File: triangle.c

package info (click to toggle)
vxl 1.17.0.dfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 153,280 kB
  • ctags: 105,123
  • sloc: cpp: 747,420; ansic: 209,130; fortran: 34,230; lisp: 14,915; sh: 6,187; python: 5,856; makefile: 340; perl: 294; xml: 160
file content (12707 lines) | stat: -rw-r--r-- 539,300 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
/*****************************************************************************/
/*                                                                           */
/*      888888888        ,o,                          / 888                  */
/*         888    88o88o  "    o8888o  88o8888o o88888o 888  o88888o         */
/*         888    888    888       88b 888  888 888 888 888 d888  88b        */
/*         888    888    888  o88^o888 888  888 "88888" 888 8888oo888        */
/*         888    888    888 C888  888 888  888  /      888 q888             */
/*         888    888    888  "88o^888 888  888 Cb      888  "88oooo"        */
/*                                              "8oo8D                       */
/*                                                                           */
/*  A Two-Dimensional Quality Mesh Generator and Delaunay Triangulator.      */
/*  (triangle.c)                                                             */
/*                                                                           */
/*  Version 1.3                                                              */
/*  July 19, 1996                                                            */
/*                                                                           */
/*  Copyright 1996                                                           */
/*  Jonathan Richard Shewchuk                                                */
/*  School of Computer Science                                               */
/*  Carnegie Mellon University                                               */
/*  5000 Forbes Avenue                                                       */
/*  Pittsburgh, Pennsylvania  15213-3891                                     */
/*  jrs@cs.cmu.edu                                                           */
/*                                                                           */
/*  This program may be freely redistributed under the condition that the    */
/*    copyright notices (including this entire header and the copyright      */
/*    notice printed when the `-h' switch is selected) are not removed, and  */
/*    no compensation is received.  Private, research, and institutional     */
/*    use is free.  You may distribute modified versions of this code UNDER  */
/*    THE CONDITION THAT THIS CODE AND ANY MODIFICATIONS MADE TO IT IN THE   */
/*    SAME FILE REMAIN UNDER COPYRIGHT OF THE ORIGINAL AUTHOR, BOTH SOURCE   */
/*    AND OBJECT CODE ARE MADE FREELY AVAILABLE WITHOUT CHARGE, AND CLEAR    */
/*    NOTICE IS GIVEN OF THE MODIFICATIONS.  Distribution of this code as    */
/*    part of a commercial system is permissible ONLY BY DIRECT ARRANGEMENT  */
/*    WITH THE AUTHOR.  (If you are not directly supplying this code to a    */
/*    customer, and you are instead telling them how they can obtain it for  */
/*    free, then you are not required to make any arrangement with me.)      */
/*                                                                           */
/*  Hypertext instructions for Triangle are available on the Web at          */
/*                                                                           */
/*      http://www.cs.cmu.edu/~quake/triangle.html                           */
/*                                                                           */
/*  Some of the references listed below are marked [*].  These are available */
/*    for downloading from the Web page                                      */
/*                                                                           */
/*      http://www.cs.cmu.edu/~quake/triangle.research.html                  */
/*                                                                           */
/*  A paper discussing some aspects of Triangle is available.  See Jonathan  */
/*    Richard Shewchuk, "Triangle:  Engineering a 2D Quality Mesh Generator  */
/*    and Delaunay Triangulator," First Workshop on Applied Computational    */
/*    Geometry, ACM, May 1996.  [*]                                          */
/*                                                                           */
/*  Triangle was created as part of the Archimedes project in the School of  */
/*    Computer Science at Carnegie Mellon University.  Archimedes is a       */
/*    system for compiling parallel finite element solvers.  For further     */
/*    information, see Anja Feldmann, Omar Ghattas, John R. Gilbert, Gary L. */
/*    Miller, David R. O'Hallaron, Eric J. Schwabe, Jonathan R. Shewchuk,    */
/*    and Shang-Hua Teng, "Automated Parallel Solution of Unstructured PDE   */
/*    Problems."  To appear in Communications of the ACM, we hope.           */
/*                                                                           */
/*  The quality mesh generation algorithm is due to Jim Ruppert, "A          */
/*    Delaunay Refinement Algorithm for Quality 2-Dimensional Mesh           */
/*    Generation," Journal of Algorithms 18(3):548-585, May 1995.  [*]       */
/*                                                                           */
/*  My implementation of the divide-and-conquer and incremental Delaunay     */
/*    triangulation algorithms follows closely the presentation of Guibas    */
/*    and Stolfi, even though I use a triangle-based data structure instead  */
/*    of their quad-edge data structure.  (In fact, I originally implemented */
/*    Triangle using the quad-edge data structure, but switching to a        */
/*    triangle-based data structure sped Triangle by a factor of two.)  The  */
/*    mesh manipulation primitives and the two aforementioned Delaunay       */
/*    triangulation algorithms are described by Leonidas J. Guibas and Jorge */
/*    Stolfi, "Primitives for the Manipulation of General Subdivisions and   */
/*    the Computation of Voronoi Diagrams," ACM Transactions on Graphics     */
/*    4(2):74-123, April 1985.                                               */
/*                                                                           */
/*  Their O(n log n) divide-and-conquer algorithm is adapted from Der-Tsai   */
/*    Lee and Bruce J. Schachter, "Two Algorithms for Constructing the       */
/*    Delaunay Triangulation," International Journal of Computer and         */
/*    Information Science 9(3):219-242, 1980.  The idea to improve the       */
/*    divide-and-conquer algorithm by alternating between vertical and       */
/*    horizontal cuts was introduced by Rex A. Dwyer, "A Faster Divide-and-  */
/*    Conquer Algorithm for Constructing Delaunay Triangulations,"           */
/*    Algorithmica 2(2):137-151, 1987.                                       */
/*                                                                           */
/*  The incremental insertion algorithm was first proposed by C. L. Lawson,  */
/*    "Software for C1 Surface Interpolation," in Mathematical Software III, */
/*    John R. Rice, editor, Academic Press, New York, pp. 161-194, 1977.     */
/*    For point location, I use the algorithm of Ernst P. Mucke, Isaac       */
/*    Saias, and Binhai Zhu, "Fast Randomized Point Location Without         */
/*    Preprocessing in Two- and Three-dimensional Delaunay Triangulations,"  */
/*    Proceedings of the Twelfth Annual Symposium on Computational Geometry, */
/*    ACM, May 1996.  [*]  If I were to randomize the order of point         */
/*    insertion (I currently don't bother), their result combined with the   */
/*    result of Leonidas J. Guibas, Donald E. Knuth, and Micha Sharir,       */
/*    "Randomized Incremental Construction of Delaunay and Voronoi           */
/*    Diagrams," Algorithmica 7(4):381-413, 1992, would yield an expected    */
/*    O(n^{4/3}) bound on running time.                                      */
/*                                                                           */
/*  The O(n log n) sweepline Delaunay triangulation algorithm is taken from  */
/*    Steven Fortune, "A Sweepline Algorithm for Voronoi Diagrams",          */
/*    Algorithmica 2(2):153-174, 1987.  A random sample of edges on the      */
/*    boundary of the triangulation are maintained in a splay tree for the   */
/*    purpose of point location.  Splay trees are described by Daniel        */
/*    Dominic Sleator and Robert Endre Tarjan, "Self-Adjusting Binary Search */
/*    Trees," Journal of the ACM 32(3):652-686, July 1985.                   */
/*                                                                           */
/*  The algorithms for exact computation of the signs of determinants are    */
/*    described in Jonathan Richard Shewchuk, "Adaptive Precision Floating-  */
/*    Point Arithmetic and Fast Robust Geometric Predicates," Technical      */
/*    Report CMU-CS-96-140, School of Computer Science, Carnegie Mellon      */
/*    University, Pittsburgh, Pennsylvania, May 1996.  [*]  (Submitted to    */
/*    Discrete & Computational Geometry.)  An abbreviated version appears as */
/*    Jonathan Richard Shewchuk, "Robust Adaptive Floating-Point Geometric   */
/*    Predicates," Proceedings of the Twelfth Annual Symposium on Computa-   */
/*    tional Geometry, ACM, May 1996.  [*]  Many of the ideas for my exact   */
/*    arithmetic routines originate with Douglas M. Priest, "Algorithms for  */
/*    Arbitrary Precision Floating Point Arithmetic," Tenth Symposium on     */
/*    Computer Arithmetic, 132-143, IEEE Computer Society Press, 1991.  [*]  */
/*    Many of the ideas for the correct evaluation of the signs of           */
/*    determinants are taken from Steven Fortune and Christopher J. Van Wyk, */
/*    "Efficient Exact Arithmetic for Computational Geometry," Proceedings   */
/*    of the Ninth Annual Symposium on Computational Geometry, ACM,          */
/*    pp. 163-172, May 1993, and from Steven Fortune, "Numerical Stability   */
/*    of Algorithms for 2D Delaunay Triangulations," International Journal   */
/*    of Computational Geometry & Applications 5(1-2):193-213, March-June    */
/*    1995.                                                                  */
/*                                                                           */
/*  For definitions of and results involving Delaunay triangulations,        */
/*    constrained and conforming versions thereof, and other aspects of      */
/*    triangular mesh generation, see the excellent survey by Marshall Bern  */
/*    and David Eppstein, "Mesh Generation and Optimal Triangulation," in    */
/*    Computing and Euclidean Geometry, Ding-Zhu Du and Frank Hwang,         */
/*    editors, World Scientific, Singapore, pp. 23-90, 1992.                 */
/*                                                                           */
/*  The time for incrementally adding PSLG (planar straight line graph)      */
/*    segments to create a constrained Delaunay triangulation is probably    */
/*    O(n^2) per segment in the worst case and O(n) per edge in the common   */
/*    case, where n is the number of triangles that intersect the segment    */
/*    before it is inserted.  This doesn't count point location, which can   */
/*    be much more expensive.  (This note does not apply to conforming       */
/*    Delaunay triangulations, for which a different method is used to       */
/*    insert segments.)                                                      */
/*                                                                           */
/*  The time for adding segments to a conforming Delaunay triangulation is   */
/*    not clear, but does not depend upon n alone.  In some cases, very      */
/*    small features (like a point lying next to a segment) can cause a      */
/*    single segment to be split an arbitrary number of times.  Of course,   */
/*    floating-point precision is a practical barrier to how much this can   */
/*    happen.                                                                */
/*                                                                           */
/*  The time for deleting a point from a Delaunay triangulation is O(n^2) in */
/*    the worst case and O(n) in the common case, where n is the degree of   */
/*    the point being deleted.  I could improve this to expected O(n) time   */
/*    by "inserting" the neighboring vertices in random order, but n is      */
/*    usually quite small, so it's not worth the bother.  (The O(n) time     */
/*    for random insertion follows from L. Paul Chew, "Building Voronoi      */
/*    Diagrams for Convex Polygons in Linear Expected Time," Technical       */
/*    Report PCS-TR90-147, Department of Mathematics and Computer Science,   */
/*    Dartmouth College, 1990.                                               */
/*                                                                           */
/*  Ruppert's Delaunay refinement algorithm typically generates triangles    */
/*    at a linear rate (constant time per triangle) after the initial        */
/*    triangulation is formed.  There may be pathological cases where more   */
/*    time is required, but these never arise in practice.                   */
/*                                                                           */
/*  The segment intersection formulae are straightforward.  If you want to   */
/*    see them derived, see Franklin Antonio.  "Faster Line Segment          */
/*    Intersection."  In Graphics Gems III (David Kirk, editor), pp. 199-    */
/*    202.  Academic Press, Boston, 1992.                                    */
/*                                                                           */
/*  If you make any improvements to this code, please please please let me   */
/*    know, so that I may obtain the improvements.  Even if you don't change */
/*    the code, I'd still love to hear what it's being used for.             */
/*                                                                           */
/*  Disclaimer:  Neither I nor Carnegie Mellon warrant this code in any way  */
/*    whatsoever.  This code is provided "as-is".  Use at your own risk.     */
/*                                                                           */
/*  Modifications: Ian Scott 10 Jan 2003 - attempt to quash 64 bit           */
/*                 conversion warnings. Replaced most (unsigned long) with   */
/*                 (ptr_sized_int).                                          */
/*                 Amitha Perera 13 Jan 2003 - replace ptr_sized_int with    */
/*                 intptr_t                                                  */
/*                                                                           */
/*****************************************************************************/

/* For single precision (which will save some memory and reduce paging),     */
/*   define the symbol SINGLE by using the -DSINGLE compiler switch or by    */
/*   writing "#define SINGLE" below.                                         */
/*                                                                           */
/* For double precision (which will allow you to refine meshes to a smaller  */
/*   edge length), leave SINGLE undefined.                                   */
/*                                                                           */
/* Double precision uses more memory, but improves the resolution of the     */
/*   meshes you can generate with Triangle.  It also reduces the likelihood  */
/*   of a floating exception due to overflow.  Finally, it is much faster    */
/*   than single precision on 64-bit architectures like the DEC Alpha.  I    */
/*   recommend double precision unless you want to generate a mesh for which */
/*   you do not have enough memory.                                          */

/* #define SINGLE */

/* If yours is not a Unix system, define the NO_TIMER compiler switch to     */
/*   remove the Unix-specific timing code.                                   */

#define NO_TIMER

/* To insert lots of self-checks for internal errors, define the SELF_CHECK  */
/*   symbol.  This will slow down the program significantly.  It is best to  */
/*   define the symbol using the -DSELF_CHECK compiler switch, but you could */
/*   write "#define SELF_CHECK" below.  If you are modifying this code, I    */
/*   recommend you turn self-checks on.                                      */

/* #define SELF_CHECK */

/* To compile Triangle as a callable object library (triangle.o), define the */
/*   TRILIBRARY symbol.  Read the file triangle.h for details on how to call */
/*   the procedure triangulate() that results.                               */

#define TRILIBRARY

/* It is possible to generate a smaller version of Triangle using one or     */
/*   both of the following symbols.  Define the REDUCED symbol to eliminate  */
/*   all features that are primarily of research interest; specifically, the */
/*   -i, -F, -s, and -C switches.  Define the CDT_ONLY symbol to eliminate   */
/*   all meshing algorithms above and beyond constrained Delaunay            */
/*   triangulation; specifically, the -r, -q, -a, -S, and -s switches.       */
/*   These reductions are most likely to be useful when generating an object */
/*   library (triangle.o) by defining the TRILIBRARY symbol.                 */

/* #define REDUCED */
/* #define CDT_ONLY */

/* On some machines, the exact arithmetic routines might be defeated by the  */
/*   use of internal extended precision floating-point registers.  Sometimes */
/*   this problem can be fixed by defining certain values to be volatile,    */
/*   thus forcing them to be stored to memory and rounded off.  This isn't   */
/*   a great solution, though, as it slows Triangle down.                    */
/*                                                                           */
/* To try this out, write "#define INEXACT volatile" below.  Normally,       */
/*   however, INEXACT should be defined to be nothing.  ("#define INEXACT".) */

#define INEXACT /* Nothing */
/* #define INEXACT volatile */

/* Maximum number of characters in a file name (including the null).         */

#define FILENAMESIZE 1024

/* Maximum number of characters in a line read from a file (including the    */
/*   null).                                                                  */

#define INPUTLINESIZE 4096

/* For efficiency, a variety of data structures are allocated in bulk.  The  */
/*   following constants determine how many of each structure is allocated   */
/*   at once.                                                                */

#define TRIPERBLOCK 4092           /* Number of triangles allocated at once. */
#define SHELLEPERBLOCK 508       /* Number of shell edges allocated at once. */
#define POINTPERBLOCK 4092            /* Number of points allocated at once. */
#define VIRUSPERBLOCK 1020   /* Number of virus triangles allocated at once. */
/* Number of encroached segments allocated at once. */
#define BADSEGMENTPERBLOCK 252
/* Number of skinny triangles allocated at once. */
#define BADTRIPERBLOCK 4092
/* Number of splay tree nodes allocated at once. */
#define SPLAYNODEPERBLOCK 508

/* The point marker DEADPOINT is an arbitrary number chosen large enough to  */
/*   (hopefully) not conflict with user boundary markers.  Make sure that it */
/*   is small enough to fit into your machine's integer size.                */

#define DEADPOINT -1073741824

/* The next line is used to outsmart some very stupid compilers.  If your    */
/*   compiler is smarter, feel free to replace the "int" with "void".        */
/*   Not that it matters.                                                    */

#define VOID int

/* Two constants for algorithms based on random sampling.  Both constants    */
/*   have been chosen empirically to optimize their respective algorithms.   */

/* Used for the point location scheme of Mucke, Saias, and Zhu, to decide    */
/*   how large a random sample of triangles to inspect.                      */
#define SAMPLEFACTOR 11
/* Used in Fortune's sweepline Delaunay algorithm to determine what fraction */
/*   of boundary edges should be maintained in the splay tree for point      */
/*   location on the front.                                                  */
#define SAMPLERATE 10

