dummysh) {
return;
}
/* Find all the relevant vertices. */
apex(neartri, nearpoint);
org(neartri, leftpoint);
dest(neartri, rightpoint);
apex(fartri, farpoint);
/* Check whether the previous polygon vertex is a reflex vertex. */
if (leftside) {
if (counterclockwise(nearpoint, leftpoint, farpoint) <= 0.0) {
/* leftpoint is a reflex vertex too. Nothing can */
/* be done until a convex section is found. */
return;
}
}
else {
if (counterclockwise(farpoint, rightpoint, nearpoint) <= 0.0) {
/* rightpoint is a reflex vertex too. Nothing can */
/* be done until a convex section is found. */
return;
}
}
if (counterclockwise(rightpoint, leftpoint, farpoint) > 0.0) {
/* fartri is not an inverted triangle, and farpoint is not a reflex */
/* vertex. As there are no reflex vertices, fixuptri isn't an */
/* inverted triangle, either. Hence, test the edge between the */
/* triangles to ensure it is locally Delaunay. */
if (incircle(leftpoint, farpoint, rightpoint, nearpoint) <= 0.0) {
return;
}
/* Not locally Delaunay; go on to an edge flip. */
} /* else fartri is inverted; remove it from the stack by flipping. */
flip(&neartri);
lprevself(*fixuptri); /* Restore the origin of fixuptri after the flip. */
/* Recursively process the two triangles that result from the flip. */
delaunayfixup(fixuptri, leftside);
delaunayfixup(&fartri, leftside);
}
/*****************************************************************************/
/* */
/* constrainededge() Force a segment into a constrained Delaunay */
/* triangulation by deleting the triangles it */
/* intersects, and triangulating the polygons that */
/* form on each side of it. */
/* */
/* Generates a single edge connecting `endpoint1' to `endpoint2'. The */
/* triangle `starttri' has `endpoint1' as its origin. `newmark' is the */
/* boundary marker of the segment. */
/* */
/* To insert a segment, every triangle whose interior intersects the */
/* segment is deleted. The union of these deleted triangles is a polygon */
/* (which is not necessarily monotone, but is close enough), which is */
/* divided into two polygons by the new segment. This routine's task is */
/* to generate the Delaunay triangulation of these two polygons. */
/* */
/* You might think of this routine's behavior as a two-step process. The */
/* first step is to walk from endpoint1 to endpoint2, flipping each edge */
/* encountered. This step creates a fan of edges connected to endpoint1, */
/* including the desired edge to endpoint2. The second step enforces the */
/* Delaunay condition on each side of the segment in an incremental manner: */
/* proceeding along the polygon from endpoint1 to endpoint2 (this is done */
/* independently on each side of the segment), each vertex is "enforced" */
/* as if it had just been inserted, but affecting only the previous */
/* vertices. The result is the same as if the vertices had been inserted */
/* in the order they appear on the polygon, so the result is Delaunay. */
/* */
/* In truth, constrainededge() interleaves these two steps. The procedure */
/* walks from endpoint1 to endpoint2, and each time an edge is encountered */
/* and flipped, the newly exposed vertex (at the far end of the flipped */
/* edge) is "enforced" upon the previously flipped edges, usually affecting */
/* only one side of the polygon (depending upon which side of the segment */
/* the vertex falls on). */
/* */
/* The algorithm is complicated by the need to handle polygons that are not */
/* convex. Although the polygon is not necessarily monotone, it can be */
/* triangulated in a manner similar to the stack-based algorithms for */
/* monotone polygons. For each reflex vertex (local concavity) of the */
/* polygon, there will be an inverted triangle formed by one of the edge */
/* flips. (An inverted triangle is one with negative area - that is, its */
/* vertices are arranged in clockwise order - and is best thought of as a */
/* wrinkle in the fabric of the mesh.) Each inverted triangle can be */
/* thought of as a reflex vertex pushed on the stack, waiting to be fixed */
/* later. */
/* */
/* A reflex vertex is popped from the stack when a vertex is inserted that */
/* is visible to the reflex vertex. (However, if the vertex behind the */
/* reflex vertex is not visible to the reflex vertex, a new inverted */
/* triangle will take its place on the stack.) These details are handled */
/* by the delaunayfixup() routine above. */
/* */
/*****************************************************************************/
void constrainededge(struct triedge *starttri,
point endpoint2,
int newmark)
{
struct triedge fixuptri, fixuptri2;
struct edge fixupedge;
point endpoint1;
point farpoint;
REAL area;
int collision;
int done;
triangle ptr; /* Temporary variable used by sym() and oprev(). */
shelle sptr; /* Temporary variable used by tspivot(). */
org(*starttri, endpoint1);
lnext(*starttri, fixuptri);
flip(&fixuptri);
/* `collision' indicates whether we have found a point directly */
/* between endpoint1 and endpoint2. */
collision = 0;
done = 0;
do {
org(fixuptri, farpoint);
/* `farpoint' is the extreme point of the polygon we are "digging" */
/* to get from endpoint1 to endpoint2. */
if ((farpoint[0] == endpoint2[0]) && (farpoint[1] == endpoint2[1])) {
oprev(fixuptri, fixuptri2);
/* Enforce the Delaunay condition around endpoint2. */
delaunayfixup(&fixuptri, 0);
delaunayfixup(&fixuptri2, 1);
done = 1;
}
else {
/* Check whether farpoint is to the left or right of the segment */
/* being inserted, to decide which edge of fixuptri to dig */
/* through next. */
area = counterclockwise(endpoint1, endpoint2, farpoint);
if (area == 0.0) {
/* We've collided with a point between endpoint1 and endpoint2. */
collision = 1;
oprev(fixuptri, fixuptri2);
/* Enforce the Delaunay condition around farpoint. */
delaunayfixup(&fixuptri, 0);
delaunayfixup(&fixuptri2, 1);
done = 1;
}
else {
if (area > 0.0) { /* farpoint is to the left of the segment. */
oprev(fixuptri, fixuptri2);
/* Enforce the Delaunay condition around farpoint, on the */
/* left side of the segment only. */
delaunayfixup(&fixuptri2, 1);
/* Flip the edge that crosses the segment. After the edge is */
/* flipped, one of its endpoints is the fan vertex, and the */
/* destination of fixuptri is the fan vertex. */
lprevself(fixuptri);
}
else { /* farpoint is to the right of the segment. */
delaunayfixup(&fixuptri, 0);
/* Flip the edge that crosses the segment. After the edge is */
/* flipped, one of its endpoints is the fan vertex, and the */
/* destination of fixuptri is the fan vertex. */
oprevself(fixuptri);
}
/* Check for two intersecting segments. */
tspivot(fixuptri, fixupedge);
if (fixupedge.sh == dummysh) {
flip(&fixuptri); /* May create an inverted triangle on the left. */
}
else {
/* We've collided with a segment between endpoint1 and endpoint2. */
collision = 1;
/* Insert a point at the intersection. */
segmentintersection(&fixuptri, &fixupedge, endpoint2);
done = 1;
}
}
}
} while (!done);
/* Insert a shell edge to make the segment permanent. */
insertshelle(&fixuptri, newmark);
/* If there was a collision with an interceding vertex, install another */
/* segment connecting that vertex with endpoint2. */
if (collision) {
/* Insert the remainder of the segment. */
if (!scoutsegment(&fixuptri, endpoint2, newmark)) {
constrainededge(&fixuptri, endpoint2, newmark);
}
}
}
/*****************************************************************************/
/* */
/* insertsegment() Insert a PSLG segment into a triangulation. */
/* */
/*****************************************************************************/
void insertsegment(point endpoint1,
point endpoint2,
int newmark)
{
struct triedge searchtri1, searchtri2;
triangle encodedtri;
point checkpoint;
triangle ptr; /* Temporary variable used by sym(). */
if (verbose > 1) {
printf(" Connecting (%.12g, %.12g) to (%.12g, %.12g).\n",
endpoint1[0], endpoint1[1], endpoint2[0], endpoint2[1]);
}
/* Find a triangle whose origin is the segment's first endpoint. */
checkpoint = (point) NULL;
encodedtri = point2tri(endpoint1);
if (encodedtri != (triangle) NULL) {
decode(encodedtri, searchtri1);
org(searchtri1, checkpoint);
}
if (checkpoint != endpoint1) {
/* Find a boundary triangle to search from. */
searchtri1.tri = dummytri;
searchtri1.orient = 0;
symself(searchtri1);
/* Search for the segment's first endpoint by point location. */
if (locate(endpoint1, &searchtri1) != ONVERTEX) {
printf("Internal error in insertsegment(): Unable to locate PSLG point\n");
printf(" (%.12g, %.12g) in triangulation.\n",
endpoint1[0], endpoint1[1]);
internalerror();
}
}
/* Remember this triangle to improve subsequent point location. */
triedgecopy(searchtri1, recenttri);
/* Scout the beginnings of a path from the first endpoint */
/* toward the second. */
if (scoutsegment(&searchtri1, endpoint2, newmark)) {
/* The segment was easily inserted. */
return;
}
/* The first endpoint may have changed if a collision with an intervening */
/* vertex on the segment occurred. */
org(searchtri1, endpoint1);
/* Find a triangle whose origin is the segment's second endpoint. */
checkpoint = (point) NULL;
encodedtri = point2tri(endpoint2);
if (encodedtri != (triangle) NULL) {
decode(encodedtri, searchtri2);
org(searchtri2, checkpoint);
}
if (checkpoint != endpoint2) {
/* Find a boundary triangle to search from. */
searchtri2.tri = dummytri;
searchtri2.orient = 0;
symself(searchtri2);
/* Search for the segment's second endpoint by point location. */
if (locate(endpoint2, &searchtri2) != ONVERTEX) {
printf("Internal error in insertsegment(): Unable to locate PSLG point\n");
printf(" (%.12g, %.12g) in triangulation.\n",
endpoint2[0], endpoint2[1]);
internalerror();
}
}
/* Remember this triangle to improve subsequent point location. */
triedgecopy(searchtri2, recenttri);
/* Scout the beginnings of a path from the second endpoint */
/* toward the first. */
if (scoutsegment(&searchtri2, endpoint1, newmark)) {
/* The segment was easily inserted. */
return;
}
/* The second endpoint may have changed if a collision with an intervening */
/* vertex on the segment occurred. */
org(searchtri2, endpoint2);
#ifndef REDUCED
#ifndef CDT_ONLY
if (splitseg) {
/* Insert vertices to force the segment into the triangulation. */
conformingedge(endpoint1, endpoint2, newmark);
}
else {
#endif /* not CDT_ONLY */
#endif /* not REDUCED */
/* Insert the segment directly into the triangulation. */
constrainededge(&searchtri1, endpoint2, newmark);
#ifndef REDUCED
#ifndef CDT_ONLY
}
#endif /* not CDT_ONLY */
#endif /* not REDUCED */
}
/*****************************************************************************/
/* */
/* markhull() Cover the convex hull of a triangulation with shell edges. */
/* */
/*****************************************************************************/
void markhull(void)
{
struct triedge hulltri;
struct triedge nexttri;
struct triedge starttri;
triangle ptr; /* Temporary variable used by sym() and oprev(). */
/* Find a triangle handle on the hull. */
hulltri.tri = dummytri;
hulltri.orient = 0;
symself(hulltri);
/* Remember where we started so we know when to stop. */
triedgecopy(hulltri, starttri);
/* Go once counterclockwise around the convex hull. */
do {
/* Create a shell edge if there isn't already one here. */
insertshelle(&hulltri, 1);
/* To find the next hull edge, go clockwise around the next vertex. */
lnextself(hulltri);
oprev(hulltri, nexttri);
while (nexttri.tri != dummytri) {
triedgecopy(nexttri, hulltri);
oprev(hulltri, nexttri);
}
} while (!triedgeequal(hulltri, starttri));
}
/*****************************************************************************/
/* */
/* formskeleton() Create the shell edges of a triangulation, including */
/* PSLG edges and edges on the convex hull. */
/* */
/* The PSLG edges are read from a .poly file. The return value is the */
/* number of segments in the file. */
/* */
/*****************************************************************************/
#ifdef TRILIBRARY
int formskeleton(int *segmentlist,
int *segmentmarkerlist,
int numberofsegments)
#else /* not TRILIBRARY */
int formskeleton(FILE *polyfile
char *polyfilename)
#endif /* not TRILIBRARY */
{
#ifdef TRILIBRARY
char polyfilename[6];
int index;
#else /* not TRILIBRARY */
char inputline[INPUTLINESIZE];
char *stringptr;
#endif /* not TRILIBRARY */
point endpoint1, endpoint2;
int segments;
int segmentmarkers;
int end1, end2;
int boundmarker;
int i;
if (poly) {
if (!quiet) {
printf("Inserting segments into Delaunay triangulation.\n");
}
#ifdef TRILIBRARY
strcpy(polyfilename, "input");
segments = numberofsegments;
segmentmarkers = segmentmarkerlist != (int *) NULL;
index = 0;
#else /* not TRILIBRARY */
/* Read the segments from a .poly file. */
/* Read number of segments and number of boundary markers. */
stringptr = readline(inputline, polyfile, polyfilename);
segments = (int) strtol (stringptr, &stringptr, 0);
stringptr = findfield(stringptr);
if (*stringptr == '\0') {
segmentmarkers = 0;
}
else {
segmentmarkers = (int) strtol (stringptr, &stringptr, 0);
}
#endif /* not TRILIBRARY */
/* If segments are to be inserted, compute a mapping */
/* from points to triangles. */
if (segments > 0) {
if (verbose) {
printf(" Inserting PSLG segments.\n");
}
makepointmap();
}
boundmarker = 0;
/* Read and insert the segments. */
for (i = 1; i <= segments; i++) {
#ifdef TRILIBRARY
end1 = segmentlist[index++];
end2 = segmentlist[index++];
if (segmentmarkers) {
boundmarker = segmentmarkerlist[i - 1];
}
#else /* not TRILIBRARY */
stringptr = readline(inputline, polyfile, inpolyfilename);
stringptr = findfield(stringptr);
if (*stringptr == '\0') {
printf("Error: Segment %d has no endpoints in %s.\n", i,
polyfilename);
exit(1);
}
else {
end1 = (int) strtol (stringptr, &stringptr, 0);
}
stringptr = findfield(stringptr);
if (*stringptr == '\0') {
printf("Error: Segment %d is missing its second endpoint in %s.\n", i,
polyfilename);
exit(1);
}
else {
end2 = (int) strtol (stringptr, &stringptr, 0);
}
if (segmentmarkers) {
stringptr = findfield(stringptr);
if (*stringptr == '\0') {
boundmarker = 0;
}
else {
boundmarker = (int) strtol (stringptr, &stringptr, 0);
}
}
#endif /* not TRILIBRARY */
if ((end1 < firstnumber) || (end1 >= firstnumber + inpoints)) {
if (!quiet) {
printf("Warning: Invalid first endpoint of segment %d in %s.\n", i,
polyfilename);
}
}
else if ((end2 < firstnumber) || (end2 >= firstnumber + inpoints)) {
if (!quiet) {
printf("Warning: Invalid second endpoint of segment %d in %s.\n", i,
polyfilename);
}
}
else {
endpoint1 = getpoint(end1);
endpoint2 = getpoint(end2);
if ((endpoint1[0] == endpoint2[0]) && (endpoint1[1] == endpoint2[1])) {
if (!quiet) {
printf("Warning: Endpoints of segment %d are coincident in %s.\n",
i, polyfilename);
}
}
else {
insertsegment(endpoint1, endpoint2, boundmarker);
}
}
}
}
else {
segments = 0;
}
if (convex || !poly) {
/* Enclose the convex hull with shell edges. */
if (verbose) {
printf(" Enclosing convex hull with segments.\n");
}
markhull();
}
return segments;
}
/** **/
/** **/
/********* Segment (shell edge) insertion ends here *********/
/********* Carving out holes and concavities begins here *********/
/** **/
/** **/
/*****************************************************************************/
/* */
/* infecthull() Virally infect all of the triangles of the convex hull */
/* that are not protected by shell edges. Where there are */
/* shell edges, set boundary markers as appropriate. */
/* */
/*****************************************************************************/
void infecthull(void)
{
struct triedge hulltri;
struct triedge nexttri;
struct triedge starttri;
struct edge hulledge;
triangle **deadtri;
point horg, hdest;
triangle ptr; /* Temporary variable used by sym(). */
shelle sptr; /* Temporary variable used by tspivot(). */
if (verbose) {
printf(" Marking concavities (external triangles) for elimination.\n");
}
/* Find a triangle handle on the hull. */
hulltri.tri = dummytri;
hulltri.orient = 0;
symself(hulltri);
/* Remember where we started so we know when to stop. */
triedgecopy(hulltri, starttri);
/* Go once counterclockwise around the convex hull. */
do {
/* Ignore triangles that are already infected. */
if (!infected(hulltri)) {
/* Is the triangle protected by a shell edge? */
tspivot(hulltri, hulledge);
if (hulledge.sh == dummysh) {
/* The triangle is not protected; infect it. */
infect(hulltri);
deadtri = (triangle **) poolalloc(&viri);
*deadtri = hulltri.tri;
}
else {
/* The triangle is protected; set boundary markers if appropriate. */
if (mark(hulledge) == 0) {
setmark(hulledge, 1);
org(hulltri, horg);
dest(hulltri, hdest);
if (pointmark(horg) == 0) {
setpointmark(horg, 1);
}
if (pointmark(hdest) == 0) {
setpointmark(hdest, 1);
}
}
}
}
/* To find the next hull edge, go clockwise around the next vertex. */
lnextself(hulltri);
oprev(hulltri, nexttri);
while (nexttri.tri != dummytri) {
triedgecopy(nexttri, hulltri);
oprev(hulltri, nexttri);
}
} while (!triedgeequal(hulltri, starttri));
}
/*****************************************************************************/
/* */
/* plague() Spread the virus from all infected triangles to any neighbors */
/* not protected by shell edges. Delete all infected triangles. */
/* */
/* This is the procedure that actually creates holes and concavities. */
/* */
/* This procedure operates in two phases. The first phase identifies all */
/* the triangles that will die, and marks them as infected. They are */
/* marked to ensure that each triangle is added to the virus pool only */
/* once, so the procedure will terminate. */
/* */
/* The second phase actually eliminates the infected triangles. It also */
/* eliminates orphaned points. */
/* */
/*****************************************************************************/
void plague(void)
{
struct triedge testtri;
struct triedge neighbor;
triangle **virusloop;
triangle **deadtri;
struct edge neighborshelle;
point testpoint;
point norg, ndest;
point deadorg, deaddest, deadapex;
int killorg;
triangle ptr; /* Temporary variable used by sym() and onext(). */
shelle sptr; /* Temporary variable used by tspivot(). */
if (verbose) {
printf(" Marking neighbors of marked triangles.\n");
}
/* Loop through all the infected triangles, spreading the virus to */
/* their neighbors, then to their neighbors' neighbors. */
traversalinit(&viri);
virusloop = (triangle **) traverse(&viri);
while (virusloop != (triangle **) NULL) {
testtri.tri = *virusloop;
/* A triangle is marked as infected by messing with one of its shell */
/* edges, setting it to an illegal value. Hence, we have to */
/* temporarily uninfect this triangle so that we can examine its */
/* adjacent shell edges. */
uninfect(testtri);
if (verbose > 2) {
/* Assign the triangle an orientation for convenience in */
/* checking its points. */
testtri.orient = 0;
org(testtri, deadorg);
dest(testtri, deaddest);
apex(testtri, deadapex);
printf(" Checking (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
deadorg[0], deadorg[1], deaddest[0], deaddest[1],
deadapex[0], deadapex[1]);
}
/* Check each of the triangle's three neighbors. */
for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) {
/* Find the neighbor. */
sym(testtri, neighbor);
/* Check for a shell between the triangle and its neighbor. */
tspivot(testtri, neighborshelle);
/* Check if the neighbor is nonexistent or already infected. */
if ((neighbor.tri == dummytri) || infected(neighbor)) {
if (neighborshelle.sh != dummysh) {
/* There is a shell edge separating the triangle from its */
/* neighbor, but both triangles are dying, so the shell */
/* edge dies too. */
shelledealloc(neighborshelle.sh);
if (neighbor.tri != dummytri) {
/* Make sure the shell edge doesn't get deallocated again */
/* later when the infected neighbor is visited. */
uninfect(neighbor);
tsdissolve(neighbor);
infect(neighbor);
}
}
}
else { /* The neighbor exists and is not infected. */
if (neighborshelle.sh == dummysh) {
/* There is no shell edge protecting the neighbor, so */
/* the neighbor becomes infected. */
if (verbose > 2) {
org(neighbor, deadorg);
dest(neighbor, deaddest);
apex(neighbor, deadapex);
printf(" Marking (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
deadorg[0], deadorg[1], deaddest[0], deaddest[1],
deadapex[0], deadapex[1]);
}
infect(neighbor);
/* Ensure that the neighbor's neighbors will be infected. */
deadtri = (triangle **) poolalloc(&viri);
*deadtri = neighbor.tri;
}
else { /* The neighbor is protected by a shell edge. */
/* Remove this triangle from the shell edge. */
stdissolve(neighborshelle);
/* The shell edge becomes a boundary. Set markers accordingly. */
if (mark(neighborshelle) == 0) {
setmark(neighborshelle, 1);
}
org(neighbor, norg);
dest(neighbor, ndest);
if (pointmark(norg) == 0) {
setpointmark(norg, 1);
}
if (pointmark(ndest) == 0) {
setpointmark(ndest, 1);
}
}
}
}
/* Remark the triangle as infected, so it doesn't get added to the */
/* virus pool again. */
infect(testtri);
virusloop = (triangle **) traverse(&viri);
}
if (verbose) {
printf(" Deleting marked triangles.\n");
}
traversalinit(&viri);
virusloop = (triangle **) traverse(&viri);
while (virusloop != (triangle **) NULL) {
testtri.tri = *virusloop;
/* Check each of the three corners of the triangle for elimination. */
/* This is done by walking around each point, checking if it is */
/* still connected to at least one live triangle. */
for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) {
org(testtri, testpoint);
/* Check if the point has already been tested. */
if (testpoint != (point) NULL) {
killorg = 1;
/* Mark the corner of the triangle as having been tested. */
setorg(testtri, NULL);
/* Walk counterclockwise about the point. */
onext(testtri, neighbor);
/* Stop upon reaching a boundary or the starting triangle. */
while ((neighbor.tri != dummytri)
&& (!triedgeequal(neighbor, testtri))) {
if (infected(neighbor)) {
/* Mark the corner of this triangle as having been tested. */
setorg(neighbor, NULL);
}
else {
/* A live triangle. The point survives. */
killorg = 0;
}
/* Walk counterclockwise about the point. */
onextself(neighbor);
}
/* If we reached a boundary, we must walk clockwise as well. */
if (neighbor.tri == dummytri) {
/* Walk clockwise about the point. */
oprev(testtri, neighbor);
/* Stop upon reaching a boundary. */
while (neighbor.tri != dummytri) {
if (infected(neighbor)) {
/* Mark the corner of this triangle as having been tested. */
setorg(neighbor, NULL);
}
else {
/* A live triangle. The point survives. */
killorg = 0;
}
/* Walk clockwise about the point. */
oprevself(neighbor);
}
}
if (killorg) {
if (verbose > 1) {
printf(" Deleting point (%.12g, %.12g)\n",
testpoint[0], testpoint[1]);
}
pointdealloc(testpoint);
}
}
}
/* Record changes in the number of boundary edges, and disconnect */
/* dead triangles from their neighbors. */
for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) {
sym(testtri, neighbor);
if (neighbor.tri == dummytri) {
/* There is no neighboring triangle on this edge, so this edge */
/* is a boundary edge. This triangle is being deleted, so this */
/* boundary edge is deleted. */
hullsize--;
}
else {
/* Disconnect the triangle from its neighbor. */
dissolve(neighbor);
/* There is a neighboring triangle on this edge, so this edge */
/* becomes a boundary edge when this triangle is deleted. */
hullsize++;
}
}
/* Return the dead triangle to the pool of triangles. */
triangledealloc(testtri.tri);
virusloop = (triangle **) traverse(&viri);
}
/* Empty the virus pool. */
poolrestart(&viri);
}
/*****************************************************************************/
/* */
/* regionplague() Spread regional attributes and/or area constraints */
/* (from a .poly file) throughout the mesh. */
/* */
/* This procedure operates in two phases. The first phase spreads an */
/* attribute and/or an area constraint through a (segment-bounded) region. */
/* The triangles are marked to ensure that each triangle is added to the */
/* virus pool only once, so the procedure will terminate. */
/* */
/* The second phase uninfects all infected triangles, returning them to */
/* normal. */
/* */
/*****************************************************************************/
void regionplague(REAL attribute,
REAL area)
{
struct triedge testtri;
struct triedge neighbor;
triangle **virusloop;
triangle **regiontri;
struct edge neighborshelle;
point regionorg, regiondest, regionapex;
triangle ptr; /* Temporary variable used by sym() and onext(). */
shelle sptr; /* Temporary variable used by tspivot(). */
if (verbose > 1) {
printf(" Marking neighbors of marked triangles.\n");
}
/* Loop through all the infected triangles, spreading the attribute */
/* and/or area constraint to their neighbors, then to their neighbors' */
/* neighbors. */
traversalinit(&viri);
virusloop = (triangle **) traverse(&viri);
while (virusloop != (triangle **) NULL) {
testtri.tri = *virusloop;
/* A triangle is marked as infected by messing with one of its shell */
/* edges, setting it to an illegal value. Hence, we have to */
/* temporarily uninfect this triangle so that we can examine its */
/* adjacent shell edges. */
uninfect(testtri);
if (regionattrib) {
/* Set an attribute. */
setelemattribute(testtri, eextras, attribute);
}
if (vararea) {
/* Set an area constraint. */
setareabound(testtri, area);
}
if (verbose > 2) {
/* Assign the triangle an orientation for convenience in */
/* checking its points. */
testtri.orient = 0;
org(testtri, regionorg);
dest(testtri, regiondest);
apex(testtri, regionapex);
printf(" Checking (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
regionorg[0], regionorg[1], regiondest[0], regiondest[1],
regionapex[0], regionapex[1]);
}
/* Check each of the triangle's three neighbors. */
for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) {
/* Find the neighbor. */
sym(testtri, neighbor);
/* Check for a shell between the triangle and its neighbor. */
tspivot(testtri, neighborshelle);
/* Make sure the neighbor exists, is not already infected, and */
/* isn't protected by a shell edge. */
if ((neighbor.tri != dummytri) && !infected(neighbor)
&& (neighborshelle.sh == dummysh)) {
if (verbose > 2) {
org(neighbor, regionorg);
dest(neighbor, regiondest);
apex(neighbor, regionapex);
printf(" Marking (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
regionorg[0], regionorg[1], regiondest[0], regiondest[1],
regionapex[0], regionapex[1]);
}