/* A number that speaks for itself, every kissable digit.                    */

#define PI 3.141592653589793238462643383279502884197169399375105820974944592308

/* Another fave.                                                             */

#define SQUAREROOTTWO 1.4142135623730950488016887242096980785696718753769480732

/* And here's one for those of you who are intimidated by math.              */

#define ONETHIRD 0.333333333333333333333333333333333333333333333333333333333333

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

/* Borland compiler provides a "poly" function in math.h.  This
   conflicts with the variable name used below.  Move the symbol out
   of the way.  */
#ifdef __BORLANDC__
# define poly borland_poly
# include <math.h>
# undef poly
#else
# include <math.h>
#endif

#ifndef NO_TIMER
#include <sys/time.h>
#endif /* NO_TIMER */
#ifdef TRILIBRARY
#include "triangle.h"
#endif /* TRILIBRARY */

/* The following obscenity seems to be necessary to ensure that this program */
/* will port to Dec Alphas running OSF/1, because their stdio.h file commits */
/* the unpardonable sin of including stdlib.h.  Hence, malloc(), free(), and */
/* exit() may or may not already be defined at this point.  I declare these  */
/* functions explicitly because some non-ANSI C compilers lack stdlib.h.     */

#ifndef _MSC_VER
#ifndef _STDLIB_H_
extern void *malloc();
extern void free();
extern void exit();
extern double strtod();
extern long strtol();
#endif /* _STDLIB_H_ */
#else
# include <stdlib.h>
#endif

/* A few forward declarations.                                               */

struct memorypool;
void poolrestart(struct memorypool *pool);
#ifndef TRILIBRARY
char *readline();
char *findfield();
#endif /* not TRILIBRARY */

/* Labels that signify whether a record consists primarily of pointers or of */
/*   floating-point words.  Used to make decisions about data alignment.     */

enum wordtype {POINTER, FLOATINGPOINT};

/* Labels that signify the result of point location.  The result of a        */
/*   search indicates that the point falls in the interior of a triangle, on */
/*   an edge, on a vertex, or outside the mesh.                              */

enum locateresult {INTRIANGLE, ONEDGE, ONVERTEX, OUTSIDE};

/* Labels that signify the result of site insertion.  The result indicates   */
/*   that the point was inserted with complete success, was inserted but     */
/*   encroaches on a segment, was not inserted because it lies on a segment, */
/*   or was not inserted because another point occupies the same location.   */

enum insertsiteresult {SUCCESSFULPOINT, ENCROACHINGPOINT, VIOLATINGPOINT,
                       DUPLICATEPOINT};

/* Labels that signify the result of direction finding.  The result          */
/*   indicates that a segment connecting the two query points falls within   */
/*   the direction triangle, along the left edge of the direction triangle,  */
/*   or along the right edge of the direction triangle.                      */

enum finddirectionresult {WITHIN, LEFTCOLLINEAR, RIGHTCOLLINEAR};

/* Labels that signify the result of the circumcenter computation routine.   */
/*   The return value indicates which edge of the triangle is shortest.      */

enum circumcenterresult {OPPOSITEORG, OPPOSITEDEST, OPPOSITEAPEX};

/*****************************************************************************/
/*                                                                           */
/*  The basic mesh data structures                                           */
/*                                                                           */
/*  There are three:  points, triangles, and shell edges (abbreviated        */
/*  `shelle').  These three data structures, linked by pointers, comprise    */
/*  the mesh.  A point simply represents a point in space and its properties.*/
/*  A triangle is a triangle.  A shell edge is a special data structure used */
/*  to represent impenetrable segments in the mesh (including the outer      */
/*  boundary, boundaries of holes, and internal boundaries separating two    */
/*  triangulated regions).  Shell edges represent boundaries defined by the  */
/*  user that triangles may not lie across.                                  */
/*                                                                           */
/*  A triangle consists of a list of three vertices, a list of three         */
/*  adjoining triangles, a list of three adjoining shell edges (when shell   */
/*  edges are used), an arbitrary number of optional user-defined floating-  */
/*  point attributes, and an optional area constraint.  The latter is an     */
/*  upper bound on the permissible area of each triangle in a region, used   */
/*  for mesh refinement.                                                     */
/*                                                                           */
/*  For a triangle on a boundary of the mesh, some or all of the neighboring */
/*  triangles may not be present.  For a triangle in the interior of the     */
/*  mesh, often no neighboring shell edges are present.  Such absent         */
/*  triangles and shell edges are never represented by NULL pointers; they   */
/*  are represented by two special records:  `dummytri', the triangle that   */
/*  fills "outer space", and `dummysh', the omnipresent shell edge.          */
/*  `dummytri' and `dummysh' are used for several reasons; for instance,     */
/*  they can be dereferenced and their contents examined without causing the */
/*  memory protection exception that would occur if NULL were dereferenced.  */
/*                                                                           */
/*  However, it is important to understand that a triangle includes other    */
/*  information as well.  The pointers to adjoining vertices, triangles, and */
/*  shell edges are ordered in a way that indicates their geometric relation */
/*  to each other.  Furthermore, each of these pointers contains orientation */
/*  information.  Each pointer to an adjoining triangle indicates which face */
/*  of that triangle is contacted.  Similarly, each pointer to an adjoining  */
/*  shell edge indicates which side of that shell edge is contacted, and how */
/*  the shell edge is oriented relative to the triangle.                     */
/*                                                                           */
/*  Shell edges are found abutting edges of triangles; either sandwiched     */
/*  between two triangles, or resting against one triangle on an exterior    */
/*  boundary or hole boundary.                                               */
/*                                                                           */
/*  A shell edge consists of a list of two vertices, a list of two           */
/*  adjoining shell edges, and a list of two adjoining triangles.  One of    */
/*  the two adjoining triangles may not be present (though there should      */
/*  always be one), and neighboring shell edges might not be present.        */
/*  Shell edges also store a user-defined integer "boundary marker".         */
/*  Typically, this integer is used to indicate what sort of boundary        */
/*  conditions are to be applied at that location in a finite element        */
/*  simulation.                                                              */
/*                                                                           */
/*  Like triangles, shell edges maintain information about the relative      */
/*  orientation of neighboring objects.                                      */
/*                                                                           */
/*  Points are relatively simple.  A point is a list of floating point       */
/*  numbers, starting with the x, and y coordinates, followed by an          */
/*  arbitrary number of optional user-defined floating-point attributes,     */
/*  followed by an integer boundary marker.  During the segment insertion    */
/*  phase, there is also a pointer from each point to a triangle that may    */
/*  contain it.  Each pointer is not always correct, but when one is, it     */
/*  speeds up segment insertion.  These pointers are assigned values once    */
/*  at the beginning of the segment insertion phase, and are not used or     */
/*  updated at any other time.  Edge swapping during segment insertion will  */
/*  render some of them incorrect.  Hence, don't rely upon them for          */
/*  anything.  For the most part, points do not have any information about   */
/*  what triangles or shell edges they are linked to.                        */
/*                                                                           */
/*****************************************************************************/

/*****************************************************************************/
/*                                                                           */
/*  Handles                                                                  */
/*                                                                           */
/*  The oriented triangle (`triedge') and oriented shell edge (`edge') data  */
/*  structures defined below do not themselves store any part of the mesh.   */
/*  The mesh itself is made of `triangle's, `shelle's, and `point's.         */
/*                                                                           */
/*  Oriented triangles and oriented shell edges will usually be referred to  */
/*  as "handles".  A handle is essentially a pointer into the mesh; it       */
/*  allows you to "hold" one particular part of the mesh.  Handles are used  */
/*  to specify the regions in which one is traversing and modifying the mesh.*/
/*  A single `triangle' may be held by many handles, or none at all.  (The   */
/*  latter case is not a memory leak, because the triangle is still          */
/*  connected to other triangles in the mesh.)                               */
/*                                                                           */
/*  A `triedge' is a handle that holds a triangle.  It holds a specific side */
/*  of the triangle.  An `edge' is a handle that holds a shell edge.  It     */
/*  holds either the left or right side of the edge.                         */
/*                                                                           */
/*  Navigation about the mesh is accomplished through a set of mesh          */
/*  manipulation primitives, further below.  Many of these primitives take   */
/*  a handle and produce a new handle that holds the mesh near the first     */
/*  handle.  Other primitives take two handles and glue the corresponding    */
/*  parts of the mesh together.  The exact position of the handles is        */
/*  important.  For instance, when two triangles are glued together by the   */
/*  bond() primitive, they are glued by the sides on which the handles lie.  */
/*                                                                           */
/*  Because points have no information about which triangles they are        */
/*  attached to, I commonly represent a point by use of a handle whose       */
/*  origin is the point.  A single handle can simultaneously represent a     */
/*  triangle, an edge, and a point.                                          */
/*                                                                           */
/*****************************************************************************/

/* The triangle data structure.  Each triangle contains three pointers to    */
/*   adjoining triangles, plus three pointers to vertex points, plus three   */
/*   pointers to shell edges (defined below; these pointers are usually      */
/*   `dummysh').  It may or may not also contain user-defined attributes     */
/*   and/or a floating-point "area constraint".  It may also contain extra   */
/*   pointers for nodes, when the user asks for high-order elements.         */
/*   Because the size and structure of a `triangle' is not decided until     */
/*   runtime, I haven't simply defined the type `triangle' to be a struct.   */

typedef REAL **triangle;            /* Really:  typedef triangle *triangle   */

/* An oriented triangle:  includes a pointer to a triangle and orientation.  */
/*   The orientation denotes an edge of the triangle.  Hence, there are      */
/*   three possible orientations.  By convention, each edge is always        */
/*   directed to point counterclockwise about the corresponding triangle.    */

struct triedge {
  triangle *tri;
  int orient;                                         /* Ranges from 0 to 2. */
};

/* The shell data structure.  Each shell edge contains two pointers to       */
/*   adjoining shell edges, plus two pointers to vertex points, plus two     */
/*   pointers to adjoining triangles, plus one shell marker.                 */

typedef REAL **shelle;                  /* Really:  typedef shelle *shelle   */

/* An oriented shell edge:  includes a pointer to a shell edge and an        */
/*   orientation.  The orientation denotes a side of the edge.  Hence, there */
/*   are two possible orientations.  By convention, the edge is always       */
/*   directed so that the "side" denoted is the right side of the edge.      */

struct edge {
  shelle *sh;
  int shorient;                                       /* Ranges from 0 to 1. */
};

/* The point data structure.  Each point is actually an array of REALs.      */
/*   The number of REALs is unknown until runtime.  An integer boundary      */
/*   marker, and sometimes a pointer to a triangle, is appended after the    */
/*   REALs.                                                                  */

typedef REAL *point;

/* A queue used to store encroached segments.  Each segment's vertices are   */
/*   stored so that one can check whether a segment is still the same.       */

struct badsegment {
  struct edge encsegment;                          /* An encroached segment. */
  point segorg, segdest;                                /* The two vertices. */
  struct badsegment *nextsegment;     /* Pointer to next encroached segment. */
};

/* A queue used to store bad triangles.  The key is the square of the cosine */
/*   of the smallest angle of the triangle.  Each triangle's vertices are    */
/*   stored so that one can check whether a triangle is still the same.      */

struct badface {
  struct triedge badfacetri;                              /* A bad triangle. */
  REAL key;                             /* cos^2 of smallest (apical) angle. */
  point faceorg, facedest, faceapex;                  /* The three vertices. */
  struct badface *nextface;                 /* Pointer to next bad triangle. */
};

/* A node in a heap used to store events for the sweepline Delaunay          */
/*   algorithm.  Nodes do not point directly to their parents or children in */
/*   the heap.  Instead, each node knows its position in the heap, and can   */
/*   look up its parent and children in a separate array.  The `eventptr'    */
/*   points either to a `point' or to a triangle (in encoded format, so that */
/*   an orientation is included).  In the latter case, the origin of the     */
/*   oriented triangle is the apex of a "circle event" of the sweepline      */
/*   algorithm.  To distinguish site events from circle events, all circle   */
/*   events are given an invalid (smaller than `xmin') x-coordinate `xkey'.  */

struct event {
  REAL xkey, ykey;                              /* Coordinates of the event. */
  VOID *eventptr;       /* Can be a point or the location of a circle event. */
  int heapposition;              /* Marks this event's position in the heap. */
};

/* A node in the splay tree.  Each node holds an oriented ghost triangle     */
/*   that represents a boundary edge of the growing triangulation.  When a   */
/*   circle event covers two boundary edges with a triangle, so that they    */
/*   are no longer boundary edges, those edges are not immediately deleted   */
/*   from the tree; rather, they are lazily deleted when they are next       */
/*   encountered.  (Since only a random sample of boundary edges are kept    */
/*   in the tree, lazy deletion is faster.)  `keydest' is used to verify     */
/*   that a triangle is still the same as when it entered the splay tree; if */
/*   it has been rotated (due to a circle event), it no longer represents a  */
/*   boundary edge and should be deleted.                                    */

struct splaynode {
  struct triedge keyedge;                  /* Lprev of an edge on the front. */
  point keydest;            /* Used to verify that splay node is still live. */
  struct splaynode *lchild, *rchild;              /* Children in splay tree. */
};

/* A type used to allocate memory.  firstblock is the first block of items.  */
/*   nowblock is the block from which items are currently being allocated.   */
/*   nextitem points to the next slab of free memory for an item.            */
/*   deaditemstack is the head of a linked list (stack) of deallocated items */
/*   that can be recycled.  unallocateditems is the number of items that     */
/*   remain to be allocated from nowblock.                                   */
/*                                                                           */
/* Traversal is the process of walking through the entire list of items, and */
/*   is separate from allocation.  Note that a traversal will visit items on */
/*   the "deaditemstack" stack as well as live items.  pathblock points to   */
/*   the block currently being traversed.  pathitem points to the next item  */
/*   to be traversed.  pathitemsleft is the number of items that remain to   */
/*   be traversed in pathblock.                                              */
/*                                                                           */
/* itemwordtype is set to POINTER or FLOATINGPOINT, and is used to suggest   */
/*   what sort of word the record is primarily made up of.  alignbytes       */
/*   determines how new records should be aligned in memory.  itembytes and  */
/*   itemwords are the length of a record in bytes (after rounding up) and   */
/*   words.  itemsperblock is the number of items allocated at once in a     */
/*   single block.  items is the number of currently allocated items.        */
/*   maxitems is the maximum number of items that have been allocated at     */
/*   once; it is the current number of items plus the number of records kept */
/*   on deaditemstack.                                                       */

struct memorypool {
  VOID **firstblock, **nowblock;
  VOID *nextitem;
  VOID *deaditemstack;
  VOID **pathblock;
  VOID *pathitem;
  enum wordtype itemwordtype;
  int alignbytes;
  int itembytes, itemwords;
  int itemsperblock;
  long items, maxitems;
  int unallocateditems;
  int pathitemsleft;
};

/* Variables used to allocate memory for triangles, shell edges, points,     */
/*   viri (triangles being eaten), bad (encroached) segments, bad (skinny    */
/*   or too large) triangles, and splay tree nodes.                          */

static struct memorypool triangles;
static struct memorypool shelles;
static struct memorypool points;
static struct memorypool viri;
static struct memorypool badsegments;
static struct memorypool badtriangles;
static struct memorypool splaynodes;

/* Variables that maintain the bad triangle queues.  The tails are pointers  */
/*   to the pointers that have to be filled in to enqueue an item.           */

static struct badface *queuefront[64];
static struct badface **queuetail[64];

static REAL xmin, xmax, ymin, ymax;                       /* x and y bounds. */
static REAL xminextreme; /* Nonexistent x value used as a flag in sweepline. */
static int inpoints;                              /* Number of input points. */
static int inelements;                         /* Number of input triangles. */
static int insegments;                          /* Number of input segments. */
static int holes;                                  /* Number of input holes. */
static int regions;                              /* Number of input regions. */
static long edges;                                /* Number of output edges. */
static int mesh_dim;                           /* Dimension (ought to be 2). */
static int nextras;                       /* Number of attributes per point. */
static int eextras;                    /* Number of attributes per triangle. */
static long hullsize;                     /* Number of edges of convex hull. */
static int triwords;                            /* Total words per triangle. */
static int shwords;                           /* Total words per shell edge. */
static int pointmarkindex;      /* Index to find boundary marker of a point. */
static int point2triindex;  /* Index to find a triangle adjacent to a point. */
static int highorderindex;/* Index to find extra nodes for high-order elements. */
static int elemattribindex;       /* Index to find attributes of a triangle. */
static int areaboundindex;        /* Index to find area bound of a triangle. */
static int checksegments;    /* Are there segments in the triangulation yet? */
static int readnodefile;                      /* Has a .node file been read? */
static long samples;         /* Number of random samples for point location. */
static unsigned long randomseed;              /* Current random number seed. */

static REAL splitter;/* Used to split REAL factors for exact multiplication. */
static REAL epsilon;                      /* Floating-point machine epsilon. */
static REAL resulterrbound;
static REAL ccwerrboundA, ccwerrboundB, ccwerrboundC;
static REAL iccerrboundA, iccerrboundB, iccerrboundC;

static long incirclecount;            /* Number of incircle tests performed. */
static long counterclockcount;/* Number of counterclockwise tests performed. */
static long hyperbolacount; /* Number of right-of-hyperbola tests performed. */
static long circumcentercount;/* Number of circumcenter calculations performed. */
static long circletopcount;  /* Number of circle top calculations performed. */

/* Switches for the triangulator.                                            */
/*   poly: -p switch.  refine: -r switch.                                    */
/*   quality: -q switch.                                                     */
/*     minangle: minimum angle bound, specified after -q switch.             */
/*     goodangle: cosine squared of minangle.                                */
/*   vararea: -a switch without number.                                      */
/*   fixedarea: -a switch with number.                                       */
/*     maxarea: maximum area bound, specified after -a switch.               */
/*   regionattrib: -A switch.  convex: -c switch.                            */
/*   firstnumber: inverse of -z switch.  All items are numbered starting     */
/*     from firstnumber.                                                     */
/*   edgesout: -e switch.  voronoi: -v switch.                               */
/*   neighbors: -n switch.  geomview: -g switch.                             */
/*   nobound: -B switch.  nopolywritten: -P switch.                          */
/*   nonodewritten: -N switch.  noelewritten: -E switch.                     */
/*   noiterationnum: -I switch.  noholes: -O switch.                         */
/*   noexact: -X switch.                                                     */
/*   order: element order, specified after -o switch.                        */
/*   nobisect: count of how often -Y switch is selected.                     */
/*   steiner: maximum number of Steiner points, specified after -S switch.   */
/*     steinerleft: number of Steiner points not yet used.                   */
/*   incremental: -i switch.  sweepline: -F switch.                          */
/*   dwyer: inverse of -l switch.                                            */
/*   splitseg: -s switch.                                                    */
/*   docheck: -C switch.                                                     */
/*   quiet: -Q switch.  verbose: count of how often -V switch is selected.   */
/*   useshelles: -p, -r, -q, or -c switch; determines whether shell edges    */
/*     are used at all.                                                      */
/*                                                                           */
/* Read the instructions to find out the meaning of these switches.          */

static int poly, refine, quality, vararea, fixedarea, regionattrib, convex;
static int firstnumber;
static int edgesout, voronoi, neighbors, geomview;
static int nobound, nopolywritten, nonodewritten, noelewritten, noiterationnum;
static int noholes, noexact;
static int incremental, sweepline, dwyer;
static int splitseg;
static int docheck;
static int quiet, verbose;
static int useshelles;
static int order;
static int nobisect;
static int steiner, steinerleft;
static REAL minangle, goodangle;
static REAL maxarea;

/* Variables for file names.                                                 */

#ifndef TRILIBRARY
char innodefilename[FILENAMESIZE];
char inelefilename[FILENAMESIZE];
char inpolyfilename[FILENAMESIZE];
char areafilename[FILENAMESIZE];
char outnodefilename[FILENAMESIZE];
char outelefilename[FILENAMESIZE];
char outpolyfilename[FILENAMESIZE];
char edgefilename[FILENAMESIZE];
char vnodefilename[FILENAMESIZE];
char vedgefilename[FILENAMESIZE];
char neighborfilename[FILENAMESIZE];
char offfilename[FILENAMESIZE];
#endif /* not TRILIBRARY */

/* Triangular bounding box points.                                           */

static point infpoint1, infpoint2, infpoint3;

/* Pointer to the `triangle' that occupies all of "outer space".             */

static triangle *dummytri;
static triangle *dummytribase;      /* Keep base address so we can free() it later. */

/* Pointer to the omnipresent shell edge.  Referenced by any triangle or     */
/*   shell edge that isn't really connected to a shell edge at that          */
/*   location.                                                               */

static shelle *dummysh;
static shelle *dummyshbase;         /* Keep base address so we can free() it later. */

/* Pointer to a recently visited triangle.  Improves point location if       */
/*   proximate points are inserted sequentially.                             */

static struct triedge recenttri;


/* Deal with point types that are not unsigned long                          */
#ifdef _MSC_VER
# if _MSC_VER <= 1200
   typedef unsigned long intptr_t;
# else
#  include <stddef.h>
#  include <stdlib.h> /* for malloc and friends */
# endif
#else
# if defined(__alpha) /* there is no inttypes.h here */
   typedef unsigned long intptr_t;
# elif defined(__CYGWIN__)
#  include <sys/types.h> /* for intptr_t on Cygwin */
# elif defined(__BORLANDC__)
#  if __BORLANDC__ < 0x0560
    typedef unsigned long intptr_t;
#  else
#   include <stdint.h> /* for intptr_t on Borland 5.6. */
#  endif
# else
#  include <inttypes.h> /* for intptr_t on e.g. SGI, Linux, Solaris */
# endif
#endif

/*****************************************************************************/
/*                                                                           */
/*  Mesh manipulation primitives.  Each triangle contains three pointers to  */
/*  other triangles, with orientations.  Each pointer points not to the      */
/*  first byte of a triangle, but to one of the first three bytes of a       */
/*  triangle.  It is necessary to extract both the triangle itself and the   */
/*  orientation.  To save memory, I keep both pieces of information in one   */
/*  pointer.  To make this possible, I assume that all triangles are aligned */
/*  to four-byte boundaries.  The `decode' routine below decodes a pointer,  */
/*  extracting an orientation (in the range 0 to 2) and a pointer to the     */
/*  beginning of a triangle.  The `encode' routine compresses a pointer to a */
/*  triangle and an orientation into a single pointer.  My assumptions that  */
/*  triangles are four-byte-aligned and that the `unsigned long' type is     */
/*  long enough to hold a pointer are two of the few kludges in this program.*/
/*                                                                           */
/*  Shell edges are manipulated similarly.  A pointer to a shell edge        */
/*  carries both an address and an orientation in the range 0 to 1.          */
/*                                                                           */
/*  The other primitives take an oriented triangle or oriented shell edge,   */
/*  and return an oriented triangle or oriented shell edge or point; or they */
/*  change the connections in the data structure.                            */
/*                                                                           */
/*****************************************************************************/

/********* Mesh manipulation primitives begin here                   *********/
/**                                                                         **/
/**                                                                         **/

/* Fast lookup arrays to speed some of the mesh manipulation primitives.     */

static int plus1mod3[3] = {1, 2, 0};
static int minus1mod3[3] = {2, 0, 1};

/********* Primitives for triangles                                  *********/
/*                                                                           */
/*                                                                           */


/* decode() converts a pointer to an oriented triangle.  The orientation is  */
/*   extracted from the two least significant bits of the pointer.           */

#define decode(ptr, triedge)                                                  \
  (triedge).orient = (int) ((intptr_t) (ptr) & (intptr_t) 3l);      \
  (triedge).tri = (triangle *)                                                \
                  ((intptr_t) (ptr) ^ (intptr_t) (triedge).orient)

/* encode() compresses an oriented triangle into a single pointer.  It       */
/*   relies on the assumption that all triangles are aligned to four-byte    */
/*   boundaries, so the two least significant bits of (triedge).tri are zero.*/

#define encode(triedge)                                                       \
  (triangle) ((intptr_t) (triedge).tri | (intptr_t) (triedge).orient)

/* The following edge manipulation primitives are all described by Guibas    */
/*   and Stolfi.  However, they use an edge-based data structure, whereas I  */
/*   am using a triangle-based data structure.                               */

/* sym() finds the abutting triangle, on the same edge.  Note that the       */
/*   edge direction is necessarily reversed, because triangle/edge handles   */
/*   are always directed counterclockwise around the triangle.               */

#define sym(triedge1, triedge2)                                               \
  ptr = (triedge1).tri[(triedge1).orient];                                    \
  decode(ptr, triedge2);

#define symself(triedge)                                                      \
  ptr = (triedge).tri[(triedge).orient];                                      \
  decode(ptr, triedge);

/* lnext() finds the next edge (counterclockwise) of a triangle.             */

#define lnext(triedge1, triedge2)                                             \
  (triedge2).tri = (triedge1).tri;                                            \
  (triedge2).orient = plus1mod3[(triedge1).orient]

#define lnextself(triedge)                                                    \
  (triedge).orient = plus1mod3[(triedge).orient]

/* lprev() finds the previous edge (clockwise) of a triangle.                */

#define lprev(triedge1, triedge2)                                             \
  (triedge2).tri = (triedge1).tri;                                            \
  (triedge2).orient = minus1mod3[(triedge1).orient]

#define lprevself(triedge)                                                    \
  (triedge).orient = minus1mod3[(triedge).orient]

/* onext() spins counterclockwise around a point; that is, it finds the next */
/*   edge with the same origin in the counterclockwise direction.  This edge */
/*   will be part of a different triangle.                                   */

#define onext(triedge1, triedge2)                                             \
  lprev(triedge1, triedge2);                                                  \
  symself(triedge2);

#define onextself(triedge)                                                    \
  lprevself(triedge);                                                         \
  symself(triedge);

/* oprev() spins clockwise around a point; that is, it finds the next edge   */
/*   with the same origin in the clockwise direction.  This edge will be     */
/*   part of a different triangle.                                           */

#define oprev(triedge1, triedge2)                                             \
  sym(triedge1, triedge2);                                                    \
  lnextself(triedge2);

#define oprevself(triedge)                                                    \
  symself(triedge);                                                           \
  lnextself(triedge);

/* dnext() spins counterclockwise around a point; that is, it finds the next */
/*   edge with the same destination in the counterclockwise direction.  This */
/*   edge will be part of a different triangle.                              */

#define dnext(triedge1, triedge2)                                             \
  sym(triedge1, triedge2);                                                    \
  lprevself(triedge2);

#define dnextself(triedge)                                                    \
  symself(triedge);                                                           \
  lprevself(triedge);

/* dprev() spins clockwise around a point; that is, it finds the next edge   */
/*   with the same destination in the clockwise direction.  This edge will   */
/*   be part of a different triangle.                                        */

#define dprev(triedge1, triedge2)                                             \
  lnext(triedge1, triedge2);                                                  \
  symself(triedge2);

#define dprevself(triedge)                                                    \
  lnextself(triedge);                                                         \
  symself(triedge);

/* rnext() moves one edge counterclockwise about the adjacent triangle.      */
/*   (It's best understood by reading Guibas and Stolfi.  It involves        */
/*   changing triangles twice.)                                              */

#define rnext(triedge1, triedge2)                                             \
  sym(triedge1, triedge2);                                                    \
  lnextself(triedge2);                                                        \
  symself(triedge2);

#define rnextself(triedge)                                                    \
  symself(triedge);                                                           \
  lnextself(triedge);                                                         \
  symself(triedge);

/* rnext() moves one edge clockwise about the adjacent triangle.             */
/*   (It's best understood by reading Guibas and Stolfi.  It involves        */
/*   changing triangles twice.)                                              */

#define rprev(triedge1, triedge2)                                             \
  sym(triedge1, triedge2);                                                    \
  lprevself(triedge2);                                                        \
  symself(triedge2);

#define rprevself(triedge)                                                    \
  symself(triedge);                                                           \
  lprevself(triedge);                                                         \
  symself(triedge);

/* These primitives determine or set the origin, destination, or apex of a   */
/* triangle.                                                                 */

#define org(triedge, pointptr)                                                \
  pointptr = (point) (triedge).tri[plus1mod3[(triedge).orient] + 3]

#define dest(triedge, pointptr)                                               \
  pointptr = (point) (triedge).tri[minus1mod3[(triedge).orient] + 3]

#define apex(triedge, pointptr)                                               \
  pointptr = (point) (triedge).tri[(triedge).orient + 3]

#define setorg(triedge, pointptr)                                             \
  (triedge).tri[plus1mod3[(triedge).orient] + 3] = (triangle) pointptr

#define setdest(triedge, pointptr)                                            \
  (triedge).tri[minus1mod3[(triedge).orient] + 3] = (triangle) pointptr

#define setapex(triedge, pointptr)                                            \
  (triedge).tri[(triedge).orient + 3] = (triangle) pointptr

#define setvertices2null(triedge)                                             \
  (triedge).tri[3] = (triangle) NULL;                                         \
  (triedge).tri[4] = (triangle) NULL;                                         \
  (triedge).tri[5] = (triangle) NULL;

/* Bond two triangles together.                                              */

#define bond(triedge1, triedge2)                                              \
  (triedge1).tri[(triedge1).orient] = encode(triedge2);                       \
  (triedge2).tri[(triedge2).orient] = encode(triedge1)

/* Dissolve a bond (from one side).  Note that the other triangle will still */
/*   think it's connected to this triangle.  Usually, however, the other     */
/*   triangle is being deleted entirely, or bonded to another triangle, so   */
/*   it doesn't matter.                                                      */

#define dissolve(triedge)                                                     \
  (triedge).tri[(triedge).orient] = (triangle) dummytri

/* Copy a triangle/edge handle.                                              */

#define triedgecopy(triedge1, triedge2)                                       \
  (triedge2).tri = (triedge1).tri;                                            \
  (triedge2).orient = (triedge1).orient

/* Test for equality of triangle/edge handles.                               */

#define triedgeequal(triedge1, triedge2)                                      \
  (((triedge1).tri == (triedge2).tri) &&                                      \
   ((triedge1).orient == (triedge2).orient))

/* Primitives to infect or cure a triangle with the virus.  These rely on    */
/*   the assumption that all shell edges are aligned to four-byte boundaries.*/

#define infect(triedge)                                                       \
  (triedge).tri[6] = (triangle)                                               \
                     ((intptr_t) (triedge).tri[6] | (intptr_t) 2l)

#define uninfect(triedge)                                                     \
  (triedge).tri[6] = (triangle)                                               \
                     ((intptr_t) (triedge).tri[6] & ~ (intptr_t) 2l)

/* Test a triangle for viral infection.                                      */

#define infected(triedge)                                                     \
  (((intptr_t) (triedge).tri[6] & (intptr_t) 2l) != 0)

/* Check or set a triangle's attributes.                                     */

#define elemattribute(triedge, attnum)                                        \
  ((REAL *) (triedge).tri)[elemattribindex + (attnum)]

#define setelemattribute(triedge, attnum, value)                              \
  ((REAL *) (triedge).tri)[elemattribindex + (attnum)] = value

/* Check or set a triangle's maximum area bound.                             */

#define areabound(triedge)  ((REAL *) (triedge).tri)[areaboundindex]

#define setareabound(triedge, value)                                          \
  ((REAL *) (triedge).tri)[areaboundindex] = value

/********* Primitives for shell edges                                *********/
/*                                                                           */
/*                                                                           */

/* sdecode() converts a pointer to an oriented shell edge.  The orientation  */
/*   is extracted from the least significant bit of the pointer.  The two    */
/*   least significant bits (one for orientation, one for viral infection)   */
/*   are masked out to produce the real pointer.                             */

#define sdecode(sptr, edge)                                                   \
  (edge).shorient = (int) ((intptr_t) (sptr) & (intptr_t) 1l);      \
  (edge).sh = (shelle *)                                                      \
              ((intptr_t) (sptr) & ~ (intptr_t) 3l)

/* sencode() compresses an oriented shell edge into a single pointer.  It    */
/*   relies on the assumption that all shell edges are aligned to two-byte   */
/*   boundaries, so the least significant bit of (edge).sh is zero.          */

#define sencode(edge)                                                         \
  (shelle) ((intptr_t) (edge).sh | (intptr_t) (edge).shorient)

/* ssym() toggles the orientation of a shell edge.                           */

#define ssym(edge1, edge2)                                                    \
  (edge2).sh = (edge1).sh;                                                    \
  (edge2).shorient = 1 - (edge1).shorient

#define ssymself(edge)                                                        \
  (edge).shorient = 1 - (edge).shorient

/* spivot() finds the other shell edge (from the same segment) that shares   */
/*   the same origin.                                                        */

#define spivot(edge1, edge2)                                                  \
  sptr = (edge1).sh[(edge1).shorient];                                        \
  sdecode(sptr, edge2)

#define spivotself(edge)                                                      \
  sptr = (edge).sh[(edge).shorient];                                          \
  sdecode(sptr, edge)

/* snext() finds the next shell edge (from the same segment) in sequence;    */
/*   one whose origin is the input shell edge's destination.                 */

#define snext(edge1, edge2)                                                   \
  sptr = (edge1).sh[1 - (edge1).shorient];                                    \
  sdecode(sptr, edge2)

#define snextself(edge)                                                       \
  sptr = (edge).sh[1 - (edge).shorient];                                      \
  sdecode(sptr, edge)

/* These primitives determine or set the origin or destination of a shell    */
/*   edge.                                                                   */

#define sorg(edge, pointptr)                                                  \
  pointptr = (point) (edge).sh[2 + (edge).shorient]

#define sdest(edge, pointptr)                                                 \
  pointptr = (point) (edge).sh[3 - (edge).shorient]

#define setsorg(edge, pointptr)                                               \
  (edge).sh[2 + (edge).shorient] = (shelle) pointptr

#define setsdest(edge, pointptr)                                              \
  (edge).sh[3 - (edge).shorient] = (shelle) pointptr

/* These primitives read or set a shell marker.  Shell markers are used to   */
/*   hold user boundary information.                                         */

#define mark(edge)  (* (int *) ((edge).sh + 6))

#define setmark(edge, value)                                                  \
  * (int *) ((edge).sh + 6) = value

/* Bond two shell edges together.                                            */

#define sbond(edge1, edge2)                                                   \
  (edge1).sh[(edge1).shorient] = sencode(edge2);                              \
  (edge2).sh[(edge2).shorient] = sencode(edge1)

/* Dissolve a shell edge bond (from one side).  Note that the other shell    */
/*   edge will still think it's connected to this shell edge.                */