/* Infect the neighbor. */
infect(neighbor);
/* Ensure that the neighbor's neighbors will be infected. */
regiontri = (triangle **) poolalloc(&viri);
*regiontri = neighbor.tri;
}
}
/* Remark the triangle as infected, so it doesn't get added to the */
/* virus pool again. */
infect(testtri);
virusloop = (triangle **) traverse(&viri);
}
/* Uninfect all triangles. */
if (verbose > 1) {
printf(" Unmarking marked triangles.\n");
}
traversalinit(&viri);
virusloop = (triangle **) traverse(&viri);
while (virusloop != (triangle **) NULL) {
testtri.tri = *virusloop;
uninfect(testtri);
virusloop = (triangle **) traverse(&viri);
}
/* Empty the virus pool. */
poolrestart(&viri);
}
/*****************************************************************************/
/* */
/* carveholes() Find the holes and infect them. Find the area */
/* constraints and infect them. Infect the convex hull. */
/* Spread the infection and kill triangles. Spread the */
/* area constraints. */
/* */
/* This routine mainly calls other routines to carry out all these */
/* functions. */
/* */
/*****************************************************************************/
void carveholes(REAL *holelist,
int holes,
REAL *regionlist,
int regions)
{
struct triedge searchtri;
struct triedge triangleloop;
struct triedge *regiontris=0;
triangle **holetri;
triangle **regiontri;
point searchorg, searchdest;
enum locateresult intersect;
int i;
triangle ptr; /* Temporary variable used by sym(). */
if (!(quiet || (noholes && convex))) {
printf("Removing unwanted triangles.\n");
if (verbose && (holes > 0)) {
printf(" Marking holes for elimination.\n");
}
}
if (regions > 0) {
/* Allocate storage for the triangles in which region points fall. */
regiontris = (struct triedge *) malloc(regions * sizeof(struct triedge));
if (regiontris == (struct triedge *) NULL) {
printf("Error: Out of memory.\n");
exit(1);
}
}
if (((holes > 0) && !noholes) || !convex || (regions > 0)) {
/* Initialize a pool of viri to be used for holes, concavities, */
/* regional attributes, and/or regional area constraints. */
poolinit(&viri, (int)sizeof(triangle *), VIRUSPERBLOCK, POINTER, 0);
}
if (!convex) {
/* Mark as infected any unprotected triangles on the boundary. */
/* This is one way by which concavities are created. */
infecthull();
}
if ((holes > 0) && !noholes) {
/* Infect each triangle in which a hole lies. */
for (i = 0; i < 2 * holes; i += 2) {
/* Ignore holes that aren't within the bounds of the mesh. */
if ((holelist[i] >= xmin) && (holelist[i] <= xmax)
&& (holelist[i + 1] >= ymin) && (holelist[i + 1] <= ymax)) {
/* Start searching from some triangle on the outer boundary. */
searchtri.tri = dummytri;
searchtri.orient = 0;
symself(searchtri);
/* Ensure that the hole is to the left of this boundary edge; */
/* otherwise, locate() will falsely report that the hole */
/* falls within the starting triangle. */
org(searchtri, searchorg);
dest(searchtri, searchdest);
if (counterclockwise(searchorg, searchdest, &holelist[i]) > 0.0) {
/* Find a triangle that contains the hole. */
intersect = locate(&holelist[i], &searchtri);
if ((intersect != OUTSIDE) && (!infected(searchtri))) {
/* Infect the triangle. This is done by marking the triangle */
/* as infect and including the triangle in the virus pool. */
infect(searchtri);
holetri = (triangle **) poolalloc(&viri);
*holetri = searchtri.tri;
}
}
}
}
}
/* Now, we have to find all the regions BEFORE we carve the holes, because */
/* locate() won't work when the triangulation is no longer convex. */
/* (Incidentally, this is the reason why regional attributes and area */
/* constraints can't be used when refining a preexisting mesh, which */
/* might not be convex; they can only be used with a freshly */
/* triangulated PSLG.) */
if (regions > 0) {
/* Find the starting triangle for each region. */
for (i = 0; i < regions; i++) {
regiontris[i].tri = dummytri;
/* Ignore region points that aren't within the bounds of the mesh. */
if ((regionlist[4 * i] >= xmin) && (regionlist[4 * i] <= xmax) &&
(regionlist[4 * i + 1] >= ymin) && (regionlist[4 * i + 1] <= ymax)) {
/* Start searching from some triangle on the outer boundary. */
searchtri.tri = dummytri;
searchtri.orient = 0;
symself(searchtri);
/* Ensure that the region point is to the left of this boundary */
/* edge; otherwise, locate() will falsely report that the */
/* region point falls within the starting triangle. */
org(searchtri, searchorg);
dest(searchtri, searchdest);
if (counterclockwise(searchorg, searchdest, ®ionlist[4 * i]) >
0.0) {
/* Find a triangle that contains the region point. */
intersect = locate(®ionlist[4 * i], &searchtri);
if ((intersect != OUTSIDE) && (!infected(searchtri))) {
/* Record the triangle for processing after the */
/* holes have been carved. */
triedgecopy(searchtri, regiontris[i]);
}
}
}
}
}
if (viri.items > 0) {
/* Carve the holes and concavities. */
plague();
}
/* The virus pool should be empty now. */
if (regions > 0) {
if (!quiet) {
if (regionattrib) {
if (vararea) {
printf("Spreading regional attributes and area constraints.\n");
}
else {
printf("Spreading regional attributes.\n");
}
}
else {
printf("Spreading regional area constraints.\n");
}
}
if (regionattrib && !refine) {
/* Assign every triangle a regional attribute of zero. */
traversalinit(&triangles);
triangleloop.orient = 0;
triangleloop.tri = triangletraverse();
while (triangleloop.tri != (triangle *) NULL) {
setelemattribute(triangleloop, eextras, 0.0);
triangleloop.tri = triangletraverse();
}
}
for (i = 0; i < regions; i++) {
if (regiontris[i].tri != dummytri) {
/* Make sure the triangle under consideration still exists. */
/* It may have been eaten by the virus. */
if (regiontris[i].tri[3] != (triangle) NULL) {
/* Put one triangle in the virus pool. */
infect(regiontris[i]);
regiontri = (triangle **) poolalloc(&viri);
*regiontri = regiontris[i].tri;
/* Apply one region's attribute and/or area constraint. */
regionplague(regionlist[4 * i + 2], regionlist[4 * i + 3]);
/* The virus pool should be empty now. */
}
}
}
if (regionattrib && !refine) {
/* Note the fact that each triangle has an additional attribute. */
eextras++;
}
}
/* Free up memory. */
if (((holes > 0) && !noholes) || !convex || (regions > 0)) {
pooldeinit(&viri);
}
if (regions > 0) {
free(regiontris);
}
}
/** **/
/** **/
/********* Carving out holes and concavities ends here *********/
/********* Mesh quality maintenance begins here *********/
/** **/
/** **/
/*****************************************************************************/
/* */
/* tallyencs() Traverse the entire list of shell edges, check each edge */
/* to see if it is encroached. If so, add it to the list. */
/* */
/*****************************************************************************/
#ifndef CDT_ONLY
void tallyencs(void)
{
struct edge edgeloop;
traversalinit(&shelles);
edgeloop.shorient = 0;
edgeloop.sh = shelletraverse();
while (edgeloop.sh != (shelle *) NULL) {
/* If the segment is encroached, add it to the list. */
/* dummy = */ checkedge4encroach(&edgeloop);
edgeloop.sh = shelletraverse();
}
}
#endif /* not CDT_ONLY */
/*****************************************************************************/
/* */
/* precisionerror() Print an error message for precision problems. */
/* */
/*****************************************************************************/
#ifndef CDT_ONLY
void precisionerror(void)
{
printf("Try increasing the area criterion and/or reducing the minimum\n");
printf(" allowable angle so that tiny triangles are not created.\n");
#ifdef SINGLE
printf("Alternatively, try recompiling me with double precision\n");
printf(" arithmetic (by removing \"#define SINGLE\" from the\n");
printf(" source file or \"-DSINGLE\" from the makefile).\n");
#endif /* SINGLE */
}
#endif /* not CDT_ONLY */
/*****************************************************************************/
/* */
/* repairencs() Find and repair all the encroached segments. */
/* */
/* Encroached segments are repaired by splitting them by inserting a point */
/* at or near their centers. */
/* */
/* `flaws' is a flag that specifies whether one should take note of new */
/* encroached segments and bad triangles that result from inserting points */
/* to repair existing encroached segments. */
/* */
/* When a segment is split, the two resulting subsegments are always */
/* tested to see if they are encroached upon, regardless of the value */
/* of `flaws'. */
/* */
/*****************************************************************************/
#ifndef CDT_ONLY
void repairencs(int flaws)
{
struct triedge enctri;
struct triedge testtri;
struct edge *encloop;
struct edge testsh;
point eorg, edest;
point newpoint;
enum insertsiteresult success;
REAL segmentlength, nearestpoweroftwo;
REAL split;
int acuteorg, acutedest;
int i;
triangle ptr; /* Temporary variable used by stpivot(). */
shelle sptr; /* Temporary variable used by snext(). */
while ((badsegments.items > 0) && (steinerleft != 0)) {
traversalinit(&badsegments);
encloop = badsegmenttraverse();
while ((encloop != (struct edge *) NULL) && (steinerleft != 0)) {
/* To decide where to split a segment, we need to know if the */
/* segment shares an endpoint with an adjacent segment. */
/* The concern is that, if we simply split every encroached */
/* segment in its center, two adjacent segments with a small */
/* angle between them might lead to an infinite loop; each */
/* point added to split one segment will encroach upon the */
/* other segment, which must then be split with a point that */
/* will encroach upon the first segment, and so on forever. */
/* To avoid this, imagine a set of concentric circles, whose */
/* radii are powers of two, about each segment endpoint. */
/* These concentric circles determine where the segment is */
/* split. (If both endpoints are shared with adjacent */
/* segments, split the segment in the middle, and apply the */
/* concentric shells for later splittings.) */
/* Is the origin shared with another segment? */
stpivot(*encloop, enctri);
lnext(enctri, testtri);
tspivot(testtri, testsh);
acuteorg = testsh.sh != dummysh;
/* Is the destination shared with another segment? */
lnextself(testtri);
tspivot(testtri, testsh);
acutedest = testsh.sh != dummysh;
/* Now, check the other side of the segment, if there's a triangle */
/* there. */
sym(enctri, testtri);
if (testtri.tri != dummytri) {
/* Is the destination shared with another segment? */
lnextself(testtri);
tspivot(testtri, testsh);
acutedest = acutedest || (testsh.sh != dummysh);
/* Is the origin shared with another segment? */
lnextself(testtri);
tspivot(testtri, testsh);
acuteorg = acuteorg || (testsh.sh != dummysh);
}
sorg(*encloop, eorg);
sdest(*encloop, edest);
/* Use the concentric circles if exactly one endpoint is shared */
/* with another adjacent segment. */
if (acuteorg ^ acutedest) {
segmentlength = sqrt((edest[0] - eorg[0]) * (edest[0] - eorg[0])
+ (edest[1] - eorg[1]) * (edest[1] - eorg[1]));
/* Find the power of two nearest the segment's length. */
nearestpoweroftwo = 1.0;
while (segmentlength > SQUAREROOTTWO * nearestpoweroftwo) {
nearestpoweroftwo *= 2.0;
}
while (segmentlength < (0.5 * SQUAREROOTTWO) * nearestpoweroftwo) {
nearestpoweroftwo *= 0.5;
}
/* Where do we split the segment? */
split = 0.5 * nearestpoweroftwo / segmentlength;
if (acutedest) {
split = 1.0 - split;
}
}
else {
/* If we're not worried about adjacent segments, split */
/* this segment in the middle. */
split = 0.5;
}
/* Create the new point. */
newpoint = (point) poolalloc(&points);
/* Interpolate its coordinate and attributes. */
for (i = 0; i < 2 + nextras; i++) {
newpoint[i] = (1.0 - split) * eorg[i] + split * edest[i];
}
setpointmark(newpoint, mark(*encloop));
if (verbose > 1) {
printf(" Splitting edge (%.12g, %.12g) (%.12g, %.12g) at (%.12g, %.12g).\n",
eorg[0], eorg[1], edest[0], edest[1], newpoint[0], newpoint[1]);
}
/* Check whether the new point lies on an endpoint. */
if (((newpoint[0] == eorg[0]) && (newpoint[1] == eorg[1]))
|| ((newpoint[0] == edest[0]) && (newpoint[1] == edest[1]))) {
printf("Error: Ran out of precision at (%.12g, %.12g).\n",
newpoint[0], newpoint[1]);
printf("I attempted to split a segment to a smaller size than can\n");
printf(" be accommodated by the finite precision of floating point\n");
printf(" arithmetic.\n");
precisionerror();
exit(1);
}
/* Insert the splitting point. This should always succeed. */
success = insertsite(newpoint, &enctri, encloop, flaws, flaws);
if ((success != SUCCESSFULPOINT) && (success != ENCROACHINGPOINT)) {
printf("Internal error in repairencs():\n");
printf(" Failure to split a segment.\n");
internalerror();
}
if (steinerleft > 0) {
steinerleft--;
}
/* Check the two new subsegments to see if they're encroached. */
/* dummy = */ checkedge4encroach(encloop);
snextself(*encloop);
/* dummy = */ checkedge4encroach(encloop);
badsegmentdealloc(encloop);
encloop = badsegmenttraverse();
}
}
}
#endif /* not CDT_ONLY */
/*****************************************************************************/
/* */
/* tallyfaces() Test every triangle in the mesh for quality measures. */
/* */
/*****************************************************************************/
#ifndef CDT_ONLY