#define sdissolve(edge)                                                       \
  (edge).sh[(edge).shorient] = (shelle) dummysh

/* Copy a shell edge.                                                        */

#define shellecopy(edge1, edge2)                                              \
  (edge2).sh = (edge1).sh;                                                    \
  (edge2).shorient = (edge1).shorient

/* Test for equality of shell edges.                                         */

#define shelleequal(edge1, edge2)                                             \
  (((edge1).sh == (edge2).sh) &&                                              \
   ((edge1).shorient == (edge2).shorient))

/********* Primitives for interacting triangles and shell edges      *********/
/*                                                                           */
/*                                                                           */

/* tspivot() finds a shell edge abutting a triangle.                         */

#define tspivot(triedge, edge)                                                \
  sptr = (shelle) (triedge).tri[6 + (triedge).orient];                        \
  sdecode(sptr, edge)

/* stpivot() finds a triangle abutting a shell edge.  It requires that the   */
/*   variable `ptr' of type `triangle' be defined.                           */

#define stpivot(edge, triedge)                                                \
  ptr = (triangle) (edge).sh[4 + (edge).shorient];                            \
  decode(ptr, triedge)

/* Bond a triangle to a shell edge.                                          */

#define tsbond(triedge, edge)                                                 \
  (triedge).tri[6 + (triedge).orient] = (triangle) sencode(edge);             \
  (edge).sh[4 + (edge).shorient] = (shelle) encode(triedge)

/* Dissolve a bond (from the triangle side).                                 */

#define tsdissolve(triedge)                                                   \
  (triedge).tri[6 + (triedge).orient] = (triangle) dummysh

/* Dissolve a bond (from the shell edge side).                               */

#define stdissolve(edge)                                                      \
  (edge).sh[4 + (edge).shorient] = (shelle) dummytri

/********* Primitives for points                                     *********/
/*                                                                           */
/*                                                                           */

#define pointmark(pt)  ((int *) (pt))[pointmarkindex]

#define setpointmark(pt, value)                                               \
  ((int *) (pt))[pointmarkindex] = value

#define point2tri(pt)  ((triangle *) (pt))[point2triindex]

#define setpoint2tri(pt, value)                                               \
  ((triangle *) (pt))[point2triindex] = value

/**                                                                         **/
/**                                                                         **/
/********* Mesh manipulation primitives end here                     *********/

/********* User interaction routines begin here                      *********/
/**                                                                         **/
/**                                                                         **/

/*****************************************************************************/
/*                                                                           */
/*  syntax()   Print list of command line switches.                          */
/*                                                                           */
/*****************************************************************************/

#ifndef TRILIBRARY

void syntax(void)
{
#ifdef CDT_ONLY
#ifdef REDUCED
  printf("triangle [-pAcevngBPNEIOXzo_lQVh] input_file\n");
#else /* not REDUCED */
  printf("triangle [-pAcevngBPNEIOXzo_iFlCQVh] input_file\n");
#endif /* not REDUCED */
#else /* not CDT_ONLY */
#ifdef REDUCED
  printf("triangle [-prq__a__AcevngBPNEIOXzo_YS__lQVh] input_file\n");
#else /* not REDUCED */
  printf("triangle [-prq__a__AcevngBPNEIOXzo_YS__iFlsCQVh] input_file\n");
#endif /* not REDUCED */
#endif /* not CDT_ONLY */

  printf("    -p  Triangulates a Planar Straight Line Graph (.poly file).\n");
#ifndef CDT_ONLY
  printf("    -r  Refines a previously generated mesh.\n");
  printf(
    "    -q  Quality mesh generation.  A minimum angle may be specified.\n");
  printf("    -a  Applies a maximum triangle area constraint.\n");
#endif /* not CDT_ONLY */
  printf(
    "    -A  Applies attributes to identify elements in certain regions.\n");
  printf("    -c  Encloses the convex hull with segments.\n");
  printf("    -e  Generates an edge list.\n");
  printf("    -v  Generates a Voronoi diagram.\n");
  printf("    -n  Generates a list of triangle neighbors.\n");
  printf("    -g  Generates an .off file for Geomview.\n");
  printf("    -B  Suppresses output of boundary information.\n");
  printf("    -P  Suppresses output of .poly file.\n");
  printf("    -N  Suppresses output of .node file.\n");
  printf("    -E  Suppresses output of .ele file.\n");
  printf("    -I  Suppresses mesh iteration numbers.\n");
  printf("    -O  Ignores holes in .poly file.\n");
  printf("    -X  Suppresses use of exact arithmetic.\n");
  printf("    -z  Numbers all items starting from zero (rather than one).\n");
  printf("    -o2 Generates second-order subparametric elements.\n");
#ifndef CDT_ONLY
  printf("    -Y  Suppresses boundary segment splitting.\n");
  printf("    -S  Specifies maximum number of added Steiner points.\n");
#endif /* not CDT_ONLY */
#ifndef REDUCED
  printf("    -i  Uses incremental method, rather than divide-and-conquer.\n");
  printf("    -F  Uses Fortune's sweepline algorithm, rather than d-and-c.\n");
#endif /* not REDUCED */
  printf("    -l  Uses vertical cuts only, rather than alternating cuts.\n");
#ifndef REDUCED
#ifndef CDT_ONLY
  printf(
    "    -s  Force segments into mesh by splitting (instead of using CDT).\n");
#endif /* not CDT_ONLY */
  printf("    -C  Check consistency of final mesh.\n");
#endif /* not REDUCED */
  printf("    -Q  Quiet:  No terminal output except errors.\n");
  printf("    -V  Verbose:  Detailed information on what I'm doing.\n");
  printf("    -h  Help:  Detailed instructions for Triangle.\n");
  exit(0);
}

#endif /* not TRILIBRARY */

/*****************************************************************************/
/*                                                                           */
/*  info()   Print out complete instructions.                                */
/*                                                                           */
/*****************************************************************************/

#ifndef TRILIBRARY

void info(void)
{
  printf("Triangle\n");
  printf("A Two-Dimensional Quality Mesh Generator and Delaunay Triangulator.\n");
  printf("Version 1.3\n\n");

  printf("Copyright 1996 Jonathan Richard Shewchuk  (bugs/comments to jrs@cs.cmu.edu)\n");
  printf("School of Computer Science / Carnegie Mellon University\n");
  printf("5000 Forbes Avenue / Pittsburgh, Pennsylvania  15213-3891\n");
  printf("Created as part of the Archimedes project (tools for parallel FEM).\n");
  printf("Supported in part by NSF Grant CMS-9318163 and an NSERC 1967 Scholarship.\n");
  printf("There is no warranty whatsoever.  Use at your own risk.\n");
#ifdef SINGLE
  printf("This executable is compiled for single precision arithmetic.\n\n\n");
#else /* not SINGLE */
  printf("This executable is compiled for double precision arithmetic.\n\n\n");
#endif /* not SINGLE */
  printf("Triangle generates exact Delaunay triangulations, constrained Delaunay\n");
  printf("triangulations, and quality conforming Delaunay triangulations.  The latter\n");
  printf("can be generated with no small angles, and are thus suitable for finite\n");
  printf("element analysis.  If no command line switches are specified, your .node\n");
  printf("input file will be read, and the Delaunay triangulation will be returned in\n");
  printf(".node and .ele output files.  The command syntax is:\n\n");
#ifdef CDT_ONLY
#ifdef REDUCED
  printf("triangle [-pAcevngBPNEIOXzo_lQVh] input_file\n\n");
#else /* not REDUCED */
  printf("triangle [-pAcevngBPNEIOXzo_iFlCQVh] input_file\n\n");
#endif /* not REDUCED */
#else /* not CDT_ONLY */
#ifdef REDUCED
  printf("triangle [-prq__a__AcevngBPNEIOXzo_YS__lQVh] input_file\n\n");
#else /* not REDUCED */
  printf("triangle [-prq__a__AcevngBPNEIOXzo_YS__iFlsCQVh] input_file\n\n");
#endif /* not REDUCED */
#endif /* not CDT_ONLY */
  printf("Underscores indicate that numbers may optionally follow certain switches;\n");
  printf("do not leave any space between a switch and its numeric parameter.\n");
  printf("input_file must be a file with extension .node, or extension .poly if the\n");
  printf("-p switch is used.  If -r is used, you must supply .node and .ele files,\n");
  printf("and possibly a .poly file and .area file as well.  The formats of these\n");
  printf("files are described below.\n\n");

  printf("Command Line Switches:\n\n");

  printf("    -p  Reads a Planar Straight Line Graph (.poly file), which can specify\n");
  printf("        points, segments, holes, and regional attributes and area\n");
  printf("        constraints.  Will generate a constrained Delaunay triangulation\n");
  printf("        fitting the input; or, if -s, -q, or -a is used, a conforming\n");
  printf("        Delaunay triangulation.  If -p is not used, Triangle reads a .node\n");
  printf("        file by default.\n");
  printf("    -r  Refines a previously generated mesh.  The mesh is read from a .node\n");
  printf("        file and an .ele file.  If -p is also used, a .poly file is read\n");
  printf("        and used to constrain edges in the mesh.  Further details on\n");
  printf("        refinement are given below.\n");
  printf("    -q  Quality mesh generation by Jim Ruppert's Delaunay refinement\n");
  printf("        algorithm.  Adds points to the mesh to ensure that no angles\n");
  printf("        smaller than 20 degrees occur.  An alternative minimum angle may be\n");
  printf("        specified after the `q'.  If the minimum angle is 20.7 degrees or\n");
  printf("        smaller, the triangulation algorithm is theoretically guaranteed to\n");
  printf("        terminate (assuming infinite precision arithmetic - Triangle may\n");
  printf("        fail to terminate if you run out of precision).  In practice, the\n");
  printf("        algorithm often succeeds for minimum angles up to 33.8 degrees.\n");
  printf("        For highly refined meshes, however, it may be necessary to reduce\n");
  printf("        the minimum angle to well below 20 to avoid problems associated\n");
  printf("        with insufficient floating-point precision.  The specified angle\n");
  printf("        may include a decimal point.\n");
  printf("    -a  Imposes a maximum triangle area.  If a number follows the `a', no\n");
  printf("        triangle will be generated whose area is larger than that number.\n");
  printf("        If no number is specified, an .area file (if -r is used) or .poly\n");
  printf("        file (if -r is not used) specifies a number of maximum area\n");
  printf("        constraints.  An .area file contains a separate area constraint for\n");
  printf("        each triangle, and is useful for refining a finite element mesh\n");
  printf("        based on a posteriori error estimates.  A .poly file can optionally\n");
  printf("        contain an area constraint for each segment-bounded region, thereby\n");
  printf("        enforcing triangle densities in a first triangulation.  You can\n");
  printf("        impose both a fixed area constraint and a varying area constraint\n");
  printf("        by invoking the -a switch twice, once with and once without a\n");
  printf("        number following.  Each area specified may include a decimal point.\n");
  printf("    -A  Assigns an additional attribute to each triangle that identifies\n");
  printf("        what segment-bounded region each triangle belongs to.  Attributes\n");
  printf("        are assigned to regions by the .poly file.  If a region is not\n");
  printf("        explicitly marked by the .poly file, triangles in that region are\n");
  printf("        assigned an attribute of zero.  The -A switch has an effect only\n");
  printf("        when the -p switch is used and the -r switch is not.\n");
  printf("    -c  Creates segments on the convex hull of the triangulation.  If you\n");
  printf("        are triangulating a point set, this switch causes a .poly file to\n");
  printf("        be written, containing all edges in the convex hull.  (By default,\n");
  printf("        a .poly file is written only if a .poly file is read.)  If you are\n");
  printf("        triangulating a PSLG, this switch specifies that the interior of\n");
  printf("        the convex hull of the PSLG should be triangulated.  If you do not\n");
  printf("        use this switch when triangulating a PSLG, it is assumed that you\n");
  printf("        have identified the region to be triangulated by surrounding it\n");
  printf("        with segments of the input PSLG.  Beware:  if you are not careful,\n");
  printf("        this switch can cause the introduction of an extremely thin angle\n");
  printf("        between a PSLG segment and a convex hull segment, which can cause\n");
  printf("        overrefinement or failure if Triangle runs out of precision.  If\n");
  printf("        you are refining a mesh, the -c switch works differently; it\n");
  printf("        generates the set of boundary edges of the mesh, rather than the\n");
  printf("        convex hull.\n");
  printf("    -e  Outputs (to an .edge file) a list of edges of the triangulation.\n");
  printf("    -v  Outputs the Voronoi diagram associated with the triangulation.\n");
  printf("        Does not attempt to detect degeneracies.\n");
  printf("    -n  Outputs (to a .neigh file) a list of triangles neighboring each\n");
  printf("        triangle.\n");
  printf("    -g  Outputs the mesh to an Object File Format (.off) file, suitable for\n");
  printf("        viewing with the Geometry Center's Geomview package.\n");
  printf("    -B  No boundary markers in the output .node, .poly, and .edge output\n");
  printf("        files.  See the detailed discussion of boundary markers below.\n");
  printf("    -P  No output .poly file.  Saves disk space, but you lose the ability\n");
  printf("        to impose segment constraints on later refinements of the mesh.\n");
  printf("    -N  No output .node file.\n");
  printf("    -E  No output .ele file.\n");
  printf("    -I  No iteration numbers.  Suppresses the output of .node and .poly\n");
  printf("        files, so your input files won't be overwritten.  (If your input is\n");
  printf("        a .poly file only, a .node file will be written.)  Cannot be used\n");
  printf("        with the -r switch, because that would overwrite your input .ele\n");
  printf("        file.  Shouldn't be used with the -s, -q, or -a switch if you are\n");
  printf("        using a .node file for input, because no .node file will be\n");
  printf("        written, so there will be no record of any added points.\n");
  printf("    -O  No holes.  Ignores the holes in the .poly file.\n");
  printf("    -X  No exact arithmetic.  Normally, Triangle uses exact floating-point\n");
  printf("        arithmetic for certain tests if it thinks the inexact tests are not\n");
  printf("        accurate enough.  Exact arithmetic ensures the robustness of the\n");
  printf("        triangulation algorithms, despite floating-point roundoff error.\n");
  printf("        Disabling exact arithmetic with the -X switch will cause a small\n");
  printf("        improvement in speed and create the possibility (albeit small) that\n");
  printf("        Triangle will fail to produce a valid mesh.  Not recommended.\n");
  printf("    -z  Numbers all items starting from zero (rather than one).  Note that\n");
  printf("        this switch is normally overrided by the value used to number the\n");
  printf("        first point of the input .node or .poly file.  However, this switch\n");
  printf("        is useful when calling Triangle from another program.\n");
  printf("    -o2 Generates second-order subparametric elements with six nodes each.\n");
  printf("    -Y  No new points on the boundary.  This switch is useful when the mesh\n");
  printf("        boundary must be preserved so that it conforms to some adjacent\n");
  printf("        mesh.  Be forewarned that you will probably sacrifice some of the\n");
  printf("        quality of the mesh; Triangle will try, but the resulting mesh may\n");
  printf("        contain triangles of poor aspect ratio.  Works well if all the\n");
  printf("        boundary points are closely spaced.  Specify this switch twice\n");
  printf("        (`-YY') to prevent all segment splitting, including internal\n");
  printf("        boundaries.\n");
  printf("    -S  Specifies the maximum number of Steiner points (points that are not\n");
  printf("        in the input, but are added to meet the constraints of minimum\n");
  printf("        angle and maximum area).  The default is to allow an unlimited\n");
  printf("        number.  If you specify this switch with no number after it,\n");
  printf("        the limit is set to zero.  Triangle always adds points at segment\n");
  printf("        intersections, even if it needs to use more points than the limit\n");
  printf("        you set.  When Triangle inserts segments by splitting (-s), it\n");
  printf("        always adds enough points to ensure that all the segments appear in\n");
  printf("        the triangulation, again ignoring the limit.  Be forewarned that\n");
  printf("        the -S switch may result in a conforming triangulation that is not\n");
  printf("        truly Delaunay, because Triangle may be forced to stop adding\n");
  printf("        points when the mesh is in a state where a segment is non-Delaunay\n");
  printf("        and needs to be split.  If so, Triangle will print a warning.\n");
  printf("    -i  Uses an incremental rather than divide-and-conquer algorithm to\n");
  printf("        form a Delaunay triangulation.  Try it if the divide-and-conquer\n");
  printf("        algorithm fails.\n");
  printf("    -F  Uses Steven Fortune's sweepline algorithm to form a Delaunay\n");
  printf("        triangulation.  Warning:  does not use exact arithmetic for all\n");
  printf("        calculations.  An exact result is not guaranteed.\n");
  printf("    -l  Uses only vertical cuts in the divide-and-conquer algorithm.  By\n");
  printf("        default, Triangle uses alternating vertical and horizontal cuts,\n");
  printf("        which usually improve the speed except with point sets that are\n");
  printf("        small or short and wide.  This switch is primarily of theoretical\n");
  printf("        interest.\n");
  printf("    -s  Specifies that segments should be forced into the triangulation by\n");
  printf("        recursively splitting them at their midpoints, rather than by\n");
  printf("        generating a constrained Delaunay triangulation.  Segment splitting\n");
  printf("        is true to Ruppert's original algorithm, but can create needlessly\n");
  printf("        small triangles near external small features.\n");
  printf("    -C  Check the consistency of the final mesh.  Uses exact arithmetic for\n");
  printf("        checking, even if the -X switch is used.  Useful if you suspect\n");
  printf("        Triangle is buggy.\n");
  printf("    -Q  Quiet: Suppresses all explanation of what Triangle is doing, unless\n");
  printf("        an error occurs.\n");
  printf("    -V  Verbose: Gives detailed information about what Triangle is doing.\n");
  printf("        Add more `V's for increasing amount of detail.  `-V' gives\n");
  printf("        information on algorithmic progress and more detailed statistics.\n");
  printf("        `-VV' gives point-by-point details, and will print so much that\n");
  printf("        Triangle will run much more slowly.  `-VVV' gives information only\n");
  printf("        a debugger could love.\n");
  printf("    -h  Help:  Displays these instructions.\n\n");

  printf("Definitions:\n\n");

  printf("  A Delaunay triangulation of a point set is a triangulation whose vertices\n");
  printf("  are the point set, having the property that no point in the point set\n");
  printf("  falls in the interior of the circumcircle (circle that passes through all\n");
  printf("  three vertices) of any triangle in the triangulation.\n\n");

  printf("  A Voronoi diagram of a point set is a subdivision of the plane into\n");
  printf("  polygonal regions (some of which may be infinite), where each region is\n");
  printf("  the set of points in the plane that are closer to some input point than\n");
  printf("  to any other input point.  (The Voronoi diagram is the geometric dual of\n");
  printf("  the Delaunay triangulation.)\n\n");

  printf("  A Planar Straight Line Graph (PSLG) is a collection of points and\n");
  printf("  segments.  Segments are simply edges, whose endpoints are points in the\n");
  printf("  PSLG.  The file format for PSLGs (.poly files) is described below.\n\n");

  printf("  A constrained Delaunay triangulation of a PSLG is similar to a Delaunay\n");
  printf("  triangulation, but each PSLG segment is present as a single edge in the\n");
  printf("  triangulation.  (A constrained Delaunay triangulation is not truly a\n");
  printf("  Delaunay triangulation.)\n\n");

  printf("  A conforming Delaunay triangulation of a PSLG is a true Delaunay\n");
  printf("  triangulation in which each PSLG segment may have been subdivided into\n");
  printf("  several edges by the insertion of additional points.  These inserted\n");
  printf("  points are necessary to allow the segments to exist in the mesh while\n");
  printf("  maintaining the Delaunay property.\n\n");

  printf("File Formats:\n\n");

  printf("  All files may contain comments prefixed by the character '#'.  Points,\n");
  printf("  triangles, edges, holes, and maximum area constraints must be numbered\n");
  printf("  consecutively, starting from either 1 or 0.  Whichever you choose, all\n");
  printf("  input files must be consistent; if the nodes are numbered from 1, so must\n");
  printf("  be all other objects.  Triangle automatically detects your choice while\n");
  printf("  reading the .node (or .poly) file.  (When calling Triangle from another\n");
  printf("  program, use the -z switch if you wish to number objects from zero.)\n");
  printf("  Examples of these file formats are given below.\n\n");

  printf("  .node files:\n");
  printf("    First line:  <# of points> <dimension (must be 2)> <# of attributes>\n");
  printf("                                           <# of boundary markers (0 or 1)>\n");
  printf("    Remaining lines:  <point #> <x> <y> [attributes] [boundary marker]\n\n");

  printf("    The attributes, which are typically floating-point values of physical\n");
  printf("    quantities (such as mass or conductivity) associated with the nodes of\n");
  printf("    a finite element mesh, are copied unchanged to the output mesh.  If -s,\n");
  printf("    -q, or -a is selected, each new Steiner point added to the mesh will\n");
  printf("    have attributes assigned to it by linear interpolation.\n\n");

  printf("    If the fourth entry of the first line is `1', the last column of the\n");
  printf("    remainder of the file is assumed to contain boundary markers.  Boundary\n");
  printf("    markers are used to identify boundary points and points resting on PSLG\n");
  printf("    segments; a complete description appears in a section below.  The .node\n");
  printf("    file produced by Triangle will contain boundary markers in the last\n");
  printf("    column unless they are suppressed by the -B switch.\n\n");

  printf("  .ele files:\n");
  printf("    First line:  <# of triangles> <points per triangle> <# of attributes>\n");
  printf("    Remaining lines:  <triangle #> <point> <point> <point> ... [attributes]\n\n");

  printf("    Points are indices into the corresponding .node file.  The first three\n");
  printf("    points are the corners, and are listed in counterclockwise order around\n");
  printf("    each triangle.  (The remaining points, if any, depend on the type of\n");
  printf("    finite element used.)  The attributes are just like those of .node\n");
  printf("    files.  Because there is no simple mapping from input to output\n");
  printf("    triangles, an attempt is made to interpolate attributes, which may\n");
  printf("    result in a good deal of diffusion of attributes among nearby triangles\n");
  printf("    as the triangulation is refined.  Diffusion does not occur across\n");
  printf("    segments, so attributes used to identify segment-bounded regions remain\n");
  printf("    intact.  In output .ele files, all triangles have three points each\n");
  printf("    unless the -o2 switch is used, in which case they have six, and the\n");
  printf("    fourth, fifth, and sixth points lie on the midpoints of the edges\n");
  printf("    opposite the first, second, and third corners.\n\n");

  printf("  .poly files:\n");
  printf("    First line:  <# of points> <dimension (must be 2)> <# of attributes>\n");
  printf("                                           <# of boundary markers (0 or 1)>\n");
  printf("    Following lines:  <point #> <x> <y> [attributes] [boundary marker]\n");
  printf("    One line:  <# of segments> <# of boundary markers (0 or 1)>\n");
  printf("    Following lines:  <segment #> <endpoint> <endpoint> [boundary marker]\n");
  printf("    One line:  <# of holes>\n");
  printf("    Following lines:  <hole #> <x> <y>\n");
  printf("    Optional line:  <# of regional attributes and/or area constraints>\n");
  printf("    Optional following lines:  <constraint #> <x> <y> <attrib> <max area>\n\n");

  printf("    A .poly file represents a PSLG, as well as some additional information.\n");
  printf("    The first section lists all the points, and is identical to the format\n");
  printf("    of .node files.  <# of points> may be set to zero to indicate that the\n");
  printf("    points are listed in a separate .node file; .poly files produced by\n");
  printf("    Triangle always have this format.  This has the advantage that a point\n");
  printf("    set may easily be triangulated with or without segments.  (The same\n");
  printf("    effect can be achieved, albeit using more disk space, by making a copy\n");
  printf("    of the .poly file with the extension .node; all sections of the file\n");
  printf("    but the first are ignored.)\n\n");

  printf("    The second section lists the segments.  Segments are edges whose\n");
  printf("    presence in the triangulation is enforced.  Each segment is specified\n");
  printf("    by listing the indices of its two endpoints.  This means that you must\n");
  printf("    include its endpoints in the point list.  If -s, -q, and -a are not\n");
  printf("    selected, Triangle will produce a constrained Delaunay triangulation,\n");
  printf("    in which each segment appears as a single edge in the triangulation.\n");
  printf("    If -q or -a is selected, Triangle will produce a conforming Delaunay\n");
  printf("    triangulation, in which segments may be subdivided into smaller edges.\n");
  printf("    Each segment, like each point, may have a boundary marker.\n\n");

  printf("    The third section lists holes (and concavities, if -c is selected) in\n");
  printf("    the triangulation.  Holes are specified by identifying a point inside\n");
  printf("    each hole.  After the triangulation is formed, Triangle creates holes\n");
  printf("    by eating triangles, spreading out from each hole point until its\n");
  printf("    progress is blocked by PSLG segments; you must be careful to enclose\n");
  printf("    each hole in segments, or your whole triangulation may be eaten away.\n");
  printf("    If the two triangles abutting a segment are eaten, the segment itself\n");
  printf("    is also eaten.  Do not place a hole directly on a segment; if you do,\n");
  printf("    Triangle will choose one side of the segment arbitrarily.\n\n");

  printf("    The optional fourth section lists regional attributes (to be assigned\n");
  printf("    to all triangles in a region) and regional constraints on the maximum\n");
  printf("    triangle area.  Triangle will read this section only if the -A switch\n");
  printf("    is used or the -a switch is used without a number following it, and the\n");
  printf("    -r switch is not used.  Regional attributes and area constraints are\n");
  printf("    propagated in the same manner as holes; you specify a point for each\n");
  printf("    attribute and/or constraint, and the attribute and/or constraint will\n");
  printf("    affect the whole region (bounded by segments) containing the point.  If\n");
  printf("    two values are written on a line after the x and y coordinate, the\n");
  printf("    former is assumed to be a regional attribute (but will only be applied\n");
  printf("    if the -A switch is selected), and the latter is assumed to be a\n");
  printf("    regional area constraint (but will only be applied if the -a switch is\n");
  printf("    selected).  You may also specify just one value after the coordinates,\n");
  printf("    which can serve as both an attribute and an area constraint, depending\n");
  printf("    on the choice of switches.  If you are using the -A and -a switches\n");
  printf("    simultaneously and wish to assign an attribute to some region without\n");
  printf("    imposing an area constraint, use a negative maximum area.\n\n");

  printf("    When a triangulation is created from a .poly file, you must either\n");
  printf("    enclose the entire region to be triangulated in PSLG segments, or\n");
  printf("    use the -c switch, which encloses the convex hull of the input point\n");
  printf("    set.  If you do not use the -c switch, Triangle will eat all triangles\n");
  printf("    on the outer boundary that are not protected by segments; if you are\n");
  printf("    not careful, your whole triangulation may be eaten away.  If you do\n");
  printf("    use the -c switch, you can still produce concavities by appropriate\n");
  printf("    placement of holes just inside the convex hull.\n\n");

  printf("    An ideal PSLG has no intersecting segments, nor any points that lie\n");
  printf("    upon segments (except, of course, the endpoints of each segment.)  You\n");
  printf("    aren't required to make your .poly files ideal, but you should be aware\n");
  printf("    of what can go wrong.  Segment intersections are relatively safe -\n");
  printf("    Triangle will calculate the intersection points for you and add them to\n");
  printf("    the triangulation - as long as your machine's floating-point precision\n");
  printf("    doesn't become a problem.  You are tempting the fates if you have three\n");
  printf("    segments that cross at the same location, and expect Triangle to figure\n");
  printf("    out where the intersection point is.  Thanks to floating-point roundoff\n");
  printf("    error, Triangle will probably decide that the three segments intersect\n");
  printf("    at three different points, and you will find a minuscule triangle in\n");
  printf("    your output - unless Triangle tries to refine the tiny triangle, uses\n");
  printf("    up the last bit of machine precision, and fails to terminate at all.\n");
  printf("    You're better off putting the intersection point in the input files,\n");
  printf("    and manually breaking up each segment into two.  Similarly, if you\n");
  printf("    place a point at the middle of a segment, and hope that Triangle will\n");
  printf("    break up the segment at that point, you might get lucky.  On the other\n");
  printf("    hand, Triangle might decide that the point doesn't lie precisely on the\n");
  printf("    line, and you'll have a needle-sharp triangle in your output - or a lot\n");
  printf("    of tiny triangles if you're generating a quality mesh.\n\n");

  printf("    When Triangle reads a .poly file, it also writes a .poly file, which\n");
  printf("    includes all edges that are part of input segments.  If the -c switch\n");
  printf("    is used, the output .poly file will also include all of the edges on\n");
  printf("    the convex hull.  Hence, the output .poly file is useful for finding\n");
  printf("    edges associated with input segments and setting boundary conditions in\n");
  printf("    finite element simulations.  More importantly, you will need it if you\n");
  printf("    plan to refine the output mesh, and don't want segments to be missing\n");
  printf("    in later triangulations.\n\n");

  printf("  .area files:\n");
  printf("    First line:  <# of triangles>\n");
  printf("    Following lines:  <triangle #> <maximum area>\n\n");

  printf("    An .area file associates with each triangle a maximum area that is used\n");
  printf("    for mesh refinement.  As with other file formats, every triangle must\n");
  printf("    be represented, and they must be numbered consecutively.  A triangle\n");
  printf("    may be left unconstrained by assigning it a negative maximum area.\n\n");

  printf("  .edge files:\n");
  printf("    First line:  <# of edges> <# of boundary markers (0 or 1)>\n");
  printf("    Following lines:  <edge #> <endpoint> <endpoint> [boundary marker]\n\n");

  printf("    Endpoints are indices into the corresponding .node file.  Triangle can\n");
  printf("    produce .edge files (use the -e switch), but cannot read them.  The\n");
  printf("    optional column of boundary markers is suppressed by the -B switch.\n\n");

  printf("    In Voronoi diagrams, one also finds a special kind of edge that is an\n");
  printf("    infinite ray with only one endpoint.  For these edges, a different\n");
  printf("    format is used:\n\n");

  printf("        <edge #> <endpoint> -1 <direction x> <direction y>\n\n");

  printf("    The `direction' is a floating-point vector that indicates the direction\n");
  printf("    of the infinite ray.\n\n");

  printf("  .neigh files:\n");
  printf("    First line:  <# of triangles> <# of neighbors per triangle (always 3)>\n");
  printf("    Following lines:  <triangle #> <neighbor> <neighbor> <neighbor>\n\n");

  printf("    Neighbors are indices into the corresponding .ele file.  An index of -1\n");
  printf("    indicates a mesh boundary, and therefore no neighbor.  Triangle can\n");
  printf("    produce .neigh files (use the -n switch), but cannot read them.\n\n");

  printf("    The first neighbor of triangle i is opposite the first corner of\n");
  printf("    triangle i, and so on.\n\n");

  printf("Boundary Markers:\n\n");

  printf("  Boundary markers are tags used mainly to identify which output points and\n");
  printf("  edges are associated with which PSLG segment, and to identify which\n");
  printf("  points and edges occur on a boundary of the triangulation.  A common use\n");
  printf("  is to determine where boundary conditions should be applied to a finite\n");
  printf("  element mesh.  You can prevent boundary markers from being written into\n");
  printf("  files produced by Triangle by using the -B switch.\n\n");

  printf("  The boundary marker associated with each segment in an output .poly file\n");
  printf("  or edge in an output .edge file is chosen as follows:\n");
  printf("    - If an output edge is part or all of a PSLG segment with a nonzero\n");
  printf("      boundary marker, then the edge is assigned the same marker.\n");
  printf("    - Otherwise, if the edge occurs on a boundary of the triangulation\n");
  printf("      (including boundaries of holes), then the edge is assigned the marker\n");
  printf("      one (1).\n");
  printf("    - Otherwise, the edge is assigned the marker zero (0).\n");
  printf("  The boundary marker associated with each point in an output .node file is\n");
  printf("  chosen as follows:\n");
  printf("    - If a point is assigned a nonzero boundary marker in the input file,\n");
  printf("      then it is assigned the same marker in the output .node file.\n");
  printf("    - Otherwise, if the point lies on a PSLG segment (including the\n");
  printf("      segment's endpoints) with a nonzero boundary marker, then the point\n");
  printf("      is assigned the same marker.  If the point lies on several such\n");
  printf("      segments, one of the markers is chosen arbitrarily.\n");
  printf("    - Otherwise, if the point occurs on a boundary of the triangulation,\n");
  printf("      then the point is assigned the marker one (1).\n");
  printf("    - Otherwise, the point is assigned the marker zero (0).\n\n");

  printf("  If you want Triangle to determine for you which points and edges are on\n");
  printf("  the boundary, assign them the boundary marker zero (or use no markers at\n");
  printf("  all) in your input files.  Alternatively, you can mark some of them and\n");
  printf("  leave others marked zero, allowing Triangle to label them.\n\n");

  printf("Triangulation Iteration Numbers:\n\n");

  printf("  Because Triangle can read and refine its own triangulations, input\n");
  printf("  and output files have iteration numbers.  For instance, Triangle might\n");
  printf("  read the files mesh.3.node, mesh.3.ele, and mesh.3.poly, refine the\n");
  printf("  triangulation, and output the files mesh.4.node, mesh.4.ele, and\n");
  printf("  mesh.4.poly.  Files with no iteration number are treated as if\n");
  printf("  their iteration number is zero; hence, Triangle might read the file\n");
  printf("  points.node, triangulate it, and produce the files points.1.node and\n");
  printf("  points.1.ele.\n\n");

  printf("  Iteration numbers allow you to create a sequence of successively finer\n");
  printf("  meshes suitable for multigrid methods.  They also allow you to produce a\n");
  printf("  sequence of meshes using error estimate-driven mesh refinement.\n\n");

  printf("  If you're not using refinement or quality meshing, and you don't like\n");
  printf("  iteration numbers, use the -I switch to disable them.  This switch will\n");
  printf("  also disable output of .node and .poly files to prevent your input files\n");
  printf("  from being overwritten.  (If the input is a .poly file that contains its\n");
  printf("  own points, a .node file will be written.)\n\n");

  printf("Examples of How to Use Triangle:\n\n");

  printf("  `triangle dots' will read points from dots.node, and write their Delaunay\n");
  printf("  triangulation to dots.1.node and dots.1.ele.  (dots.1.node will be\n");
  printf("  identical to dots.node.)  `triangle -I dots' writes the triangulation to\n");
  printf("  dots.ele instead.  (No additional .node file is needed, so none is\n");
  printf("  written.)\n\n");