void tallyfaces(void)
{
struct triedge triangleloop;
if (verbose) {
printf(" Making a list of bad triangles.\n");
}
traversalinit(&triangles);
triangleloop.orient = 0;
triangleloop.tri = triangletraverse();
while (triangleloop.tri != (triangle *) NULL) {
/* If the triangle is bad, enqueue it. */
testtriangle(&triangleloop);
triangleloop.tri = triangletraverse();
}
}
#endif /* not CDT_ONLY */
/*****************************************************************************/
/* */
/* findcircumcenter() Find the circumcenter of a triangle. */
/* */
/* The result is returned both in terms of x-y coordinates and xi-eta */
/* coordinates. The xi-eta coordinate system is defined in terms of the */
/* triangle: the origin of the triangle is the origin of the coordinate */
/* system; the destination of the triangle is one unit along the xi axis; */
/* and the apex of the triangle is one unit along the eta axis. */
/* */
/* The return value indicates which edge of the triangle is shortest. */
/* */
/*****************************************************************************/
enum circumcenterresult findcircumcenter(point torg,
point tdest,
point tapex,
point circumcenter,
REAL *xi,
REAL *eta)
{
REAL xdo, ydo, xao, yao, xad, yad;
REAL dodist, aodist, addist;
REAL denominator;
REAL dx, dy;
circumcentercount++;
/* Compute the circumcenter of the triangle. */
xdo = tdest[0] - torg[0];
ydo = tdest[1] - torg[1];
xao = tapex[0] - torg[0];
yao = tapex[1] - torg[1];
dodist = xdo * xdo + ydo * ydo;
aodist = xao * xao + yao * yao;
if (noexact) {
denominator = 0.5 / (xdo * yao - xao * ydo);
}
else {
/* Use the counterclockwise() routine to ensure a positive (and */
/* reasonably accurate) result, avoiding any possibility of */
/* division by zero. */
denominator = 0.5 / counterclockwise(tdest, tapex, torg);
/* Don't count the above as an orientation test. */
counterclockcount--;
}
circumcenter[0] = torg[0] - (ydo * aodist - yao * dodist) * denominator;
circumcenter[1] = torg[1] + (xdo * aodist - xao * dodist) * denominator;
/* To interpolate point attributes for the new point inserted at */
/* the circumcenter, define a coordinate system with a xi-axis, */
/* directed from the triangle's origin to its destination, and */
/* an eta-axis, directed from its origin to its apex. */
/* Calculate the xi and eta coordinates of the circumcenter. */
dx = circumcenter[0] - torg[0];
dy = circumcenter[1] - torg[1];
*xi = (dx * yao - xao * dy) * (2.0 * denominator);
*eta = (xdo * dy - dx * ydo) * (2.0 * denominator);
xad = tapex[0] - tdest[0];
yad = tapex[1] - tdest[1];
addist = xad * xad + yad * yad;
if ((addist < dodist) && (addist < aodist)) {
return OPPOSITEORG;
}
else if (dodist < aodist) {
return OPPOSITEAPEX;
}
else {
return OPPOSITEDEST;
}
}
/*****************************************************************************/
/* */
/* splittriangle() Inserts a point at the circumcenter of a triangle. */
/* Deletes the newly inserted point if it encroaches upon */
/* a segment. */
/* */
/*****************************************************************************/
#ifndef CDT_ONLY
void splittriangle(struct badface *badtri)
{
point borg, bdest, bapex;
point newpoint;
REAL xi, eta;
enum insertsiteresult success;
enum circumcenterresult shortedge;
int errorflag;
int i;
org(badtri->badfacetri, borg);
dest(badtri->badfacetri, bdest);
apex(badtri->badfacetri, bapex);
/* Make sure that this triangle is still the same triangle it was */
/* when it was tested and determined to be of bad quality. */
/* Subsequent transformations may have made it a different triangle. */
if ((borg == badtri->faceorg) && (bdest == badtri->facedest) &&
(bapex == badtri->faceapex)) {
if (verbose > 1) {
printf(" Splitting this triangle at its circumcenter:\n");
printf(" (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n", borg[0],
borg[1], bdest[0], bdest[1], bapex[0], bapex[1]);
}
errorflag = 0;
/* Create a new point at the triangle's circumcenter. */
newpoint = (point) poolalloc(&points);
shortedge = findcircumcenter(borg, bdest, bapex, newpoint, &xi, &eta);
/* Check whether the new point lies on a triangle vertex. */
if (((newpoint[0] == borg[0]) && (newpoint[1] == borg[1]))
|| ((newpoint[0] == bdest[0]) && (newpoint[1] == bdest[1]))
|| ((newpoint[0] == bapex[0]) && (newpoint[1] == bapex[1]))) {
if (!quiet) {
printf("Warning: New point (%.12g, %.12g) falls on existing vertex.\n"
, newpoint[0], newpoint[1]);
errorflag = 1;
}
pointdealloc(newpoint);
}
else {
for (i = 2; i < 2 + nextras; i++) {
/* Interpolate the point attributes at the circumcenter. */
newpoint[i] = borg[i] + xi * (bdest[i] - borg[i])
+ eta * (bapex[i] - borg[i]);
}
/* The new point must be in the interior, and have a marker of zero. */
setpointmark(newpoint, 0);
/* Ensure that the handle `badtri->badfacetri' represents the shortest */
/* edge of the triangle. This ensures that the circumcenter must */
/* fall to the left of this edge, so point location will work. */
if (shortedge == OPPOSITEORG) {
lnextself(badtri->badfacetri);
}
else if (shortedge == OPPOSITEDEST) {
lprevself(badtri->badfacetri);
}
/* Insert the circumcenter, searching from the edge of the triangle, */
/* and maintain the Delaunay property of the triangulation. */
success = insertsite(newpoint, &(badtri->badfacetri),
(struct edge *) NULL, 1, 1);
if (success == SUCCESSFULPOINT) {
if (steinerleft > 0) {
steinerleft--;
}
}
else if (success == ENCROACHINGPOINT) {
/* If the newly inserted point encroaches upon a segment, delete it. */
deletesite(&(badtri->badfacetri));
}
else if (success == VIOLATINGPOINT) {
/* Failed to insert the new point, but some segment was */
/* marked as being encroached. */
pointdealloc(newpoint);
}
else { /* success == DUPLICATEPOINT */
/* Failed to insert the new point because a vertex is already there. */
if (!quiet) {
printf("Warning: New point (%.12g, %.12g) falls on existing vertex.\n",
newpoint[0], newpoint[1]);
errorflag = 1;
}
pointdealloc(newpoint);
}
}
if (errorflag) {
if (verbose) {
printf(" The new point is at the circumcenter of triangle\n");
printf(" (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
borg[0], borg[1], bdest[0], bdest[1], bapex[0], bapex[1]);
}
printf("This probably means that I am trying to refine triangles\n");
printf(" to a smaller size than can be accommodated by the finite\n");
printf(" precision of floating point arithmetic. (You can be\n");
printf(" sure of this if I fail to terminate.)\n");
precisionerror();
}
}
/* Return the bad triangle to the pool. */
pooldealloc(&badtriangles, (VOID *) badtri);
}
#endif /* not CDT_ONLY */
/*****************************************************************************/
/* */
/* enforcequality() Remove all the encroached edges and bad triangles */
/* from the triangulation. */
/* */
/*****************************************************************************/
#ifndef CDT_ONLY
void enforcequality(void)
{
int i;
if (!quiet) {
printf("Adding Steiner points to enforce quality.\n");
}
/* Initialize the pool of encroached segments. */
poolinit(&badsegments, (int)sizeof(struct edge),
BADSEGMENTPERBLOCK, POINTER, 0);
if (verbose) {
printf(" Looking for encroached segments.\n");
}
/* Test all segments to see if they're encroached. */
tallyencs();
if (verbose && (badsegments.items > 0)) {
printf(" Splitting encroached segments.\n");
}
/* Note that steinerleft == -1 if an unlimited number */
/* of Steiner points is allowed. */
while ((badsegments.items > 0) && (steinerleft != 0)) {
/* Fix the segments without noting newly encroached segments or */
/* bad triangles. The reason we don't want to note newly */
/* encroached segments is because some encroached segments are */
/* likely to be noted multiple times, and would then be blindly */
/* split multiple times. I should fix that some time. */
repairencs(0);
/* Now, find all the segments that became encroached while adding */
/* points to split encroached segments. */
tallyencs();
}
/* At this point, if we haven't run out of Steiner points, the */
/* triangulation should be (conforming) Delaunay. */
/* Next, we worry about enforcing triangle quality. */
if ((minangle > 0.0) || vararea || fixedarea) {
/* Initialize the pool of bad triangles. */
poolinit(&badtriangles, (int)sizeof(struct badface),
BADTRIPERBLOCK, POINTER, 0);
/* Initialize the queues of bad triangles. */
for (i = 0; i < 64; i++) {
queuefront[i] = (struct badface *) NULL;
queuetail[i] = &queuefront[i];
}
/* Test all triangles to see if they're bad. */
tallyfaces();
if (verbose) {
printf(" Splitting bad triangles.\n");
}
while ((badtriangles.items > 0) && (steinerleft != 0)) {
/* Fix one bad triangle by inserting a point at its circumcenter. */
splittriangle(dequeuebadtri());
/* Fix any encroached segments that may have resulted. Record */
/* any new bad triangles or encroached segments that result. */
if (badsegments.items > 0) {
repairencs(1);
}
}
}
/* At this point, if we haven't run out of Steiner points, the */
/* triangulation should be (conforming) Delaunay and have no */
/* low-quality triangles. */
/* Might we have run out of Steiner points too soon? */
if (!quiet && (badsegments.items > 0) && (steinerleft == 0)) {
printf("\nWarning: I ran out of Steiner points, but the mesh has\n");
if (badsegments.items == 1) {
printf(" an encroached segment, and therefore might not be truly\n");
}
else {
printf(" %ld encroached segments, and therefore might not be truly\n",
badsegments.items);
}
printf(" Delaunay. If the Delaunay property is important to you,\n");
printf(" try increasing the number of Steiner points (controlled by\n");
printf(" the -S switch) slightly and try again.\n\n");
}
}
#endif /* not CDT_ONLY */
/** **/
/** **/
/********* Mesh quality maintenance ends here *********/
/*****************************************************************************/
/* */
/* highorder() Create extra nodes for quadratic subparametric elements. */
/* */
/*****************************************************************************/
void highorder(void)
{
struct triedge triangleloop, trisym;
struct edge checkmark;
point newpoint;
point torg, tdest;
int i;
triangle ptr; /* Temporary variable used by sym(). */
shelle sptr; /* Temporary variable used by tspivot(). */
if (!quiet) {
printf("Adding vertices for second-order triangles.\n");
}
/* The following line ensures that dead items in the pool of nodes */
/* cannot be allocated for the extra nodes associated with high */
/* order elements. This ensures that the primary nodes (at the */
/* corners of elements) will occur earlier in the output files, and */
/* have lower indices, than the extra nodes. */
points.deaditemstack = (VOID *) NULL;
traversalinit(&triangles);
triangleloop.tri = triangletraverse();
/* To loop over the set of edges, loop over all triangles, and look at */
/* the three edges of each triangle. If there isn't another triangle */
/* adjacent to the edge, operate on the edge. If there is another */
/* adjacent triangle, operate on the edge only if the current triangle */
/* has a smaller pointer than its neighbor. This way, each edge is */
/* considered only once. */
while (triangleloop.tri != (triangle *) NULL) {
for (triangleloop.orient = 0; triangleloop.orient < 3; triangleloop.orient++) {
sym(triangleloop, trisym);
if ((triangleloop.tri < trisym.tri) || (trisym.tri == dummytri)) {
org(triangleloop, torg);
dest(triangleloop, tdest);
/* Create a new node in the middle of the edge. Interpolate */
/* its attributes. */
newpoint = (point) poolalloc(&points);
for (i = 0; i < 2 + nextras; i++) {
newpoint[i] = 0.5 * (torg[i] + tdest[i]);
}
/* Set the new node's marker to zero or one, depending on */
/* whether it lies on a boundary. */
setpointmark(newpoint, trisym.tri == dummytri);
if (useshelles) {
tspivot(triangleloop, checkmark);
/* If this edge is a segment, transfer the marker to the new node. */
if (checkmark.sh != dummysh) {
setpointmark(newpoint, mark(checkmark));
}
}
if (verbose > 1) {
printf(" Creating (%.12g, %.12g).\n", newpoint[0], newpoint[1]);
}
/* Record the new node in the (one or two) adjacent elements. */
triangleloop.tri[highorderindex + triangleloop.orient] =
(triangle) newpoint;
if (trisym.tri != dummytri) {
trisym.tri[highorderindex + trisym.orient] = (triangle) newpoint;
}
}
}
triangleloop.tri = triangletraverse();
}
}
/********* File I/O routines begin here *********/
/** **/
/** **/
/*****************************************************************************/
/* */
/* readline() Read a nonempty line from a file. */
/* */
/* A line is considered "nonempty" if it contains something that looks like */
/* a number. */
/* */
/*****************************************************************************/
#ifndef TRILIBRARY
char *readline(char *string,
FILE *infile,
char *infilename)
{
char *result;
/* Search for something that looks like a number. */
do {
result = fgets(string, INPUTLINESIZE, infile);
if (result == (char *) NULL) {
printf(" Error: Unexpected end of file in %s.\n", infilename);
exit(1);
}
/* Skip anything that doesn't look like a number, a comment, */
/* or the end of a line. */
while ((*result != '\0') && (*result != '#')
&& (*result != '.') && (*result != '+') && (*result != '-')