  printf("  `triangle -pe object.1' will read a PSLG from object.1.poly (and possibly\n");
  printf("  object.1.node, if the points are omitted from object.1.poly) and write\n");
  printf("  their constrained Delaunay triangulation to object.2.node and\n");
  printf("  object.2.ele.  The segments will be copied to object.2.poly, and all\n");
  printf("  edges will be written to object.2.edge.\n\n");

  printf("  `triangle -pq31.5a.1 object' will read a PSLG from object.poly (and\n");
  printf("  possibly object.node), generate a mesh whose angles are all greater than\n");
  printf("  31.5 degrees and whose triangles all have area smaller than 0.1, and\n");
  printf("  write the mesh to object.1.node and object.1.ele.  Each segment may have\n");
  printf("  been broken up into multiple edges; the resulting constrained edges are\n");
  printf("  written to object.1.poly.\n\n");

  printf("  Here is a sample file `box.poly' describing a square with a square hole:\n\n");

  printf("    # A box with eight points in 2D, no attributes, one boundary marker.\n");
  printf("    8 2 0 1\n");
  printf("    # Outer box has these vertices:\n");
  printf("     1   0 0   0\n");
  printf("     2   0 3   0\n");
  printf("     3   3 0   0\n");
  printf("     4   3 3   33     # A special marker for this point.\n");
  printf("    # Inner square has these vertices:\n");
  printf("     5   1 1   0\n");
  printf("     6   1 2   0\n");
  printf("     7   2 1   0\n");
  printf("     8   2 2   0\n");
  printf("    # Five segments with boundary markers.\n");
  printf("    5 1\n");
  printf("     1   1 2   5      # Left side of outer box.\n");
  printf("     2   5 7   0      # Segments 2 through 5 enclose the hole.\n");
  printf("     3   7 8   0\n");
  printf("     4   8 6   10\n");
  printf("     5   6 5   0\n");
  printf("    # One hole in the middle of the inner square.\n");
  printf("    1\n");
  printf("     1   1.5 1.5\n\n");

  printf("  Note that some segments are missing from the outer square, so one must\n");
  printf("  use the `-c' switch.  After `triangle -pqc box.poly', here is the output\n");
  printf("  file `box.1.node', with twelve points.  The last four points were added\n");
  printf("  to meet the angle constraint.  Points 1, 2, and 9 have markers from\n");
  printf("  segment 1.  Points 6 and 8 have markers from segment 4.  All the other\n");
  printf("  points but 4 have been marked to indicate that they lie on a boundary.\n\n");

  printf("    12  2  0  1\n");
  printf("       1    0   0      5\n");
  printf("       2    0   3      5\n");
  printf("       3    3   0      1\n");
  printf("       4    3   3     33\n");
  printf("       5    1   1      1\n");
  printf("       6    1   2     10\n");
  printf("       7    2   1      1\n");
  printf("       8    2   2     10\n");
  printf("       9    0   1.5    5\n");
  printf("      10    1.5   0    1\n");
  printf("      11    3   1.5    1\n");
  printf("      12    1.5   3    1\n");
  printf("    # Generated by triangle -pqc box.poly\n\n");

  printf("  Here is the output file `box.1.ele', with twelve triangles.\n\n");

  printf("    12  3  0\n");
  printf("       1     5   6   9\n");
  printf("       2    10   3   7\n");
  printf("       3     6   8  12\n");
  printf("       4     9   1   5\n");
  printf("       5     6   2   9\n");
  printf("       6     7   3  11\n");
  printf("       7    11   4   8\n");
  printf("       8     7   5  10\n");
  printf("       9    12   2   6\n");
  printf("      10     8   7  11\n");
  printf("      11     5   1  10\n");
  printf("      12     8   4  12\n");
  printf("    # Generated by triangle -pqc box.poly\n\n");

  printf("  Here is the output file `box.1.poly'.  Note that segments have been added\n");
  printf("  to represent the convex hull, and some segments have been split by newly\n");
  printf("  added points.  Note also that <# of points> is set to zero to indicate\n");
  printf("  that the points should be read from the .node file.\n\n");

  printf("    0  2  0  1\n");
  printf("    12  1\n");
  printf("       1     1   9     5\n");
  printf("       2     5   7     1\n");
  printf("       3     8   7     1\n");
  printf("       4     6   8    10\n");
  printf("       5     5   6     1\n");
  printf("       6     3  10     1\n");
  printf("       7     4  11     1\n");
  printf("       8     2  12     1\n");
  printf("       9     9   2     5\n");
  printf("      10    10   1     1\n");
  printf("      11    11   3     1\n");
  printf("      12    12   4     1\n");
  printf("    1\n");
  printf("       1   1.5 1.5\n");
  printf("    # Generated by triangle -pqc box.poly\n\n");

  printf("Refinement and Area Constraints:\n\n");

  printf("  The -r switch causes a mesh (.node and .ele files) to be read and\n");
  printf("  refined.  If the -p switch is also used, a .poly file is read and used to\n");
  printf("  specify edges that are constrained and cannot be eliminated (although\n");
  printf("  they can be divided into smaller edges) by the refinement process.\n\n");

  printf("  When you refine a mesh, you generally want to impose tighter quality\n");
  printf("  constraints.  One way to accomplish this is to use -q with a larger\n");
  printf("  angle, or -a followed by a smaller area than you used to generate the\n");
  printf("  mesh you are refining.  Another way to do this is to create an .area\n");
  printf("  file, which specifies a maximum area for each triangle, and use the -a\n");
  printf("  switch (without a number following).  Each triangle's area constraint is\n");
  printf("  applied to that triangle.  Area constraints tend to diffuse as the mesh\n");
  printf("  is refined, so if there are large variations in area constraint between\n");
  printf("  adjacent triangles, you may not get the results you want.\n\n");

  printf("  If you are refining a mesh composed of linear (three-node) elements, the\n");
  printf("  output mesh will contain all the nodes present in the input mesh, in the\n");
  printf("  same order, with new nodes added at the end of the .node file.  However,\n");
  printf("  there is no guarantee that each output element is contained in a single\n");
  printf("  input element.  Often, output elements will overlap two input elements,\n");
  printf("  and input edges are not present in the output mesh.  Hence, a sequence of\n");
  printf("  refined meshes will form a hierarchy of nodes, but not a hierarchy of\n");
  printf("  elements.  If you a refining a mesh of higher-order elements, the\n");
  printf("  hierarchical property applies only to the nodes at the corners of an\n");
  printf("  element; other nodes may not be present in the refined mesh.\n\n");

  printf("  It is important to understand that maximum area constraints in .poly\n");
  printf("  files are handled differently from those in .area files.  A maximum area\n");
  printf("  in a .poly file applies to the whole (segment-bounded) region in which a\n");
  printf("  point falls, whereas a maximum area in an .area file applies to only one\n");
  printf("  triangle.  Area constraints in .poly files are used only when a mesh is\n");
  printf("  first generated, whereas area constraints in .area files are used only to\n");
  printf("  refine an existing mesh, and are typically based on a posteriori error\n");
  printf("  estimates resulting from a finite element simulation on that mesh.\n\n");

  printf("  `triangle -rq25 object.1' will read object.1.node and object.1.ele, then\n");
  printf("  refine the triangulation to enforce a 25 degree minimum angle, and then\n");
  printf("  write the refined triangulation to object.2.node and object.2.ele.\n\n");

  printf("  `triangle -rpaa6.2 z.3' will read z.3.node, z.3.ele, z.3.poly, and\n");
  printf("  z.3.area.  After reconstructing the mesh and its segments, Triangle will\n");
  printf("  refine the mesh so that no triangle has area greater than 6.2, and\n");
  printf("  furthermore the triangles satisfy the maximum area constraints in\n");
  printf("  z.3.area.  The output is written to z.4.node, z.4.ele, and z.4.poly.\n\n");

  printf("  The sequence `triangle -qa1 x', `triangle -rqa.3 x.1', `triangle -rqa.1\n");
  printf("  x.2' creates a sequence of successively finer meshes x.1, x.2, and x.3,\n");
  printf("  suitable for multigrid.\n\n");

  printf("Convex Hulls and Mesh Boundaries:\n\n");

  printf("  If the input is a point set (rather than a PSLG), Triangle produces its\n");
  printf("  convex hull as a by-product in the output .poly file if you use the -c\n");
  printf("  switch.  There are faster algorithms for finding a two-dimensional convex\n");
  printf("  hull than triangulation, of course, but this one comes for free.  If the\n");
  printf("  input is an unconstrained mesh (you are using the -r switch but not the\n");
  printf("  -p switch), Triangle produces a list of its boundary edges (including\n");
  printf("  hole boundaries) as a by-product if you use the -c switch.\n\n");

  printf("Voronoi Diagrams:\n\n");

  printf("  The -v switch produces a Voronoi diagram, in files suffixed .v.node and\n");
  printf("  .v.edge.  For example, `triangle -v points' will read points.node,\n");
  printf("  produce its Delaunay triangulation in points.1.node and points.1.ele,\n");
  printf("  and produce its Voronoi diagram in points.1.v.node and points.1.v.edge.\n");
  printf("  The .v.node file contains a list of all Voronoi vertices, and the .v.edge\n");
  printf("  file contains a list of all Voronoi edges, some of which may be infinite\n");
  printf("  rays.  (The choice of filenames makes it easy to run the set of Voronoi\n");
  printf("  vertices through Triangle, if so desired.)\n\n");

  printf("  This implementation does not use exact arithmetic to compute the Voronoi\n");
  printf("  vertices, and does not check whether neighboring vertices are identical.\n");
  printf("  Be forewarned that if the Delaunay triangulation is degenerate or\n");
  printf("  near-degenerate, the Voronoi diagram may have duplicate points, crossing\n");
  printf("  edges, or infinite rays whose direction vector is zero.  Also, if you\n");
  printf("  generate a constrained (as opposed to conforming) Delaunay triangulation,\n");
  printf("  or if the triangulation has holes, the corresponding Voronoi diagram is\n");
  printf("  likely to have crossing edges and unlikely to make sense.\n\n");

  printf("Mesh Topology:\n\n");

  printf("  You may wish to know which triangles are adjacent to a certain Delaunay\n");
  printf("  edge in an .edge file, which Voronoi regions are adjacent to a certain\n");
  printf("  Voronoi edge in a .v.edge file, or which Voronoi regions are adjacent to\n");
  printf("  each other.  All of this information can be found by cross-referencing\n");
  printf("  output files with the recollection that the Delaunay triangulation and\n");
  printf("  the Voronoi diagrams are planar duals.\n\n");

  printf("  Specifically, edge i of an .edge file is the dual of Voronoi edge i of\n");
  printf("  the corresponding .v.edge file, and is rotated 90 degrees counterclock-\n");
  printf("  wise from the Voronoi edge.  Triangle j of an .ele file is the dual of\n");
  printf("  vertex j of the corresponding .v.node file; and Voronoi region k is the\n");
  printf("  dual of point k of the corresponding .node file.\n\n");

  printf("  Hence, to find the triangles adjacent to a Delaunay edge, look at the\n");
  printf("  vertices of the corresponding Voronoi edge; their dual triangles are on\n");
  printf("  the left and right of the Delaunay edge, respectively.  To find the\n");
  printf("  Voronoi regions adjacent to a Voronoi edge, look at the endpoints of the\n");
  printf("  corresponding Delaunay edge; their dual regions are on the right and left\n");
  printf("  of the Voronoi edge, respectively.  To find which Voronoi regions are\n");
  printf("  adjacent to each other, just read the list of Delaunay edges.\n\n");

  printf("Statistics:\n\n");

  printf("  After generating a mesh, Triangle prints a count of the number of points,\n");
  printf("  triangles, edges, boundary edges, and segments in the output mesh.  If\n");
  printf("  you've forgotten the statistics for an existing mesh, the -rNEP switches\n");
  printf("  (or -rpNEP if you've got a .poly file for the existing mesh) will\n");
  printf("  regenerate these statistics without writing any output.\n\n");

  printf("  The -V switch produces extended statistics, including a rough estimate\n");
  printf("  of memory use and a histogram of triangle aspect ratios and angles in the\n");
  printf("  mesh.\n\n");

  printf("Exact Arithmetic:\n\n");

  printf("  Triangle uses adaptive exact arithmetic to perform what computational\n");
  printf("  geometers call the `orientation' and `incircle' tests.  If the floating-\n");
  printf("  point arithmetic of your machine conforms to the IEEE 754 standard (as\n");
  printf("  most workstations do), and does not use extended precision internal\n");
  printf("  registers, then your output is guaranteed to be an absolutely true\n");
  printf("  Delaunay or conforming Delaunay triangulation, roundoff error\n");
  printf("  notwithstanding.  The word `adaptive' implies that these arithmetic\n");
  printf("  routines compute the result only to the precision necessary to guarantee\n");
  printf("  correctness, so they are usually nearly as fast as their approximate\n");
  printf("  counterparts.  The exact tests can be disabled with the -X switch.  On\n");
  printf("  most inputs, this switch will reduce the computation time by about eight\n");
  printf("  percent - it's not worth the risk.  There are rare difficult inputs\n");
  printf("  (having many collinear and cocircular points), however, for which the\n");
  printf("  difference could be a factor of two.  These are precisely the inputs most\n");
  printf("  likely to cause errors if you use the -X switch.\n\n");

  printf("  Unfortunately, these routines don't solve every numerical problem.  Exact\n");
  printf("  arithmetic is not used to compute the positions of points, because the\n");
  printf("  bit complexity of point coordinates would grow without bound.  Hence,\n");
  printf("  segment intersections aren't computed exactly; in very unusual cases,\n");
  printf("  roundoff error in computing an intersection point might actually lead to\n");
  printf("  an inverted triangle and an invalid triangulation.  (This is one reason\n");
  printf("  to compute your own intersection points in your .poly files.)  Similarly,\n");
  printf("  exact arithmetic is not used to compute the vertices of the Voronoi\n");
  printf("  diagram.\n\n");

  printf("  Underflow and overflow can also cause difficulties; the exact arithmetic\n");
  printf("  routines do not ameliorate out-of-bounds exponents, which can arise\n");
  printf("  during the orientation and incircle tests.  As a rule of thumb, you\n");
  printf("  should ensure that your input values are within a range such that their\n");
  printf("  third powers can be taken without underflow or overflow.  Underflow can\n");
  printf("  silently prevent the tests from being performed exactly, while overflow\n");
  printf("  will typically cause a floating exception.\n\n");

  printf("Calling Triangle from Another Program:\n\n");

  printf("  Read the file triangle.h for details.\n\n");

  printf("Troubleshooting:\n\n");

  printf("  Please read this section before mailing me bugs.\n\n");

  printf("  `My output mesh has no triangles!'\n\n");

  printf("    If you're using a PSLG, you've probably failed to specify a proper set\n");
  printf("    of bounding segments, or forgotten to use the -c switch.  Or you may\n");
  printf("    have placed a hole badly.  To test these possibilities, try again with\n");
  printf("    the -c and -O switches.  Alternatively, all your input points may be\n");
  printf("    collinear, in which case you can hardly expect to triangulate them.\n\n");

  printf("  `Triangle doesn't terminate, or just crashes.'\n\n");

  printf("    Bad things can happen when triangles get so small that the distance\n");
  printf("    between their vertices isn't much larger than the precision of your\n");
  printf("    machine's arithmetic.  If you've compiled Triangle for single-precision\n");
  printf("    arithmetic, you might do better by recompiling it for double-precision.\n");
  printf("    Then again, you might just have to settle for more lenient constraints\n");
  printf("    on the minimum angle and the maximum area than you had planned.\n\n");

  printf("    You can minimize precision problems by ensuring that the origin lies\n");
  printf("    inside your point set, or even inside the densest part of your\n");
  printf("    mesh.  On the other hand, if you're triangulating an object whose x\n");
  printf("    coordinates all fall between 6247133 and 6247134, you're not leaving\n");
  printf("    much floating-point precision for Triangle to work with.\n\n");

  printf("    Precision problems can occur covertly if the input PSLG contains two\n");
  printf("    segments that meet (or intersect) at a very small angle, or if such an\n");
  printf("    angle is introduced by the -c switch, which may occur if a point lies\n");
  printf("    ever-so-slightly inside the convex hull, and is connected by a PSLG\n");
  printf("    segment to a point on the convex hull.  If you don't realize that a\n");
  printf("    small angle is being formed, you might never discover why Triangle is\n");
  printf("    crashing.  To check for this possibility, use the -S switch (with an\n");
  printf("    appropriate limit on the number of Steiner points, found by trial-and-\n");
  printf("    error) to stop Triangle early, and view the output .poly file with\n");
  printf("    Show Me (described below).  Look carefully for small angles between\n");
  printf("    segments; zoom in closely, as such segments might look like a single\n");
  printf("    segment from a distance.\n\n");

  printf("    If some of the input values are too large, Triangle may suffer a\n");
  printf("    floating exception due to overflow when attempting to perform an\n");
  printf("    orientation or incircle test.  (Read the section on exact arithmetic\n");
  printf("    above.)  Again, I recommend compiling Triangle for double (rather\n");
  printf("    than single) precision arithmetic.\n\n");

  printf("  `The numbering of the output points doesn't match the input points.'\n\n");

  printf("    You may have eaten some of your input points with a hole, or by placing\n");
  printf("    them outside the area enclosed by segments.\n\n");

  printf("  `Triangle executes without incident, but when I look at the resulting\n");
  printf("  mesh, it has overlapping triangles or other geometric inconsistencies.'\n\n");

  printf("    If you select the -X switch, Triangle's divide-and-conquer Delaunay\n");
  printf("    triangulation algorithm occasionally makes mistakes due to floating-\n");
  printf("    point roundoff error.  Although these errors are rare, don't use the -X\n");
  printf("    switch.  If you still have problems, please report the bug.\n\n");

  printf("  Strange things can happen if you've taken liberties with your PSLG.  Do\n");
  printf("  you have a point lying in the middle of a segment?  Triangle sometimes\n");
  printf("  copes poorly with that sort of thing.  Do you want to lay out a collinear\n");
  printf("  row of evenly spaced, segment-connected points?  Have you simply defined\n");
  printf("  one long segment connecting the leftmost point to the rightmost point,\n");
  printf("  and a bunch of points lying along it?  This method occasionally works,\n");
  printf("  especially with horizontal and vertical lines, but often it doesn't, and\n");
  printf("  you'll have to connect each adjacent pair of points with a separate\n");
  printf("  segment.  If you don't like it, tough.\n\n");

  printf("  Furthermore, if you have segments that intersect other than at their\n");
  printf("  endpoints, try not to let the intersections fall extremely close to PSLG\n");
  printf("  points or each other.\n\n");

  printf("  If you have problems refining a triangulation not produced by Triangle:\n");
  printf("  Are you sure the triangulation is geometrically valid?  Is it formatted\n");
  printf("  correctly for Triangle?  Are the triangles all listed so the first three\n");
  printf("  points are their corners in counterclockwise order?\n\n");

  printf("Show Me:\n\n");

  printf("  Triangle comes with a separate program named `Show Me', whose primary\n");
  printf("  purpose is to draw meshes on your screen or in PostScript.  Its secondary\n");
  printf("  purpose is to check the validity of your input files, and do so more\n");
  printf("  thoroughly than Triangle does.  Show Me requires that you have the X\n");
  printf("  Windows system.  If you didn't receive Show Me with Triangle, complain to\n");
  printf("  whomever you obtained Triangle from, then send me mail.\n\n");

  printf("Triangle on the Web:\n\n");

  printf("  To see an illustrated, updated version of these instructions, check out\n\n");

  printf("    http://www.cs.cmu.edu/~quake/triangle.html\n\n");

  printf("A Brief Plea:\n\n");

  printf("  If you use Triangle, and especially if you use it to accomplish real\n");
  printf("  work, I would like very much to hear from you.  A short letter or email\n");
  printf("  (to jrs@cs.cmu.edu) describing how you use Triangle will mean a lot to\n");
  printf("  me.  The more people I know are using this program, the more easily I can\n");
  printf("  justify spending time on improvements and on the three-dimensional\n");
  printf("  successor to Triangle, which in turn will benefit you.  Also, I can put\n");
  printf("  you on a list to receive email whenever a new version of Triangle is\n");
  printf("  available.\n\n");

  printf("  If you use a mesh generated by Triangle in a publication, please include\n");
  printf("  an acknowledgment as well.\n\n");

  printf("Research credit:\n\n");

  printf("  Of course, I can take credit for only a fraction of the ideas that made\n");
  printf("  this mesh generator possible.  Triangle owes its existence to the efforts\n");
  printf("  of many fine computational geometers and other researchers, including\n");
  printf("  Marshall Bern, L. Paul Chew, Boris Delaunay, Rex A. Dwyer, David\n");
  printf("  Eppstein, Steven Fortune, Leonidas J. Guibas, Donald E. Knuth, C. L.\n");
  printf("  Lawson, Der-Tsai Lee, Ernst P. Mucke, Douglas M. Priest, Jim Ruppert,\n");
  printf("  Isaac Saias, Bruce J. Schachter, Micha Sharir, Jorge Stolfi, Christopher\n");
  printf("  J. Van Wyk, David F. Watson, and Binhai Zhu.  See the comments at the\n");
  printf("  beginning of the source code for references.\n\n");
  exit(0);
}

#endif /* not TRILIBRARY */

/*****************************************************************************/
/*                                                                           */
/*  internalerror()   Ask the user to send me the defective product.  Exit.  */
/*                                                                           */
/*****************************************************************************/

void internalerror(void)
{
  printf("  Please report this bug to jrs@cs.cmu.edu\n");
  printf("  Include the message above, your input data set, and the exact\n");
  printf("    command line you used to run Triangle.\n");
  exit(1);
}

/*****************************************************************************/
/*                                                                           */
/*  parsecommandline()   Read the command line, identify switches, and set   */
/*                       up options and file names.                          */
/*                                                                           */
/*  The effects of this routine are felt entirely through global variables.  */
/*                                                                           */
/*****************************************************************************/

void parsecommandline(argc, argv)
int argc;
const char **argv;
{
#ifdef TRILIBRARY
#define STARTINDEX 0
#else /* not TRILIBRARY */
#define STARTINDEX 1
  int increment;
  int meshnumber;
#endif /* not TRILIBRARY */
  int i, j, k;
  char workstring[FILENAMESIZE];

  poly = refine = quality = vararea = fixedarea = regionattrib = convex = 0;
  firstnumber = 1;
  edgesout = voronoi = neighbors = geomview = 0;
  nobound = nopolywritten = nonodewritten = noelewritten = noiterationnum = 0;
  noholes = noexact = 0;
  incremental = sweepline = 0;
  dwyer = 1;
  splitseg = 0;
  docheck = 0;
  nobisect = 0;
  steiner = -1;
  order = 1;
  minangle = 0.0;
  maxarea = -1.0;
  quiet = verbose = 0;
#ifndef TRILIBRARY
  innodefilename[0] = '\0';
#endif /* not TRILIBRARY */

  for (i = STARTINDEX; i < argc; i++) {
#ifndef TRILIBRARY
    if (argv[i][0] == '-') {
#endif /* not TRILIBRARY */
      for (j = STARTINDEX; argv[i][j] != '\0'; j++) {
        if (argv[i][j] == 'p') {
          poly = 1;
        }
#ifndef CDT_ONLY
        if (argv[i][j] == 'r') {
          refine = 1;
        }
        if (argv[i][j] == 'q') {
          quality = 1;
          if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) ||
              (argv[i][j + 1] == '.')) {
            k = 0;
            while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) ||
                   (argv[i][j + 1] == '.')) {
              j++;
              workstring[k] = argv[i][j];
              k++;
            }
            workstring[k] = '\0';
            minangle = (REAL) strtod(workstring, (char **) NULL);
          }
          else {
            minangle = 20.0;
          }
        }
        if (argv[i][j] == 'a') {
          quality = 1;
          if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) ||
              (argv[i][j + 1] == '.')) {
            fixedarea = 1;
            k = 0;
            while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) ||
                   (argv[i][j + 1] == '.')) {
              j++;
              workstring[k] = argv[i][j];
              k++;
            }
            workstring[k] = '\0';
            maxarea = (REAL) strtod(workstring, (char **) NULL);
            if (maxarea <= 0.0) {
              printf("Error:  Maximum area must be greater than zero.\n");
              exit(1);
            }
          }
          else {
            vararea = 1;
          }
        }
#endif /* not CDT_ONLY */
        if (argv[i][j] == 'A') {
          regionattrib = 1;
        }
        if (argv[i][j] == 'c') {
          convex = 1;
        }
        if (argv[i][j] == 'z') {
          firstnumber = 0;
        }
        if (argv[i][j] == 'e') {
          edgesout = 1;
        }
        if (argv[i][j] == 'v') {
          voronoi = 1;
        }
        if (argv[i][j] == 'n') {
          neighbors = 1;
        }
        if (argv[i][j] == 'g') {
          geomview = 1;
        }
        if (argv[i][j] == 'B') {
          nobound = 1;
        }
        if (argv[i][j] == 'P') {
          nopolywritten = 1;
        }
        if (argv[i][j] == 'N') {
          nonodewritten = 1;
        }
        if (argv[i][j] == 'E') {
          noelewritten = 1;
        }
#ifndef TRILIBRARY
        if (argv[i][j] == 'I') {
          noiterationnum = 1;
        }
#endif /* not TRILIBRARY */
        if (argv[i][j] == 'O') {
          noholes = 1;
        }
        if (argv[i][j] == 'X') {
          noexact = 1;
        }
        if (argv[i][j] == 'o') {
          if (argv[i][j + 1] == '2') {
            j++;
            order = 2;
          }
        }
#ifndef CDT_ONLY
        if (argv[i][j] == 'Y') {
          nobisect++;
        }
        if (argv[i][j] == 'S') {
          steiner = 0;
          while ((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) {
            j++;
            steiner = steiner * 10 + (int) (argv[i][j] - '0');
          }
        }
#endif /* not CDT_ONLY */
#ifndef REDUCED
        if (argv[i][j] == 'i') {
          incremental = 1;
        }
        if (argv[i][j] == 'F') {
          sweepline = 1;
        }
#endif /* not REDUCED */
        if (argv[i][j] == 'l') {
          dwyer = 0;
        }
#ifndef REDUCED
#ifndef CDT_ONLY
        if (argv[i][j] == 's') {
          splitseg = 1;
        }
#endif /* not CDT_ONLY */
        if (argv[i][j] == 'C') {
          docheck = 1;
        }
#endif /* not REDUCED */
        if (argv[i][j] == 'Q') {
          quiet = 1;
        }
        if (argv[i][j] == 'V') {
          verbose++;
        }
#ifndef TRILIBRARY
        if ((argv[i][j] == 'h') || (argv[i][j] == 'H') || (argv[i][j] == '?')) {
          info();
        }
#endif /* not TRILIBRARY */
      }
#ifndef TRILIBRARY
    }
    else {
      strncpy(innodefilename, argv[i], FILENAMESIZE - 1);
      innodefilename[FILENAMESIZE - 1] = '\0';
    }
#endif /* not TRILIBRARY */
  }
#ifndef TRILIBRARY
  if (innodefilename[0] == '\0') {
    syntax();
  }
  if (!strcmp(&innodefilename[strlen(innodefilename) - 5], ".node")) {
    innodefilename[strlen(innodefilename) - 5] = '\0';
  }
  if (!strcmp(&innodefilename[strlen(innodefilename) - 5], ".poly")) {
    innodefilename[strlen(innodefilename) - 5] = '\0';
    poly = 1;
  }
#ifndef CDT_ONLY
  if (!strcmp(&innodefilename[strlen(innodefilename) - 4], ".ele")) {
    innodefilename[strlen(innodefilename) - 4] = '\0';
    refine = 1;
  }
  if (!strcmp(&innodefilename[strlen(innodefilename) - 5], ".area")) {
    innodefilename[strlen(innodefilename) - 5] = '\0';
    refine = 1;
    quality = 1;
    vararea = 1;
  }
#endif /* not CDT_ONLY */
#endif /* not TRILIBRARY */
  steinerleft = steiner;
  useshelles = poly || refine || quality || convex;
  goodangle = cos(minangle * PI / 180.0);
  goodangle *= goodangle;
  if (refine && noiterationnum) {
    printf(
      "Error:  You cannot use the -I switch when refining a triangulation.\n");
    exit(1);
  }
  /* Be careful not to allocate space for element area constraints that */
  /*   will never be assigned any value (other than the default -1.0).  */
  if (!refine && !poly) {
    vararea = 0;
  }
  /* Be careful not to add an extra attribute to each element unless the */
  /*   input supports it (PSLG in, but not refining a preexisting mesh). */
  if (refine || !poly) {
    regionattrib = 0;
  }

#ifndef TRILIBRARY
  strcpy(inpolyfilename, innodefilename);
  strcpy(inelefilename, innodefilename);
  strcpy(areafilename, innodefilename);
  increment = 0;
  strcpy(workstring, innodefilename);
  j = 1;
  while (workstring[j] != '\0') {
    if ((workstring[j] == '.') && (workstring[j + 1] != '\0')) {
      increment = j + 1;
    }
    j++;
  }
  meshnumber = 0;
  if (increment > 0) {
    j = increment;
    do {
      if ((workstring[j] >= '0') && (workstring[j] <= '9')) {
        meshnumber = meshnumber * 10 + (int) (workstring[j] - '0');
      }
      else {
        increment = 0;
      }
      j++;
    } while (workstring[j] != '\0');
  }
  if (noiterationnum) {
    strcpy(outnodefilename, innodefilename);
    strcpy(outelefilename, innodefilename);
    strcpy(edgefilename, innodefilename);
    strcpy(vnodefilename, innodefilename);
    strcpy(vedgefilename, innodefilename);
    strcpy(neighborfilename, innodefilename);
    strcpy(offfilename, innodefilename);
    strcat(outnodefilename, ".node");
    strcat(outelefilename, ".ele");
    strcat(edgefilename, ".edge");
    strcat(vnodefilename, ".v.node");
    strcat(vedgefilename, ".v.edge");
    strcat(neighborfilename, ".neigh");
    strcat(offfilename, ".off");
  }
  else if (increment == 0) {
    strcpy(outnodefilename, innodefilename);
    strcpy(outpolyfilename, innodefilename);
    strcpy(outelefilename, innodefilename);
    strcpy(edgefilename, innodefilename);
    strcpy(vnodefilename, innodefilename);
    strcpy(vedgefilename, innodefilename);
    strcpy(neighborfilename, innodefilename);
    strcpy(offfilename, innodefilename);
    strcat(outnodefilename, ".1.node");
    strcat(outpolyfilename, ".1.poly");
    strcat(outelefilename, ".1.ele");
    strcat(edgefilename, ".1.edge");
    strcat(vnodefilename, ".1.v.node");
    strcat(vedgefilename, ".1.v.edge");
    strcat(neighborfilename, ".1.neigh");
    strcat(offfilename, ".1.off");
  }
  else {
    workstring[increment] = '%';
    workstring[increment + 1] = 'd';
    workstring[increment + 2] = '\0';
    sprintf(outnodefilename, workstring, meshnumber + 1);
    strcpy(outpolyfilename, outnodefilename);
    strcpy(outelefilename, outnodefilename);
    strcpy(edgefilename, outnodefilename);
    strcpy(vnodefilename, outnodefilename);
    strcpy(vedgefilename, outnodefilename);
    strcpy(neighborfilename, outnodefilename);
    strcpy(offfilename, outnodefilename);
    strcat(outnodefilename, ".node");
    strcat(outpolyfilename, ".poly");
    strcat(outelefilename, ".ele");
    strcat(edgefilename, ".edge");
    strcat(vnodefilename, ".v.node");
    strcat(vedgefilename, ".v.edge");
    strcat(neighborfilename, ".neigh");
    strcat(offfilename, ".off");
  }
  strcat(innodefilename, ".node");
  strcat(inpolyfilename, ".poly");
  strcat(inelefilename, ".ele");
  strcat(areafilename, ".area");
#endif /* not TRILIBRARY */
}

/**                                                                         **/
/**                                                                         **/
/********* User interaction routines begin here                      *********/

/********* Debugging routines begin here                             *********/
/**                                                                         **/
/**                                                                         **/

/*****************************************************************************/
/*                                                                           */
/* print_cast()  Convert a pointer to an unsigned long integer for display   */
/*                                                                           */
/* This is used to avoid compiler warnings for those compilers that check    */
/* and warn about potential 64-bit problems.                                 */
/*****************************************************************************/