&& ((*result < '0') || (*result > '9'))) {
result++;
}
/* If it's a comment or end of line, read another line and try again. */
} while ((*result == '#') || (*result == '\0'));
return result;
}
#endif /* not TRILIBRARY */
/*****************************************************************************/
/* */
/* findfield() Find the next field of a string. */
/* */
/* Jumps past the current field by searching for whitespace, then jumps */
/* past the whitespace to find the next field. */
/* */
/*****************************************************************************/
#ifndef TRILIBRARY
char *findfield(char *string)
{
char *result;
result = string;
/* Skip the current field. Stop upon reaching whitespace. */
while ((*result != '\0') && (*result != '#')
&& (*result != ' ') && (*result != '\t')) {
result++;
}
/* Now skip the whitespace and anything else that doesn't look like a */
/* number, a comment, or the end of a line. */
while ((*result != '\0') && (*result != '#')
&& (*result != '.') && (*result != '+') && (*result != '-')
&& ((*result < '0') || (*result > '9'))) {
result++;
}
/* Check for a comment (prefixed with `#'). */
if (*result == '#') {
*result = '\0';
}
return result;
}
#endif /* not TRILIBRARY */
/*****************************************************************************/
/* */
/* readnodes() Read the points from a file, which may be a .node or .poly */
/* file. */
/* */
/*****************************************************************************/
#ifndef TRILIBRARY
void readnodes(char *nodefilenamem,
char *polyfilename,
FILE **polyfile)
{
FILE *infile;
point pointloop;
char inputline[INPUTLINESIZE];
char *stringptr;
char *infilename;
REAL x, y;
int firstnode;
int nodemarkers;
int currentmarker;
int i, j;
if (poly) {
/* Read the points from a .poly file. */
if (!quiet) {
printf("Opening %s.\n", polyfilename);
}
*polyfile = fopen(polyfilename, "r");
if (*polyfile == (FILE *) NULL) {
printf(" Error: Cannot access file %s.\n", polyfilename);
exit(1);
}
/* Read number of points, number of dimensions, number of point */
/* attributes, and number of boundary markers. */
stringptr = readline(inputline, *polyfile, polyfilename);
inpoints = (int) strtol (stringptr, &stringptr, 0);
stringptr = findfield(stringptr);
if (*stringptr == '\0') {
mesh_dim = 2;
}
else {
mesh_dim = (int) strtol (stringptr, &stringptr, 0);
}
stringptr = findfield(stringptr);
if (*stringptr == '\0') {
nextras = 0;
}
else {
nextras = (int) strtol (stringptr, &stringptr, 0);
}
stringptr = findfield(stringptr);
if (*stringptr == '\0') {
nodemarkers = 0;
}
else {
nodemarkers = (int) strtol (stringptr, &stringptr, 0);
}
if (inpoints > 0) {
infile = *polyfile;
infilename = polyfilename;
readnodefile = 0;
}
else {
/* If the .poly file claims there are zero points, that means that */
/* the points should be read from a separate .node file. */
readnodefile = 1;
infilename = innodefilename;
}
}
else {
readnodefile = 1;
infilename = innodefilename;
*polyfile = (FILE *) NULL;
}
if (readnodefile) {
/* Read the points from a .node file. */
if (!quiet) {
printf("Opening %s.\n", innodefilename);
}
infile = fopen(innodefilename, "r");
if (infile == (FILE *) NULL) {
printf(" Error: Cannot access file %s.\n", innodefilename);
exit(1);
}
/* Read number of points, number of dimensions, number of point */
/* attributes, and number of boundary markers. */
stringptr = readline(inputline, infile, innodefilename);
inpoints = (int) strtol (stringptr, &stringptr, 0);
stringptr = findfield(stringptr);
if (*stringptr == '\0') {
mesh_dim = 2;
}
else {
mesh_dim = (int) strtol (stringptr, &stringptr, 0);
}
stringptr = findfield(stringptr);
if (*stringptr == '\0') {
nextras = 0;
}
else {
nextras = (int) strtol (stringptr, &stringptr, 0);
}
stringptr = findfield(stringptr);
if (*stringptr == '\0') {
nodemarkers = 0;
}
else {
nodemarkers = (int) strtol (stringptr, &stringptr, 0);
}
}
if (inpoints < 3) {
printf("Error: Input must have at least three input points.\n");
exit(1);
}
if (mesh_dim != 2) {
printf("Error: Triangle only works with two-dimensional meshes.\n");
exit(1);
}
initializepointpool();
/* Read the points. */
for (i = 0; i < inpoints; i++) {
pointloop = (point) poolalloc(&points);
stringptr = readline(inputline, infile, infilename);
if (i == 0) {
firstnode = (int) strtol (stringptr, &stringptr, 0);
if ((firstnode == 0) || (firstnode == 1)) {
firstnumber = firstnode;
}
}
stringptr = findfield(stringptr);
if (*stringptr == '\0') {
printf("Error: Point %d has no x coordinate.\n", firstnumber + i);
exit(1);
}
x = (REAL) strtod(stringptr, &stringptr);
stringptr = findfield(stringptr);
if (*stringptr == '\0') {
printf("Error: Point %d has no y coordinate.\n", firstnumber + i);
exit(1);
}
y = (REAL) strtod(stringptr, &stringptr);
pointloop[0] = x;
pointloop[1] = y;
/* Read the point attributes. */
for (j = 2; j < 2 + nextras; j++) {
stringptr = findfield(stringptr);
if (*stringptr == '\0') {
pointloop[j] = 0.0;
}
else {
pointloop[j] = (REAL) strtod(stringptr, &stringptr);
}
}
if (nodemarkers) {
/* Read a point marker. */
stringptr = findfield(stringptr);
if (*stringptr == '\0') {
setpointmark(pointloop, 0);
}
else {
currentmarker = (int) strtol (stringptr, &stringptr, 0);
setpointmark(pointloop, currentmarker);
}
}
else {
/* If no markers are specified in the file, they default to zero. */
setpointmark(pointloop, 0);
}
/* Determine the smallest and largest x and y coordinates. */
if (i == 0) {
xmin = xmax = x;
ymin = ymax = y;
}
else {
xmin = (x < xmin) ? x : xmin;
xmax = (x > xmax) ? x : xmax;
ymin = (y < ymin) ? y : ymin;
ymax = (y > ymax) ? y : ymax;
}
}
if (readnodefile) {
fclose(infile);
}
/* Nonexistent x value used as a flag to mark circle events in sweepline */
/* Delaunay algorithm. */
xminextreme = 10 * xmin - 9 * xmax;
}
#endif /* not TRILIBRARY */
/*****************************************************************************/
/* */
/* transfernodes() Read the points from memory. */
/* */
/*****************************************************************************/
#ifdef TRILIBRARY
void transfernodes(REAL *pointlist,
REAL *pointattriblist,
int *pointmarkerlist,
int numberofpoints,
int numberofpointattribs)
{
point pointloop;
REAL x, y;
int i, j;
int coordindex;
int attribindex;
inpoints = numberofpoints;
mesh_dim = 2;
nextras = numberofpointattribs;
readnodefile = 0;
if (inpoints < 3) {
printf("Error: Input must have at least three input points.\n");
exit(1);
}
initializepointpool();
/* Read the points. */
coordindex = 0;
attribindex = 0;
for (i = 0; i < inpoints; i++) {
pointloop = (point) poolalloc(&points);
/* Read the point coordinates. */
pointloop[0] = pointlist[coordindex++];
pointloop[1] = pointlist[coordindex++];
/* Read the point attributes. */
for (j = 0; j < numberofpointattribs; j++) {
pointloop[2 + j] = pointattriblist[attribindex++];
}
if (pointmarkerlist != (int *) NULL) {
/* Read a point marker. */
setpointmark(pointloop, pointmarkerlist[i]);
}
else {
/* If no markers are specified, they default to zero. */
setpointmark(pointloop, 0);
}
x = pointloop[0];
y = pointloop[1];
/* Determine the smallest and largest x and y coordinates. */
if (i == 0) {
xmin = xmax = x;
ymin = ymax = y;
}
else {
xmin = (x < xmin) ? x : xmin;
xmax = (x > xmax) ? x : xmax;
ymin = (y < ymin) ? y : ymin;
ymax = (y > ymax) ? y : ymax;
}
}
/* Nonexistent x value used as a flag to mark circle events in sweepline */
/* Delaunay algorithm. */
xminextreme = 10 * xmin - 9 * xmax;
}
#endif /* TRILIBRARY */
/*****************************************************************************/
/* */
/* readholes() Read the holes, and possibly regional attributes and area */
/* constraints, from a .poly file. */
/* */
/*****************************************************************************/
#ifndef TRILIBRARY
void readholes(FILE *polyfile,
char *polyfilename,
REAL **hlist,
int *holes,
REAL **rlist,
int *regions)
{
REAL *holelist;
REAL *regionlist;
char inputline[INPUTLINESIZE];
char *stringptr;
int index;
int i;
/* Read the holes. */
stringptr = readline(inputline, polyfile, polyfilename);
*holes = (int) strtol (stringptr, &stringptr, 0);
if (*holes > 0) {
holelist = (REAL *) malloc(2 * *holes * sizeof(REAL));
*hlist = holelist;
if (holelist == (REAL *) NULL) {
printf("Error: Out of memory.\n");
exit(1);
}
for (i = 0; i < 2 * *holes; i += 2) {
stringptr = readline(inputline, polyfile, polyfilename);
stringptr = findfield(stringptr);
if (*stringptr == '\0') {
printf("Error: Hole %d has no x coordinate.\n", firstnumber + (i >> 1));
exit(1);
}
else {
holelist[i] = (REAL) strtod(stringptr, &stringptr);
}
stringptr = findfield(stringptr);
if (*stringptr == '\0') {
printf("Error: Hole %d has no y coordinate.\n", firstnumber + (i >> 1));
exit(1);
}
else {
holelist[i + 1] = (REAL) strtod(stringptr, &stringptr);
}
}
}
else {
*hlist = (REAL *) NULL;
}
#ifndef CDT_ONLY
if ((regionattrib || vararea) && !refine) {
/* Read the area constraints. */
stringptr = readline(inputline, polyfile, polyfilename);
*regions = (int) strtol (stringptr, &stringptr, 0);
if (*regions > 0) {
regionlist = (REAL *) malloc(4 * *regions * sizeof(REAL));
*rlist = regionlist;
if (regionlist == (REAL *) NULL) {
printf("Error: Out of memory.\n");
exit(1);
}
index = 0;
for (i = 0; i < *regions; i++) {
stringptr = readline(inputline, polyfile, polyfilename);
stringptr = findfield(stringptr);
if (*stringptr == '\0') {
printf("Error: Region %d has no x coordinate.\n", firstnumber + i);
exit(1);
}
else {
regionlist[index++] = (REAL) strtod(stringptr, &stringptr);
}
stringptr = findfield(stringptr);
if (*stringptr == '\0') {
printf("Error: Region %d has no y coordinate.\n", firstnumber + i);
exit(1);
}
else {
regionlist[index++] = (REAL) strtod(stringptr, &stringptr);
}
stringptr = findfield(stringptr);
if (*stringptr == '\0') {
printf("Error: Region %d has no region attribute or area constraint.\n",
firstnumber + i);
exit(1);
}
else {
regionlist[index++] = (REAL) strtod(stringptr, &stringptr);
}
stringptr = findfield(stringptr);
if (*stringptr == '\0') {
regionlist[index] = regionlist[index - 1];
}
else {
regionlist[index] = (REAL) strtod(stringptr, &stringptr);
}
index++;
}
}
}
else {
/* Set `*regions' to zero to avoid an accidental free() later. */
*regions = 0;
*rlist = (REAL *) NULL;
}
#endif /* not CDT_ONLY */
fclose(polyfile);
}
#endif /* not TRILIBRARY */
/*****************************************************************************/
/* */
/* finishfile() Write the command line to the output file so the user */
/* can remember how the file was generated. Close the file. */
/* */
/*****************************************************************************/
#ifndef TRILIBRARY
void finishfile(FILE *outfile,
int argc,
char **argv)
{
int i;
fprintf(outfile, "# Generated by");
for (i = 0; i < argc; i++) {
fprintf(outfile, " ");
fputs(argv[i], outfile);
}
fprintf(outfile, "\n");
fclose(outfile);
}
#endif /* not TRILIBRARY */
/*****************************************************************************/
/* */
/* writenodes() Number the points and write them to a .node file. */
/* */
/* To save memory, the point numbers are written over the shell markers */
/* after the points are written to a file. */
/* */
/*****************************************************************************/
#ifdef TRILIBRARY
void writenodes(REAL **pointlist,
REAL **pointattriblist,
int **pointmarkerlist)
#else /* not TRILIBRARY */
void writenodes(char *nodefilename,
int argc,
char **argv)
#endif /* not TRILIBRARY */
{
#ifdef TRILIBRARY
REAL *plist;
REAL *palist;
int *pmlist;
int coordindex;
int attribindex;
#else /* not TRILIBRARY */
FILE *outfile;
#endif /* not TRILIBRARY */
point pointloop;
int pointnumber;
int i;
#ifdef TRILIBRARY
if (!quiet) {
printf("Writing points.\n");
}
/* Allocate memory for output points if necessary. */
if (*pointlist == (REAL *) NULL) {
*pointlist = (REAL *) malloc(points.items * 2 * sizeof(REAL));
if (*pointlist == (REAL *) NULL) {
printf("Error: Out of memory.\n");
exit(1);
}
}
/* Allocate memory for output point attributes if necessary. */
if ((nextras > 0) && (*pointattriblist == (REAL *) NULL)) {
*pointattriblist = (REAL *) malloc(points.items * nextras * sizeof(REAL));
if (*pointattriblist == (REAL *) NULL) {
printf("Error: Out of memory.\n");
exit(1);
}
}
/* Allocate memory for output point markers if necessary. */
if (!nobound && (*pointmarkerlist == (int *) NULL)) {
*pointmarkerlist = (int *) malloc(points.items * sizeof(int));
if (*pointmarkerlist == (int *) NULL) {
printf("Error: Out of memory.\n");
exit(1);
}
}
plist = *pointlist;
palist = *pointattriblist;
pmlist = *pointmarkerlist;
coordindex = 0;
attribindex = 0;
#else /* not TRILIBRARY */
if (!quiet) {
printf("Writing %s.\n", nodefilename);
}
outfile = fopen(nodefilename, "w");
if (outfile == (FILE *) NULL) {
printf(" Error: Cannot create file %s.\n", nodefilename);
exit(1);
}
/* Number of points, number of dimensions, number of point attributes, */
/* and number of boundary markers (zero or one). */
fprintf(outfile, "%ld %d %d %d\n", points.items, mesh_dim, nextras,
1 - nobound);
#endif /* not TRILIBRARY */
traversalinit(&points);
pointloop = pointtraverse();
pointnumber = firstnumber;
while (pointloop != (point) NULL) {
#ifdef TRILIBRARY
/* X and y coordinates. */
plist[coordindex++] = pointloop[0];
plist[coordindex++] = pointloop[1];
/* Point attributes. */
for (i = 0; i < nextras; i++) {
palist[attribindex++] = pointloop[2 + i];
}
if (!nobound) {
/* Copy the boundary marker. */
pmlist[pointnumber - firstnumber] = pointmark(pointloop);
}
#else /* not TRILIBRARY */
/* Point number, x and y coordinates. */
fprintf(outfile, "%4d %.17g %.17g", pointnumber, pointloop[0],
pointloop[1]);
for (i = 0; i < nextras; i++) {
/* Write an attribute. */
fprintf(outfile, " %.17g", pointloop[i + 2]);
}
if (nobound) {
fprintf(outfile, "\n");
}
else {
/* Write the boundary marker. */
fprintf(outfile, " %d\n", pointmark(pointloop));
}
#endif /* not TRILIBRARY */
setpointmark(pointloop, pointnumber);
pointloop = pointtraverse();
pointnumber++;
}
#ifndef TRILIBRARY
finishfile(outfile, argc, argv);
#endif /* not TRILIBRARY */
}
/*****************************************************************************/
/* */
/* numbernodes() Number the points. */
/* */
/* Each point is assigned a marker equal to its number. */
/* */
/* Used when writenodes() is not called because no .node file is written. */
/* */
/*****************************************************************************/
void numbernodes(void)
{
point pointloop;
int pointnumber;
traversalinit(&points);
pointloop = pointtraverse();
pointnumber = firstnumber;
while (pointloop != (point) NULL) {
setpointmark(pointloop, pointnumber);
pointloop = pointtraverse();
pointnumber++;
}
}
/*****************************************************************************/
/* */
/* writeelements() Write the triangles to an .ele file. */
/* */
/*****************************************************************************/
#ifdef TRILIBRARY
void writeelements(int **trianglelist,
REAL **triangleattriblist)
#else /* not TRILIBRARY */
void writeelements(char *elefilename,
int argc,
char **argv)
#endif /* not TRILIBRARY */
{
#ifdef TRILIBRARY
int *tlist;
REAL *talist;
int pointindex;
int attribindex;
#else /* not TRILIBRARY */
FILE *outfile;
#endif /* not TRILIBRARY */
struct triedge triangleloop;
point p1, p2, p3;
point mid1, mid2, mid3;
int elementnumber;
int i;
#ifdef TRILIBRARY
if (!quiet) {
printf("Writing triangles.\n");
}
/* Allocate memory for output triangles if necessary. */
if (*trianglelist == (int *) NULL) {
*trianglelist = (int *) malloc(triangles.items *
((order + 1) * (order + 2) / 2) * sizeof(int));
if (*trianglelist == (int *) NULL) {
printf("Error: Out of memory.\n");
exit(1);
}
}
/* Allocate memory for output triangle attributes if necessary. */
if ((eextras > 0) && (*triangleattriblist == (REAL *) NULL)) {
*triangleattriblist = (REAL *) malloc(triangles.items * eextras *
sizeof(REAL));
if (*triangleattriblist == (REAL *) NULL) {
printf("Error: Out of memory.\n");
exit(1);
}
}
tlist = *trianglelist;
talist = *triangleattriblist;
pointindex = 0;
attribindex = 0;
#else /* not TRILIBRARY */
if (!quiet) {
printf("Writing %s.\n", elefilename);
}
outfile = fopen(elefilename, "w");
if (outfile == (FILE *) NULL) {
printf(" Error: Cannot create file %s.\n", elefilename);
exit(1);
}
/* Number of triangles, points per triangle, attributes per triangle. */
fprintf(outfile, "%ld %d %d\n", triangles.items,
(order + 1) * (order + 2) / 2, eextras);
#endif /* not TRILIBRARY */
traversalinit(&triangles);
triangleloop.tri = triangletraverse();
triangleloop.orient = 0;
elementnumber = firstnumber;
while (triangleloop.tri != (triangle *) NULL) {
org(triangleloop, p1);
dest(triangleloop, p2);
apex(triangleloop, p3);
if (order == 1) {
#ifdef TRILIBRARY
tlist[pointindex++] = pointmark(p1);
tlist[pointindex++] = pointmark(p2);
tlist[pointindex++] = pointmark(p3);
#else /* not TRILIBRARY */
/* Triangle number, indices for three points. */
fprintf(outfile, "%4d %4d %4d %4d", elementnumber,
pointmark(p1), pointmark(p2), pointmark(p3));
#endif /* not TRILIBRARY */
}
else {
mid1 = (point) triangleloop.tri[highorderindex + 1];
mid2 = (point) triangleloop.tri[highorderindex + 2];
mid3 = (point) triangleloop.tri[highorderindex];
#ifdef TRILIBRARY
tlist[pointindex++] = pointmark(p1);
tlist[pointindex++] = pointmark(p2);
tlist[pointindex++] = pointmark(p3);
tlist[pointindex++] = pointmark(mid1);
tlist[pointindex++] = pointmark(mid2);
tlist[pointindex++] = pointmark(mid3);
#else /* not TRILIBRARY */
/* Triangle number, indices for six points. */
fprintf(outfile, "%4d %4d %4d %4d %4d %4d %4d", elementnumber,
pointmark(p1), pointmark(p2), pointmark(p3), pointmark(mid1),
pointmark(mid2), pointmark(mid3));
#endif /* not TRILIBRARY */
}
#ifdef TRILIBRARY
for (i = 0; i < eextras; i++) {
talist[attribindex++] = elemattribute(triangleloop, i);
}
#else /* not TRILIBRARY */
for (i = 0; i < eextras; i++) {
fprintf(outfile, " %.17g", elemattribute(triangleloop, i));
}
fprintf(outfile, "\n");
#endif /* not TRILIBRARY */
triangleloop.tri = triangletraverse();
#ifndef TRILIBRARY
elementnumber++;
#endif /* not TRILIBRARY */
}
#ifndef TRILIBRARY
finishfile(outfile, argc, argv);
#endif /* not TRILIBRARY */
}
/*****************************************************************************/
/* */
/* writepoly() Write the segments and holes to a .poly file. */
/* */
/*****************************************************************************/
#ifdef TRILIBRARY
void writepoly(int **segmentlist,
int **segmentmarkerlist)
#else /* not TRILIBRARY */
void writepoly(char *polyfilename,
REAL *holelist,
int holes,
REAL *regionlist,
int regions,
int argc,
char **argv)
#endif /* not TRILIBRARY */
{
#ifdef TRILIBRARY
int *slist;
int *smlist;
int index;
#else /* not TRILIBRARY */
FILE *outfile;
int i;
#endif /* not TRILIBRARY */
struct edge shelleloop;
point endpoint1, endpoint2;
int shellenumber;
#ifdef TRILIBRARY
if (!quiet) {
printf("Writing segments.\n");
}
/* Allocate memory for output segments if necessary. */
if (*segmentlist == (int *) NULL) {
*segmentlist = (int *) malloc(shelles.items * 2 * sizeof(int));
if (*segmentlist == (int *) NULL) {
printf("Error: Out of memory.\n");
exit(1);
}
}
/* Allocate memory for output segment markers if necessary. */
if (!nobound && (*segmentmarkerlist == (int *) NULL)) {
*segmentmarkerlist = (int *) malloc(shelles.items * sizeof(int));
if (*segmentmarkerlist == (int *) NULL) {
printf("Error: Out of memory.\n");
exit(1);
}
}
slist = *segmentlist;
smlist = *segmentmarkerlist;
index = 0;
#else /* not TRILIBRARY */
if (!quiet) {
printf("Writing %s.\n", polyfilename);
}
outfile = fopen(polyfilename, "w");
if (outfile == (FILE *) NULL) {
printf(" Error: Cannot create file %s.\n", polyfilename);
exit(1);
}
/* The zero indicates that the points are in a separate .node file. */
/* Followed by number of dimensions, number of point attributes, */
/* and number of boundary markers (zero or one). */
fprintf(outfile, "%d %d %d %d\n", 0, mesh_dim, nextras, 1 - nobound);
/* Number of segments, number of boundary markers (zero or one). */
fprintf(outfile, "%ld %d\n", shelles.items, 1 - nobound);
#endif /* not TRILIBRARY */
traversalinit(&shelles);
shelleloop.sh = shelletraverse();
shelleloop.shorient = 0;
shellenumber = firstnumber;
while (shelleloop.sh != (shelle *) NULL) {
sorg(shelleloop, endpoint1);
sdest(shelleloop, endpoint2);
#ifdef TRILIBRARY
/* Copy indices of the segment's two endpoints. */
slist[index++] = pointmark(endpoint1);
slist[index++] = pointmark(endpoint2);
if (!nobound) {
/* Copy the boundary marker. */
smlist[shellenumber - firstnumber] = mark(shelleloop);
}
#else /* not TRILIBRARY */
/* Segment number, indices of its two endpoints, and possibly a marker. */
if (nobound) {
fprintf(outfile, "%4d %4d %4d\n", shellenumber,
pointmark(endpoint1), pointmark(endpoint2));
}
else {
fprintf(outfile, "%4d %4d %4d %4d\n", shellenumber,
pointmark(endpoint1), pointmark(endpoint2), mark(shelleloop));
}
#endif /* not TRILIBRARY */
shelleloop.sh = shelletraverse();
shellenumber++;
}
#ifndef TRILIBRARY
#ifndef CDT_ONLY
fprintf(outfile, "%d\n", holes);
if (holes > 0) {
for (i = 0; i < holes; i++) {
/* Hole number, x and y coordinates. */
fprintf(outfile, "%4d %.17g %.17g\n", firstnumber + i,
holelist[2 * i], holelist[2 * i + 1]);
}
}
if (regions > 0) {
fprintf(outfile, "%d\n", regions);
for (i = 0; i < regions; i++) {
/* Region number, x and y coordinates, attribute, maximum area. */
fprintf(outfile, "%4d %.17g %.17g %.17g %.17g\n", firstnumber + i,
regionlist[4 * i], regionlist[4 * i + 1],
regionlist[4 * i + 2], regionlist[4 * i + 3]);
}
}
#endif /* not CDT_ONLY */
finishfile(outfile, argc, argv);
#endif /* not TRILIBRARY */
}
/*****************************************************************************/
/* */
/* writeedges() Write the edges to a .edge file. */
/* */
/*****************************************************************************/
#ifdef TRILIBRARY
void writeedges(int **edgelist,
int **edgemarkerlist)
#else /* not TRILIBRARY */
void writeedges(char *edgefilename,
int argc,
char **argv)
#endif /* not TRILIBRARY */
{
#ifdef TRILIBRARY
int *elist;
int *emlist;
int index;
#else /* not TRILIBRARY */
FILE *outfile;
#endif /* not TRILIBRARY */
struct triedge triangleloop, trisym;
struct edge checkmark;
point p1, p2;
int edgenumber;
triangle ptr; /* Temporary variable used by sym(). */
shelle sptr; /* Temporary variable used by tspivot(). */
#ifdef TRILIBRARY
if (!quiet) {
printf("Writing edges.\n");
}
/* Allocate memory for edges if necessary. */
if (*edgelist == (int *) NULL) {
*edgelist = (int *) malloc(edges * 2 * sizeof(int));
if (*edgelist == (int *) NULL) {
printf("Error: Out of memory.\n");
exit(1);
}
}
/* Allocate memory for edge markers if necessary. */
if (!nobound && (*edgemarkerlist == (int *) NULL)) {
*edgemarkerlist = (int *) malloc(edges * sizeof(int));
if (*edgemarkerlist == (int *) NULL) {
printf("Error: Out of memory.\n");
exit(1);
}
}
elist = *edgelist;
emlist = *edgemarkerlist;
index = 0;
#else /* not TRILIBRARY */
if (!quiet) {
printf("Writing %s.\n", edgefilename);
}
outfile = fopen(edgefilename, "w");
if (outfile == (FILE *) NULL) {
printf(" Error: Cannot create file %s.\n", edgefilename);
exit(1);
}
/* Number of edges, number of boundary markers (zero or one). */
fprintf(outfile, "%ld %d\n", edges, 1 - nobound);
#endif /* not TRILIBRARY */
traversalinit(&triangles);
triangleloop.tri = triangletraverse();
edgenumber = firstnumber;
/* To loop over the set of edges, loop over all triangles, and look at */
/* the three edges of each triangle. If there isn't another triangle */
/* adjacent to the edge, operate on the edge. If there is another */
/* adjacent triangle, operate on the edge only if the current triangle */
/* has a smaller pointer than its neighbor. This way, each edge is */
/* considered only once. */
while (triangleloop.tri != (triangle *) NULL) {
for (triangleloop.orient = 0; triangleloop.orient < 3; triangleloop.orient++) {
sym(triangleloop, trisym);
if ((triangleloop.tri < trisym.tri) || (trisym.tri == dummytri)) {
org(triangleloop, p1);
dest(triangleloop, p2);
#ifdef TRILIBRARY
elist[index++] = pointmark(p1);
elist[index++] = pointmark(p2);
#endif /* TRILIBRARY */
if (nobound) {
#ifndef TRILIBRARY
/* Edge number, indices of two endpoints. */
fprintf(outfile, "%4d %d %d\n", edgenumber,
pointmark(p1), pointmark(p2));
#endif /* not TRILIBRARY */
}
else {
/* Edge number, indices of two endpoints, and a boundary marker. */
/* If there's no shell edge, the boundary marker is zero. */
if (useshelles) {
tspivot(triangleloop, checkmark);
if (checkmark.sh == dummysh) {
#ifdef TRILIBRARY
emlist[edgenumber - firstnumber] = 0;
#else /* not TRILIBRARY */
fprintf(outfile, "%4d %d %d %d\n", edgenumber,
pointmark(p1), pointmark(p2), 0);
#endif /* not TRILIBRARY */
}
else {
#ifdef TRILIBRARY
emlist[edgenumber - firstnumber] = mark(checkmark);
#else /* not TRILIBRARY */
fprintf(outfile, "%4d %d %d %d\n", edgenumber,
pointmark(p1), pointmark(p2), mark(checkmark));
#endif /* not TRILIBRARY */
}
}
else {
#ifdef TRILIBRARY
emlist[edgenumber - firstnumber] = trisym.tri == dummytri;
#else /* not TRILIBRARY */
fprintf(outfile, "%4d %d %d %d\n", edgenumber,
pointmark(p1), pointmark(p2), trisym.tri == dummytri);
#endif /* not TRILIBRARY */
}
}
edgenumber++;
}
}
triangleloop.tri = triangletraverse();
}
#ifndef TRILIBRARY
finishfile(outfile, argc, argv);
#endif /* not TRILIBRARY */
}
/*****************************************************************************/
/* */
/* writevoronoi() Write the Voronoi diagram to a .v.node and .v.edge */
/* file. */
/* */
/* The Voronoi diagram is the geometric dual of the Delaunay triangulation. */
/* Hence, the Voronoi vertices are listed by traversing the Delaunay */
/* triangles, and the Voronoi edges are listed by traversing the Delaunay */
/* edges. */
/* */
/* WARNING: In order to assign numbers to the Voronoi vertices, this */
/* procedure messes up the shell edges or the extra nodes of every */
/* element. Hence, you should call this procedure last. */
/* */
/*****************************************************************************/
#ifdef TRILIBRARY
void writevoronoi(REAL **vpointlist,
REAL **vpointattriblist,
int **vpointmarkerlist,
int **vedgelist,
int **vedgemarkerlist,
REAL **vnormlist)
#else /* not TRILIBRARY */
void writevoronoi(char *vnodefilename,
char *vedgefilename,
int argc,
char **argv)
#endif /* not TRILIBRARY */
{
#ifdef TRILIBRARY
REAL *plist;
REAL *palist;
int *elist;
REAL *normlist;
int coordindex;
int attribindex;
#else /* not TRILIBRARY */
FILE *outfile;
#endif /* not TRILIBRARY */
struct triedge triangleloop, trisym;
point torg, tdest, tapex;
REAL circumcenter[2];
REAL xi, eta;
int vnodenumber, vedgenumber;
int p1, p2;
int i;
triangle ptr; /* Temporary variable used by sym(). */
#ifdef TRILIBRARY
if (!quiet) {
printf("Writing Voronoi vertices.\n");
}
/* Allocate memory for Voronoi vertices if necessary. */
if (*vpointlist == (REAL *) NULL) {
*vpointlist = (REAL *) malloc(triangles.items * 2 * sizeof(REAL));
if (*vpointlist == (REAL *) NULL) {
printf("Error: Out of memory.\n");
exit(1);
}
}
/* Allocate memory for Voronoi vertex attributes if necessary. */
if (*vpointattriblist == (REAL *) NULL) {
*vpointattriblist = (REAL *) malloc(triangles.items * nextras *
sizeof(REAL));
if (*vpointattriblist == (REAL *) NULL) {
printf("Error: Out of memory.\n");
exit(1);
}
}
*vpointmarkerlist = (int *) NULL;
plist = *vpointlist;
palist = *vpointattriblist;
coordindex = 0;
attribindex = 0;
#else /* not TRILIBRARY */
if (!quiet) {
printf("Writing %s.\n", vnodefilename);
}
outfile = fopen(vnodefilename, "w");
if (outfile == (FILE *) NULL) {
printf(" Error: Cannot create file %s.\n", vnodefilename);
exit(1);
}
/* Number of triangles, two dimensions, number of point attributes, */
/* zero markers. */
fprintf(outfile, "%ld %d %d %d\n", triangles.items, 2, nextras, 0);
#endif /* not TRILIBRARY */
traversalinit(&triangles);
triangleloop.tri = triangletraverse();
triangleloop.orient = 0;
vnodenumber = firstnumber;
while (triangleloop.tri != (triangle *) NULL) {
org(triangleloop, torg);
dest(triangleloop, tdest);
apex(triangleloop, tapex);
findcircumcenter(torg, tdest, tapex, circumcenter, &xi, &eta);
#ifdef TRILIBRARY
/* X and y coordinates. */
plist[coordindex++] = circumcenter[0];
plist[coordindex++] = circumcenter[1];
for (i = 2; i < 2 + nextras; i++) {
/* Interpolate the point attributes at the circumcenter. */
palist[attribindex++] = torg[i] + xi * (tdest[i] - torg[i])
+ eta * (tapex[i] - torg[i]);
}
#else /* not TRILIBRARY */
/* Voronoi vertex number, x and y coordinates. */
fprintf(outfile, "%4d %.17g %.17g",
vnodenumber, circumcenter[0], circumcenter[1]);
for (i = 2; i < 2 + nextras; i++) {
/* Interpolate the point attributes at the circumcenter. */
fprintf(outfile, " %.17g", torg[i] + xi * (tdest[i] - torg[i])
+ eta * (tapex[i] - torg[i]));
}
fprintf(outfile, "\n");
#endif /* not TRILIBRARY */
* (int *) (triangleloop.tri + 6) = vnodenumber;
triangleloop.tri = triangletraverse();
vnodenumber++;
}
#ifndef TRILIBRARY
finishfile(outfile, argc, argv);
#endif /* not TRILIBRARY */
#ifdef TRILIBRARY
if (!quiet) {
printf("Writing Voronoi edges.\n");
}
/* Allocate memory for output Voronoi edges if necessary. */
if (*vedgelist == (int *) NULL) {
*vedgelist = (int *) malloc(edges * 2 * sizeof(int));
if (*vedgelist == (int *) NULL) {
printf("Error: Out of memory.\n");
exit(1);
}
}
*vedgemarkerlist = (int *) NULL;
/* Allocate memory for output Voronoi norms if necessary. */
if (*vnormlist == (REAL *) NULL) {
*vnormlist = (REAL *) malloc(edges * 2 * sizeof(REAL));
if (*vnormlist == (REAL *) NULL) {
printf("Error: Out of memory.\n");
exit(1);
}
}
elist = *vedgelist;
normlist = *vnormlist;
coordindex = 0;
#else /* not TRILIBRARY */
if (!quiet) {
printf("Writing %s.\n", vedgefilename);
}
outfile = fopen(vedgefilename, "w");
if (outfile == (FILE *) NULL) {
printf(" Error: Cannot create file %s.\n", vedgefilename);
exit(1);
}
/* Number of edges, zero boundary markers. */
fprintf(outfile, "%ld %d\n", edges, 0);
#endif /* not TRILIBRARY */
traversalinit(&triangles);
triangleloop.tri = triangletraverse();
vedgenumber = firstnumber;
/* To loop over the set of edges, loop over all triangles, and look at */
/* the three edges of each triangle. If there isn't another triangle */
/* adjacent to the edge, operate on the edge. If there is another */
/* adjacent triangle, operate on the edge only if the current triangle */
/* has a smaller pointer than its neighbor. This way, each edge is */
/* considered only once. */
while (triangleloop.tri != (triangle *) NULL) {
for (triangleloop.orient = 0; triangleloop.orient < 3; triangleloop.orient++) {
sym(triangleloop, trisym);
if ((triangleloop.tri < trisym.tri) || (trisym.tri == dummytri)) {
/* Find the number of this triangle (and Voronoi vertex). */
p1 = * (int *) (triangleloop.tri + 6);
if (trisym.tri == dummytri) {
org(triangleloop, torg);
dest(triangleloop, tdest);
#ifdef TRILIBRARY
/* Copy an infinite ray. Index of one endpoint, and -1. */
elist[coordindex] = p1;
normlist[coordindex++] = tdest[1] - torg[1];
elist[coordindex] = -1;
normlist[coordindex++] = torg[0] - tdest[0];
#else /* not TRILIBRARY */
/* Write an infinite ray. Edge number, index of one endpoint, -1, */
/* and x and y coordinates of a vector representing the */
/* direction of the ray. */
fprintf(outfile, "%4d %d %d %.17g %.17g\n", vedgenumber,
p1, -1, tdest[1] - torg[1], torg[0] - tdest[0]);
#endif /* not TRILIBRARY */
}
else {
/* Find the number of the adjacent triangle (and Voronoi vertex). */
p2 = * (int *) (trisym.tri + 6);
/* Finite edge. Write indices of two endpoints. */
#ifdef TRILIBRARY
elist[coordindex] = p1;
normlist[coordindex++] = 0.0;
elist[coordindex] = p2;
normlist[coordindex++] = 0.0;
#else /* not TRILIBRARY */
fprintf(outfile, "%4d %d %d\n", vedgenumber, p1, p2);
#endif /* not TRILIBRARY */
}
#ifndef TRILIBRARY
vedgenumber++;
#endif /* not TRILIBRARY */
}
}
triangleloop.tri = triangletraverse();
}
#ifndef TRILIBRARY
finishfile(outfile, argc, argv);
#endif /* not TRILIBRARY */
}
#ifdef TRILIBRARY
void writeneighbors(int **neighborlist)
#else /* not TRILIBRARY */
void writeneighbors(char *neighborfilename,
int argc,
char **argv)
#endif /* not TRILIBRARY */
{
#ifdef TRILIBRARY
int *nlist;
int index;
#else /* not TRILIBRARY */
FILE *outfile;
#endif /* not TRILIBRARY */
struct triedge triangleloop, trisym;
int elementnumber;
int neighbor1, neighbor2, neighbor3;
triangle ptr; /* Temporary variable used by sym(). */
#ifdef TRILIBRARY
if (!quiet) {
printf("Writing neighbors.\n");
}
/* Allocate memory for neighbors if necessary. */
if (*neighborlist == (int *) NULL) {
*neighborlist = (int *) malloc(triangles.items * 3 * sizeof(int));
if (*neighborlist == (int *) NULL) {
printf("Error: Out of memory.\n");
exit(1);
}
}
nlist = *neighborlist;
index = 0;
#else /* not TRILIBRARY */
if (!quiet) {
printf("Writing %s.\n", neighborfilename);
}
outfile = fopen(neighborfilename, "w");
if (outfile == (FILE *) NULL) {
printf(" Error: Cannot create file %s.\n", neighborfilename);
exit(1);
}
/* Number of triangles, three edges per triangle. */
fprintf(outfile, "%ld %d\n", triangles.items, 3);
#endif /* not TRILIBRARY */
traversalinit(&triangles);
triangleloop.tri = triangletraverse();
triangleloop.orient = 0;
elementnumber = firstnumber;
while (triangleloop.tri != (triangle *) NULL) {
* (int *) (triangleloop.tri + 6) = elementnumber;
triangleloop.tri = triangletraverse();
elementnumber++;
}
* (int *) (dummytri + 6) = -1;
traversalinit(&triangles);
triangleloop.tri = triangletraverse();
elementnumber = firstnumber;
while (triangleloop.tri != (triangle *) NULL) {
triangleloop.orient = 1;
sym(triangleloop, trisym);
neighbor1 = * (int *) (trisym.tri + 6);
triangleloop.orient = 2;
sym(triangleloop, trisym);
neighbor2 = * (int *) (trisym.tri + 6);
triangleloop.orient = 0;
sym(triangleloop, trisym);
neighbor3 = * (int *) (trisym.tri + 6);
#ifdef TRILIBRARY
nlist[index++] = neighbor1;
nlist[index++] = neighbor2;
nlist[index++] = neighbor3;
#else /* not TRILIBRARY */
/* Triangle number, neighboring triangle numbers. */
fprintf(outfile, "%4d %d %d %d\n", elementnumber,
neighbor1, neighbor2, neighbor3);
#endif /* not TRILIBRARY */
triangleloop.tri = triangletraverse();
#ifndef TRILIBRARY
elementnumber++;
#endif /* not TRILIBRARY */
}
#ifndef TRILIBRARY
finishfile(outfile, argc, argv);
#endif /* TRILIBRARY */
}
/*****************************************************************************/
/* */
/* writeoff() Write the triangulation to an .off file. */
/* */
/* OFF stands for the Object File Format, a format used by the Geometry */
/* Center's Geomview package. */
/* */
/*****************************************************************************/
#ifndef TRILIBRARY
void writeoff(char *offfilename,
int argc,
char **argv)
{
FILE *outfile;
struct triedge triangleloop;
point pointloop;
point p1, p2, p3;
if (!quiet) {
printf("Writing %s.\n", offfilename);
}
outfile = fopen(offfilename, "w");
if (outfile == (FILE *) NULL) {
printf(" Error: Cannot create file %s.\n", offfilename);
exit(1);
}
/* Number of points, triangles, and edges. */
fprintf(outfile, "OFF\n%ld %ld %ld\n", points.items, triangles.items, edges);
/* Write the points. */
traversalinit(&points);
pointloop = pointtraverse();
while (pointloop != (point) NULL) {
/* The "0.0" is here because the OFF format uses 3D coordinates. */
fprintf(outfile, " %.17g %.17g %.17g\n", pointloop[0], pointloop[1], 0.0);
pointloop = pointtraverse();
}
/* Write the triangles. */
traversalinit(&triangles);
triangleloop.tri = triangletraverse();
triangleloop.orient = 0;
while (triangleloop.tri != (triangle *) NULL) {
org(triangleloop, p1);
dest(triangleloop, p2);
apex(triangleloop, p3);
/* The "3" means a three-vertex polygon. */
fprintf(outfile, " 3 %4d %4d %4d\n", pointmark(p1) - 1,
pointmark(p2) - 1, pointmark(p3) - 1);
triangleloop.tri = triangletraverse();
}
finishfile(outfile, argc, argv);
}
#endif /* not TRILIBRARY */
/** **/
/** **/
/********* File I/O routines end here *********/
/*****************************************************************************/
/* */
/* quality_statistics() Print statistics about the quality of the mesh. */
/* */
/*****************************************************************************/
void quality_statistics(void)
{
struct triedge triangleloop;
point p[3];
REAL cossquaretable[8];
REAL ratiotable[16];
REAL dx[3], dy[3];
REAL edgelength[3];
REAL dotproduct;
REAL cossquare;
REAL triarea;
REAL shortest, longest;
REAL trilongest2;
REAL smallestarea, biggestarea;
REAL triminaltitude2;
REAL minaltitude;
REAL triaspect2;
REAL worstaspect;
REAL smallestangle, biggestangle;
REAL radconst, degconst;
int angletable[18];
int aspecttable[16];
int aspectindex;
int tendegree;
int acutebiggest;
int i, ii, j, k;
printf("Mesh quality statistics:\n\n");
radconst = PI / 18.0;
degconst = 180.0 / PI;
for (i = 0; i < 8; i++) {
cossquaretable[i] = cos(radconst * (REAL) (i + 1));
cossquaretable[i] = cossquaretable[i] * cossquaretable[i];
}
for (i = 0; i < 18; i++) {
angletable[i] = 0;
}
ratiotable[0] = 1.5; ratiotable[1] = 2.0;
ratiotable[2] = 2.5; ratiotable[3] = 3.0;
ratiotable[4] = 4.0; ratiotable[5] = 6.0;
ratiotable[6] = 10.0; ratiotable[7] = 15.0;
ratiotable[8] = 25.0; ratiotable[9] = 50.0;
ratiotable[10] = 100.0; ratiotable[11] = 300.0;
ratiotable[12] = 1000.0; ratiotable[13] = 10000.0;
ratiotable[14] = 100000.0; ratiotable[15] = 0.0;
for (i = 0; i < 16; i++) {
aspecttable[i] = 0;
}
worstaspect = 0.0;
minaltitude = xmax - xmin + ymax - ymin;
minaltitude = minaltitude * minaltitude;
shortest = minaltitude;
longest = 0.0;
smallestarea = minaltitude;
biggestarea = 0.0;
smallestangle = 0.0;
biggestangle = 2.0;
acutebiggest = 1;
traversalinit(&triangles);
triangleloop.tri = triangletraverse();
triangleloop.orient = 0;
while (triangleloop.tri != (triangle *) NULL) {
org(triangleloop, p[0]);
dest(triangleloop, p[1]);
apex(triangleloop, p[2]);
trilongest2 = 0.0;
for (i = 0; i < 3; i++) {
j = plus1mod3[i];
k = minus1mod3[i];
dx[i] = p[j][0] - p[k][0];
dy[i] = p[j][1] - p[k][1];
edgelength[i] = dx[i] * dx[i] + dy[i] * dy[i];
if (edgelength[i] > trilongest2) {
trilongest2 = edgelength[i];
}
if (edgelength[i] > longest) {
longest = edgelength[i];
}
if (edgelength[i] < shortest) {
shortest = edgelength[i];
}
}
triarea = counterclockwise(p[0], p[1], p[2]);
if (triarea < smallestarea) {
smallestarea = triarea;
}
if (triarea > biggestarea) {
biggestarea = triarea;
}
triminaltitude2 = triarea * triarea / trilongest2;
if (triminaltitude2 < minaltitude) {
minaltitude = triminaltitude2;
}
triaspect2 = trilongest2 / triminaltitude2;
if (triaspect2 > worstaspect) {
worstaspect = triaspect2;
}
aspectindex = 0;
while ((triaspect2 > ratiotable[aspectindex] * ratiotable[aspectindex])
&& (aspectindex < 15)) {
aspectindex++;
}
aspecttable[aspectindex]++;
for (i = 0; i < 3; i++) {
j = plus1mod3[i];
k = minus1mod3[i];
dotproduct = dx[j] * dx[k] + dy[j] * dy[k];
cossquare = dotproduct * dotproduct / (edgelength[j] * edgelength[k]);
tendegree = 8;
for (ii = 7; ii >= 0; ii--) {
if (cossquare > cossquaretable[ii]) {
tendegree = ii;
}
}
if (dotproduct <= 0.0) {
angletable[tendegree]++;
if (cossquare > smallestangle) {
smallestangle = cossquare;
}
if (acutebiggest && (cossquare < biggestangle)) {
biggestangle = cossquare;
}
}
else {
angletable[17 - tendegree]++;
if (acutebiggest || (cossquare > biggestangle)) {
biggestangle = cossquare;
acutebiggest = 0;
}
}
}
triangleloop.tri = triangletraverse();
}
shortest = sqrt(shortest);
longest = sqrt(longest);
minaltitude = sqrt(minaltitude);
worstaspect = sqrt(worstaspect);
smallestarea *= 2.0;
biggestarea *= 2.0;
if (smallestangle >= 1.0) {
smallestangle = 0.0;
}
else {
smallestangle = degconst * acos(sqrt(smallestangle));
}
if (biggestangle >= 1.0) {
biggestangle = 180.0;
}
else {
if (acutebiggest) {
biggestangle = degconst * acos(sqrt(biggestangle));
}
else {
biggestangle = 180.0 - degconst * acos(sqrt(biggestangle));
}
}
printf(" Smallest area: %16.5g | Largest area: %16.5g\n", smallestarea, biggestarea);
printf(" Shortest edge: %16.5g | Longest edge: %16.5g\n", shortest, longest);
printf(" Shortest altitude: %12.5g | Largest aspect ratio: %8.5g\n\n", minaltitude, worstaspect);
printf(" Aspect ratio histogram:\n");
printf(" 1.1547 - %-6.6g : %8d | %6.6g - %-6.6g : %8d\n",
ratiotable[0], aspecttable[0], ratiotable[7], ratiotable[8], aspecttable[8]);
for (i = 1; i < 7; i++) {
printf(" %6.6g - %-6.6g : %8d | %6.6g - %-6.6g : %8d\n",
ratiotable[i - 1], ratiotable[i], aspecttable[i], ratiotable[i + 7], ratiotable[i + 8], aspecttable[i + 8]);
}
printf(" %6.6g - %-6.6g : %8d | %6.6g - : %8d\n",
ratiotable[6], ratiotable[7], aspecttable[7], ratiotable[14], aspecttable[15]);
printf(" (Triangle aspect ratio is longest edge divided by shortest altitude)\n\n");
printf(" Smallest angle: %15.5g | Largest angle: %15.5g\n\n", smallestangle, biggestangle);
printf(" Angle histogram:\n");
for (i = 0; i < 9; i++) {
printf(" %3d - %3d degrees: %8d | %3d - %3d degrees: %8d\n",
i * 10, i * 10 + 10, angletable[i], i * 10 + 90, i * 10 + 100, angletable[i + 9]);
}
printf("\n");
}
/*****************************************************************************/
/* */
/* statistics() Print all sorts of cool facts. */
/* */
/*****************************************************************************/
void statistics(void)
{
printf("\nStatistics:\n\n");
printf(" Input points: %d\n", inpoints);
if (refine) {
printf(" Input triangles: %d\n", inelements);
}
if (poly) {
printf(" Input segments: %d\n", insegments);
if (!refine) {
printf(" Input holes: %d\n", holes);
}
}
printf("\n Mesh points: %ld\n", points.items);
printf(" Mesh triangles: %ld\n", triangles.items);
printf(" Mesh edges: %ld\n", edges);
if (poly || refine) {
printf(" Mesh boundary edges: %ld\n", hullsize);
printf(" Mesh segments: %ld\n\n", shelles.items);
}
else {
printf(" Mesh convex hull edges: %ld\n\n", hullsize);
}
if (verbose) {
quality_statistics();
printf("Memory allocation statistics:\n\n");
printf(" Maximum number of points: %ld\n", points.maxitems);
printf(" Maximum number of triangles: %ld\n", triangles.maxitems);
if (shelles.maxitems > 0) {
printf(" Maximum number of segments: %ld\n", shelles.maxitems);
}
if (viri.maxitems > 0) {
printf(" Maximum number of viri: %ld\n", viri.maxitems);
}
if (badsegments.maxitems > 0) {
printf(" Maximum number of encroached segments: %ld\n",
badsegments.maxitems);
}
if (badtriangles.maxitems > 0) {
printf(" Maximum number of bad triangles: %ld\n",
badtriangles.maxitems);
}
if (splaynodes.maxitems > 0) {
printf(" Maximum number of splay tree nodes: %ld\n",
splaynodes.maxitems);
}
printf(" Approximate heap memory use (bytes): %ld\n\n",
points.maxitems * points.itembytes
+ triangles.maxitems * triangles.itembytes
+ shelles.maxitems * shelles.itembytes
+ viri.maxitems * viri.itembytes
+ badsegments.maxitems * badsegments.itembytes
+ badtriangles.maxitems * badtriangles.itembytes
+ splaynodes.maxitems * splaynodes.itembytes);
printf("Algorithmic statistics:\n\n");
printf(" Number of incircle tests: %ld\n", incirclecount);
printf(" Number of orientation tests: %ld\n", counterclockcount);
if (hyperbolacount > 0) {
printf(" Number of right-of-hyperbola tests: %ld\n",
hyperbolacount);
}
if (circumcentercount > 0) {
printf(" Number of circumcenter computations: %ld\n",
circumcentercount);
}
if (circletopcount > 0) {
printf(" Number of circle top computations: %ld\n",
circletopcount);
}
printf("\n");
}
}
/*****************************************************************************/
/* */
/* main() or triangulate() Gosh, do everything. */
/* */
/* The sequence is roughly as follows. Many of these steps can be skipped, */
/* depending on the command line switches. */
/* */
/* - Initialize constants and parse the command line. */
/* - Read the points from a file and either */
/* - triangulate them (no -r), or */
/* - read an old mesh from files and reconstruct it (-r). */
/* - Insert the PSLG segments (-p), and possibly segments on the convex */
/* hull (-c). */
/* - Read the holes (-p), regional attributes (-pA), and regional area */
/* constraints (-pa). Carve the holes and concavities, and spread the */
/* regional attributes and area constraints. */
/* - Enforce the constraints on minimum angle (-q) and maximum area (-a). */
/* Also enforce the conforming Delaunay property (-q and -a). */
/* - Compute the number of edges in the resulting mesh. */
/* - Promote the mesh's linear triangles to higher order elements (-o). */
/* - Write the output files and print the statistics. */
/* - Check the consistency and Delaunay property of the mesh (-C). */
/* */
/*****************************************************************************/
#ifdef TRILIBRARY
void triangulate(const char *triswitches,
struct triangulateio *in,
struct triangulateio *out,
struct triangulateio *vorout)
#else /* not TRILIBRARY */
int main(argc, argv)
int argc;
char **argv;
#endif /* not TRILIBRARY */
{
REAL *holearray; /* Array of holes. */
REAL *regionarray; /* Array of regional attributes and area constraints. */
#ifndef TRILIBRARY
FILE *polyfile;
#endif /* not TRILIBRARY */
#ifndef NO_TIMER
/* Variables for timing the performance of Triangle. The types are */
/* defined in sys/time.h. */
struct timeval tv0, tv1, tv2, tv3, tv4, tv5, tv6;
struct timezone tz;
#endif /* NO_TIMER */
#ifndef NO_TIMER
gettimeofday(&tv0, &tz);
#endif /* NO_TIMER */
triangleinit();
#ifdef TRILIBRARY
parsecommandline(1, &triswitches);
#else /* not TRILIBRARY */
parsecommandline(argc, argv);
#endif /* not TRILIBRARY */
#ifdef TRILIBRARY
transfernodes(in->pointlist, in->pointattributelist, in->pointmarkerlist,
in->numberofpoints, in->numberofpointattributes);
#else /* not TRILIBRARY */
readnodes(innodefilename, inpolyfilename, &polyfile);
#endif /* not TRILIBRARY */
#ifndef NO_TIMER
if (!quiet) {
gettimeofday(&tv1, &tz);
}
#endif /* NO_TIMER */
#ifdef CDT_ONLY
hullsize = delaunay(); /* Triangulate the points. */
#else /* not CDT_ONLY */
if (refine) {
/* Read and reconstruct a mesh. */
#ifdef TRILIBRARY
hullsize = reconstruct(in->trianglelist, in->triangleattributelist,
in->trianglearealist, in->numberoftriangles,
in->numberofcorners, in->numberoftriangleattributes,
in->segmentlist, in->segmentmarkerlist,
in->numberofsegments);
#else /* not TRILIBRARY */
hullsize = reconstruct(inelefilename, areafilename, inpolyfilename,
polyfile);
#endif /* not TRILIBRARY */
}
else {
hullsize = delaunay(); /* Triangulate the points. */
}
#endif /* not CDT_ONLY */
#ifndef NO_TIMER
if (!quiet) {
gettimeofday(&tv2, &tz);
if (refine) {
printf("Mesh reconstruction");
}
else {
printf("Delaunay");
}
printf(" milliseconds: %ld\n", 1000l * (tv2.tv_sec - tv1.tv_sec)
+ (tv2.tv_usec - tv1.tv_usec) / 1000l);
}
#endif /* NO_TIMER */
/* Ensure that no point can be mistaken for a triangular bounding */
/* box point in insertsite(). */
infpoint1 = (point) NULL;
infpoint2 = (point) NULL;
infpoint3 = (point) NULL;
if (useshelles) {
checksegments = 1; /* Segments will be introduced next. */
if (!refine) {
/* Insert PSLG segments and/or convex hull segments. */
#ifdef TRILIBRARY
insegments = formskeleton(in->segmentlist, in->segmentmarkerlist,
in->numberofsegments);
#else /* not TRILIBRARY */
insegments = formskeleton(polyfile, inpolyfilename);
#endif /* not TRILIBRARY */
}
}
#ifndef NO_TIMER
if (!quiet) {
gettimeofday(&tv3, &tz);
if (useshelles && !refine) {
printf("Segment milliseconds: %ld\n",
1000l * (tv3.tv_sec - tv2.tv_sec) + (tv3.tv_usec - tv2.tv_usec) / 1000l);
}
}
#endif /* NO_TIMER */
if (poly) {
#ifdef TRILIBRARY
holearray = in->holelist;
holes = in->numberofholes;
regionarray = in->regionlist;
regions = in->numberofregions;
#else /* not TRILIBRARY */
readholes(polyfile, inpolyfilename, &holearray, &holes,
®ionarray, ®ions);
#endif /* not TRILIBRARY */
if (!refine) {
/* Carve out holes and concavities. */
carveholes(holearray, holes, regionarray, regions);
}
}
else {
/* Without a PSLG, there can be no holes or regional attributes */
/* or area constraints. The following are set to zero to avoid */
/* an accidental free() later. */
holes = 0;
regions = 0;
}
#ifndef NO_TIMER
if (!quiet) {
gettimeofday(&tv4, &tz);
if (poly && !refine) {
printf("Hole milliseconds: %ld\n", 1000l * (tv4.tv_sec - tv3.tv_sec)
+ (tv4.tv_usec - tv3.tv_usec) / 1000l);
}
}
#endif /* NO_TIMER */
#ifndef CDT_ONLY
if (quality) {
enforcequality(); /* Enforce angle and area constraints. */
}
#endif /* not CDT_ONLY */
#ifndef NO_TIMER
if (!quiet) {
gettimeofday(&tv5, &tz);
#ifndef CDT_ONLY
if (quality) {
printf("Quality milliseconds: %ld\n",
1000l * (tv5.tv_sec - tv4.tv_sec) + (tv5.tv_usec - tv4.tv_usec) / 1000l);
}
#endif /* not CDT_ONLY */
}
#endif /* NO_TIMER */
/* Compute the number of edges. */
edges = (3l * triangles.items + hullsize) / 2l;
if (order > 1) {
highorder(); /* Promote elements to higher polynomial order. */
}
if (!quiet) {
printf("\n");
}
#ifdef TRILIBRARY
out->numberofpoints = points.items;
out->numberofpointattributes = nextras;
out->numberoftriangles = triangles.items;
out->numberofcorners = (order + 1) * (order + 2) / 2;
out->numberoftriangleattributes = eextras;
out->numberofedges = edges;
if (useshelles) {
out->numberofsegments = shelles.items;
}
else {
out->numberofsegments = hullsize;
}
if (vorout != (struct triangulateio *) NULL) {
vorout->numberofpoints = triangles.items;
vorout->numberofpointattributes = nextras;
vorout->numberofedges = edges;
}
#endif /* TRILIBRARY */
/* If not using iteration numbers, don't write a .node file if one was */
/* read, because the original one would be overwritten! */
if (nonodewritten || (noiterationnum && readnodefile)) {
if (!quiet) {
#ifdef TRILIBRARY
printf("NOT writing points.\n");
#else /* not TRILIBRARY */
printf("NOT writing a .node file.\n");
#endif /* not TRILIBRARY */
}
numbernodes(); /* We must remember to number the points. */
}
else {
#ifdef TRILIBRARY
writenodes(&out->pointlist, &out->pointattributelist,
&out->pointmarkerlist);
#else /* not TRILIBRARY */
writenodes(outnodefilename, argc, argv); /* Numbers the points too. */
#endif /* TRILIBRARY */
}
if (noelewritten) {
if (!quiet) {
#ifdef TRILIBRARY
printf("NOT writing triangles.\n");
#else /* not TRILIBRARY */
printf("NOT writing an .ele file.\n");
#endif /* not TRILIBRARY */
}
}
else {
#ifdef TRILIBRARY
writeelements(&out->trianglelist, &out->triangleattributelist);
#else /* not TRILIBRARY */
writeelements(outelefilename, argc, argv);
#endif /* not TRILIBRARY */
}
/* The -c switch (convex switch) causes a PSLG to be written */
/* even if none was read. */
if (poly || convex) {
/* If not using iteration numbers, don't overwrite the .poly file. */
if (nopolywritten || noiterationnum) {
if (!quiet) {
#ifdef TRILIBRARY
printf("NOT writing segments.\n");
#else /* not TRILIBRARY */
printf("NOT writing a .poly file.\n");
#endif /* not TRILIBRARY */
}
}
else {
#ifdef TRILIBRARY
writepoly(&out->segmentlist, &out->segmentmarkerlist);
out->numberofholes = holes;
out->numberofregions = regions;
if (poly) {
out->holelist = in->holelist;
out->regionlist = in->regionlist;
}
else {
out->holelist = (REAL *) NULL;
out->regionlist = (REAL *) NULL;
}
#else /* not TRILIBRARY */
writepoly(outpolyfilename, holearray, holes, regionarray, regions, argc, argv);
#endif /* not TRILIBRARY */
}
}
#ifndef TRILIBRARY
#ifndef CDT_ONLY
if (regions > 0) {
free(regionarray);
}
#endif /* not CDT_ONLY */
if (holes > 0) {
free(holearray);
}
if (geomview) {
writeoff(offfilename, argc, argv);
}
#endif /* not TRILIBRARY */
if (edgesout) {
#ifdef TRILIBRARY
writeedges(&out->edgelist, &out->edgemarkerlist);
#else /* not TRILIBRARY */
writeedges(edgefilename, argc, argv);
#endif /* not TRILIBRARY */
}
if (voronoi) {
#ifdef TRILIBRARY
writevoronoi(&vorout->pointlist, &vorout->pointattributelist,
&vorout->pointmarkerlist, &vorout->edgelist,
&vorout->edgemarkerlist, &vorout->normlist);
#else /* not TRILIBRARY */
writevoronoi(vnodefilename, vedgefilename, argc, argv);
#endif /* not TRILIBRARY */
}
if (neighbors) {
#ifdef TRILIBRARY
writeneighbors(&out->neighborlist);
#else /* not TRILIBRARY */
writeneighbors(neighborfilename, argc, argv);
#endif /* not TRILIBRARY */
}
if (!quiet) {
#ifndef NO_TIMER
gettimeofday(&tv6, &tz);
printf("\nOutput milliseconds: %ld\n",
1000l * (tv6.tv_sec - tv5.tv_sec) + (tv6.tv_usec - tv5.tv_usec) / 1000l);
printf("Total running milliseconds: %ld\n",
1000l * (tv6.tv_sec - tv0.tv_sec) + (tv6.tv_usec - tv0.tv_usec) / 1000l);
#endif /* NO_TIMER */
statistics();
}
#ifndef REDUCED
if (docheck) {
checkmesh();
checkdelaunay();
}
#endif /* not REDUCED */
triangledeinit();
#ifndef TRILIBRARY
return 0;
#endif /* not TRILIBRARY */
}
|