#if defined(_MSC_VER) && (_MSC_VER >= 1300)
#  pragma warning( push )
   /* warning C4311: 'type cast' : pointer truncation from 'void *' to 'unsigned long' */
#  pragma warning( disable: 4311 )
#endif

static
unsigned long print_cast( void* p )
{
  return (unsigned long)p;
}

#if defined(_MSC_VER) && (_MSC_VER >= 1300)
#  pragma warning( pop )
#endif

/*****************************************************************************/
/*                                                                           */
/*  printtriangle()   Print out the details of a triangle/edge handle.       */
/*                                                                           */
/*  I originally wrote this procedure to simplify debugging; it can be       */
/*  called directly from the debugger, and presents information about a      */
/*  triangle/edge handle in digestible form.  It's also used when the        */
/*  highest level of verbosity (`-VVV') is specified.                        */
/*                                                                           */
/*****************************************************************************/

void printtriangle(struct triedge *t)
{
  struct triedge printtri;
  struct edge printsh;
  point printpoint;

  printf("triangle x%lx with orientation %d:\n", print_cast( t->tri ),
         t->orient);
  decode(t->tri[0], printtri);
  if (printtri.tri == dummytri) {
    printf("    [0] = Outer space\n");
  }
  else {
    printf("    [0] = x%lx  %d\n", print_cast( printtri.tri ),
           printtri.orient);
  }
  decode(t->tri[1], printtri);
  if (printtri.tri == dummytri) {
    printf("    [1] = Outer space\n");
  }
  else {
    printf("    [1] = x%lx  %d\n", print_cast( printtri.tri ),
           printtri.orient);
  }
  decode(t->tri[2], printtri);
  if (printtri.tri == dummytri) {
    printf("    [2] = Outer space\n");
  }
  else {
    printf("    [2] = x%lx  %d\n", print_cast( printtri.tri ),
           printtri.orient);
  }
  org(*t, printpoint);
  if (printpoint == (point) NULL)
    printf("    Origin[%d] = NULL\n", (t->orient + 1) % 3 + 3);
  else
    printf("    Origin[%d] = x%lx  (%.12g, %.12g)\n",
           (t->orient + 1) % 3 + 3, print_cast( printpoint ),
           printpoint[0], printpoint[1]);
  dest(*t, printpoint);
  if (printpoint == (point) NULL)
    printf("    Dest  [%d] = NULL\n", (t->orient + 2) % 3 + 3);
  else
    printf("    Dest  [%d] = x%lx  (%.12g, %.12g)\n",
           (t->orient + 2) % 3 + 3, print_cast( printpoint ),
           printpoint[0], printpoint[1]);
  apex(*t, printpoint);
  if (printpoint == (point) NULL)
    printf("    Apex  [%d] = NULL\n", t->orient + 3);
  else
    printf("    Apex  [%d] = x%lx  (%.12g, %.12g)\n",
           t->orient + 3, print_cast( printpoint ),
           printpoint[0], printpoint[1]);
  if (useshelles) {
    sdecode(t->tri[6], printsh);
    if (printsh.sh != dummysh) {
      printf("    [6] = x%lx  %d\n", print_cast( printsh.sh ),
             printsh.shorient);
    }
    sdecode(t->tri[7], printsh);
    if (printsh.sh != dummysh) {
      printf("    [7] = x%lx  %d\n", print_cast( printsh.sh ),
             printsh.shorient);
    }
    sdecode(t->tri[8], printsh);
    if (printsh.sh != dummysh) {
      printf("    [8] = x%lx  %d\n", print_cast( printsh.sh ),
             printsh.shorient);
    }
  }
  if (vararea) {
    printf("    Area constraint:  %.4g\n", areabound(*t));
  }
}

/*****************************************************************************/
/*                                                                           */
/*  printshelle()   Print out the details of a shell edge handle.            */
/*                                                                           */
/*  I originally wrote this procedure to simplify debugging; it can be       */
/*  called directly from the debugger, and presents information about a      */
/*  shell edge handle in digestible form.  It's also used when the highest   */
/*  level of verbosity (`-VVV') is specified.                                */
/*                                                                           */
/*****************************************************************************/

void printshelle(struct edge *s)
{
  struct edge printsh;
  struct triedge printtri;
  point printpoint;

  printf("shell edge x%lx with orientation %d and mark %d:\n",
         print_cast( s->sh ), s->shorient, mark(*s));
  sdecode(s->sh[0], printsh);
  if (printsh.sh == dummysh) {
    printf("    [0] = No shell\n");
  }
  else {
    printf("    [0] = x%lx  %d\n", print_cast( printsh.sh ),
           printsh.shorient);
  }
  sdecode(s->sh[1], printsh);
  if (printsh.sh == dummysh) {
    printf("    [1] = No shell\n");
  }
  else {
    printf("    [1] = x%lx  %d\n", print_cast( printsh.sh ),
           printsh.shorient);
  }
  sorg(*s, printpoint);
  if (printpoint == (point) NULL)
    printf("    Origin[%d] = NULL\n", 2 + s->shorient);
  else
    printf("    Origin[%d] = x%lx  (%.12g, %.12g)\n",
           2 + s->shorient, print_cast( printpoint ),
           printpoint[0], printpoint[1]);
  sdest(*s, printpoint);
  if (printpoint == (point) NULL)
    printf("    Dest  [%d] = NULL\n", 3 - s->shorient);
  else
    printf("    Dest  [%d] = x%lx  (%.12g, %.12g)\n",
           3 - s->shorient, print_cast( printpoint ),
           printpoint[0], printpoint[1]);
  decode(s->sh[4], printtri);
  if (printtri.tri == dummytri) {
    printf("    [4] = Outer space\n");
  }
  else {
    printf("    [4] = x%lx  %d\n", print_cast( printtri.tri ),
           printtri.orient);
  }
  decode(s->sh[5], printtri);
  if (printtri.tri == dummytri) {
    printf("    [5] = Outer space\n");
  }
  else {
    printf("    [5] = x%lx  %d\n", print_cast( printtri.tri ),
           printtri.orient);
  }
}

/**                                                                         **/
/**                                                                         **/
/********* Debugging routines end here                               *********/

/********* Memory management routines begin here                     *********/
/**                                                                         **/
/**                                                                         **/

/*****************************************************************************/
/*                                                                           */
/*  poolinit()   Initialize a pool of memory for allocation of items.        */
/*                                                                           */
/*  This routine initializes the machinery for allocating items.  A `pool'   */
/*  is created whose records have size at least `bytecount'.  Items will be  */
/*  allocated in `itemcount'-item blocks.  Each item is assumed to be a      */
/*  collection of words, and either pointers or floating-point values are    */
/*  assumed to be the "primary" word type.  (The "primary" word type is used */
/*  to determine alignment of items.)  If `alignment' isn't zero, all items  */
/*  will be `alignment'-byte aligned in memory.  `alignment' must be either  */
/*  a multiple or a factor of the primary word size; powers of two are safe. */
/*  `alignment' is normally used to create a few unused bits at the bottom   */
/*  of each item's pointer, in which information may be stored.              */
/*                                                                           */
/*  Don't change this routine unless you understand it.                      */
/*                                                                           */
/*****************************************************************************/

void poolinit(struct memorypool *pool,
              int bytecount,
              int itemcount,
              enum wordtype wtype,
              int alignment)
{
  int wordsize;

  /* Initialize values in the pool. */
  pool->itemwordtype = wtype;
  wordsize = (pool->itemwordtype == POINTER) ? sizeof(VOID *) : sizeof(REAL);
  /* Find the proper alignment, which must be at least as large as:   */
  /*   - The parameter `alignment'.                                   */
  /*   - The primary word type, to avoid unaligned accesses.          */
  /*   - sizeof(VOID *), so the stack of dead items can be maintained */
  /*       without unaligned accesses.                                */
  if (alignment > wordsize) {
    pool->alignbytes = alignment;
  }
  else {
    pool->alignbytes = wordsize;
  }
  if ((int)sizeof(VOID *) > pool->alignbytes) {
    pool->alignbytes = sizeof(VOID *);
  }
  pool->itemwords = ((bytecount + pool->alignbytes - 1) / pool->alignbytes)
                  * (pool->alignbytes / wordsize);
  pool->itembytes = pool->itemwords * wordsize;
  pool->itemsperblock = itemcount;

  /* Allocate a block of items.  Space for `itemsperblock' items and one    */
  /*   pointer (to point to the next block) are allocated, as well as space */
  /*   to ensure alignment of the items.                                    */
  pool->firstblock = (VOID **) malloc(pool->itemsperblock * pool->itembytes
                                      + sizeof(VOID *) + pool->alignbytes);
  if (pool->firstblock == (VOID **) NULL) {
    printf("Error:  Out of memory.\n");
    exit(1);
  }
  /* Set the next block pointer to NULL. */
  *(pool->firstblock) = (VOID *) NULL;
  poolrestart(pool);
}

/*****************************************************************************/
/*                                                                           */
/*  poolrestart()   Deallocate all items in a pool.                          */
/*                                                                           */
/*  The pool is returned to its starting state, except that no memory is     */
/*  freed to the operating system.  Rather, the previously allocated blocks  */
/*  are ready to be reused.                                                  */
/*                                                                           */
/*****************************************************************************/

void poolrestart(struct memorypool *pool)
{
  intptr_t alignptr;

  pool->items = 0;
  pool->maxitems = 0;

  /* Set the currently active block. */
  pool->nowblock = pool->firstblock;
  /* Find the first item in the pool.  Increment by the size of (VOID *). */
  alignptr = (intptr_t) (pool->nowblock + 1);
  /* Align the item on an `alignbytes'-byte boundary. */
  pool->nextitem = (VOID *)
    (alignptr + (intptr_t) pool->alignbytes
     - (alignptr % (intptr_t) pool->alignbytes));
  /* There are lots of unallocated items left in this block. */
  pool->unallocateditems = pool->itemsperblock;
  /* The stack of deallocated items is empty. */
  pool->deaditemstack = (VOID *) NULL;
}

/*****************************************************************************/
/*                                                                           */
/*  pooldeinit()   Free to the operating system all memory taken by a pool.  */
/*                                                                           */
/*****************************************************************************/

void pooldeinit(struct memorypool *pool)
{
  while (pool->firstblock != (VOID **) NULL) {
    pool->nowblock = (VOID **) *(pool->firstblock);
    free(pool->firstblock);
    pool->firstblock = pool->nowblock;
  }
}

/*****************************************************************************/
/*                                                                           */
/*  poolalloc()   Allocate space for an item.                                */
/*                                                                           */
/*****************************************************************************/

VOID *poolalloc(struct memorypool *pool)
{
  VOID *newitem;
  VOID **newblock;
  intptr_t alignptr;

  /* First check the linked list of dead items.  If the list is not   */
  /*   empty, allocate an item from the list rather than a fresh one. */
  if (pool->deaditemstack != (VOID *) NULL) {
    newitem = pool->deaditemstack;               /* Take first item in list. */
    pool->deaditemstack = * (VOID **) pool->deaditemstack;
  }
  else {
    /* Check if there are any free items left in the current block. */
    if (pool->unallocateditems == 0) {
      /* Check if another block must be allocated. */
      if (*(pool->nowblock) == (VOID *) NULL) {
        /* Allocate a new block of items, pointed to by the previous block. */
        newblock = (VOID **) malloc(pool->itemsperblock * pool->itembytes
                                    + sizeof(VOID *) + pool->alignbytes);
        if (newblock == (VOID **) NULL) {
          printf("Error:  Out of memory.\n");
          exit(1);
        }
        *(pool->nowblock) = (VOID *) newblock;
        /* The next block pointer is NULL. */
        *newblock = (VOID *) NULL;
      }
      /* Move to the new block. */
      pool->nowblock = (VOID **) *(pool->nowblock);
      /* Find the first item in the block.    */
      /*   Increment by the size of (VOID *). */
      alignptr = (intptr_t) (pool->nowblock + 1);
      /* Align the item on an `alignbytes'-byte boundary. */
      pool->nextitem = (VOID *)
        (alignptr + (intptr_t) pool->alignbytes
         - (alignptr % (intptr_t) pool->alignbytes));
      /* There are lots of unallocated items left in this block. */
      pool->unallocateditems = pool->itemsperblock;
    }
    /* Allocate a new item. */
    newitem = pool->nextitem;
    /* Advance `nextitem' pointer to next free item in block. */
    if (pool->itemwordtype == POINTER) {
      pool->nextitem = (VOID *) ((VOID **) pool->nextitem + pool->itemwords);
    }
    else {
      pool->nextitem = (VOID *) ((REAL *) pool->nextitem + pool->itemwords);
    }
    pool->unallocateditems--;
    pool->maxitems++;
  }
  pool->items++;
  return newitem;
}

/*****************************************************************************/
/*                                                                           */
/*  pooldealloc()   Deallocate space for an item.                            */
/*                                                                           */
/*  The deallocated space is stored in a queue for later reuse.              */
/*                                                                           */
/*****************************************************************************/

void pooldealloc(struct memorypool *pool,
                 VOID *dyingitem)
{
  /* Push freshly killed item onto stack. */
  *((VOID **) dyingitem) = pool->deaditemstack;
  pool->deaditemstack = dyingitem;
  pool->items--;
}

/*****************************************************************************/
/*                                                                           */
/*  traversalinit()   Prepare to traverse the entire list of items.          */
/*                                                                           */
/*  This routine is used in conjunction with traverse().                     */
/*                                                                           */
/*****************************************************************************/

void traversalinit(pool)
struct memorypool *pool;
{
  intptr_t alignptr;

  /* Begin the traversal in the first block. */
  pool->pathblock = pool->firstblock;
  /* Find the first item in the block.  Increment by the size of (VOID *). */
  alignptr = (intptr_t) (pool->pathblock + 1);
  /* Align with item on an `alignbytes'-byte boundary. */
  pool->pathitem = (VOID *)
    (alignptr + (intptr_t) pool->alignbytes
     - (alignptr % (intptr_t) pool->alignbytes));
  /* Set the number of items left in the current block. */
  pool->pathitemsleft = pool->itemsperblock;
}

/*****************************************************************************/
/*                                                                           */
/*  traverse()   Find the next item in the list.                             */
/*                                                                           */
/*  This routine is used in conjunction with traversalinit().  Be forewarned */
/*  that this routine successively returns all items in the list, including  */
/*  deallocated ones on the deaditemqueue.  It's up to you to figure out     */
/*  which ones are actually dead.  Why?  I don't want to allocate extra      */
/*  space just to demarcate dead items.  It can usually be done more         */
/*  space-efficiently by a routine that knows something about the structure  */
/*  of the item.                                                             */
/*                                                                           */
/*****************************************************************************/

VOID *traverse(struct memorypool *pool)
{
  VOID *newitem;
  intptr_t alignptr;

  /* Stop upon exhausting the list of items. */
  if (pool->pathitem == pool->nextitem) {
    return (VOID *) NULL;
  }
  /* Check whether any untraversed items remain in the current block. */
  if (pool->pathitemsleft == 0) {
    /* Find the next block. */
    pool->pathblock = (VOID **) *(pool->pathblock);
    /* Find the first item in the block.  Increment by the size of (VOID *). */
    alignptr = (intptr_t) (pool->pathblock + 1);
    /* Align with item on an `alignbytes'-byte boundary. */
    pool->pathitem = (VOID *)
      (alignptr + (intptr_t) pool->alignbytes
       - (alignptr % (intptr_t) pool->alignbytes));
    /* Set the number of items left in the current block. */
    pool->pathitemsleft = pool->itemsperblock;
  }
  newitem = pool->pathitem;
  /* Find the next item in the block. */
  if (pool->itemwordtype == POINTER) {
    pool->pathitem = (VOID *) ((VOID **) pool->pathitem + pool->itemwords);
  }
  else {
    pool->pathitem = (VOID *) ((REAL *) pool->pathitem + pool->itemwords);
  }
  pool->pathitemsleft--;
  return newitem;
}

/*****************************************************************************/
/*                                                                           */
/*  dummyinit()   Initialize the triangle that fills "outer space" and the   */
/*                omnipresent shell edge.                                    */
/*                                                                           */
/*  The triangle that fills "outer space", called `dummytri', is pointed to  */
/*  by every triangle and shell edge on a boundary (be it outer or inner) of */
/*  the triangulation.  Also, `dummytri' points to one of the triangles on   */
/*  the convex hull (until the holes and concavities are carved), making it  */
/*  possible to find a starting triangle for point location.                 */
/*                                                                           */
/*  The omnipresent shell edge, `dummysh', is pointed to by every triangle   */
/*  or shell edge that doesn't have a full complement of real shell edges    */
/*  to point to.                                                             */
/*                                                                           */
/*****************************************************************************/

void dummyinit(int trianglewords,
               int shellewords)
{
  intptr_t alignptr;

  /* `triwords' and `shwords' are used by the mesh manipulation primitives */
  /*   to extract orientations of triangles and shell edges from pointers. */
  triwords = trianglewords;       /* Initialize `triwords' once and for all. */
  shwords = shellewords;           /* Initialize `shwords' once and for all. */

  /* Set up `dummytri', the `triangle' that occupies "outer space". */
  dummytribase = (triangle *) malloc(triwords * sizeof(triangle)
                                     + triangles.alignbytes);
  if (dummytribase == (triangle *) NULL) {
    printf("Error:  Out of memory.\n");
    exit(1);
  }
  /* Align `dummytri' on a `triangles.alignbytes'-byte boundary. */
  alignptr = (intptr_t) dummytribase;
  dummytri = (triangle *)
    (alignptr + (intptr_t) triangles.alignbytes
     - (alignptr % (intptr_t) triangles.alignbytes));
  /* Initialize the three adjoining triangles to be "outer space".  These  */
  /*   will eventually be changed by various bonding operations, but their */
  /*   values don't really matter, as long as they can legally be          */
  /*   dereferenced.                                                       */
  dummytri[0] = (triangle) dummytri;
  dummytri[1] = (triangle) dummytri;
  dummytri[2] = (triangle) dummytri;
  /* Three NULL vertex points. */
  dummytri[3] = (triangle) NULL;
  dummytri[4] = (triangle) NULL;
  dummytri[5] = (triangle) NULL;

  if (useshelles) {
    /* Set up `dummysh', the omnipresent "shell edge" pointed to by any      */
    /*   triangle side or shell edge end that isn't attached to a real shell */
    /*   edge.                                                               */
    dummyshbase = (shelle *) malloc(shwords * sizeof(shelle)
                                    + shelles.alignbytes);
    if (dummyshbase == (shelle *) NULL) {
      printf("Error:  Out of memory.\n");
      exit(1);
    }
    /* Align `dummysh' on a `shelles.alignbytes'-byte boundary. */
    alignptr = (intptr_t) dummyshbase;
    dummysh = (shelle *)
      (alignptr + (intptr_t) shelles.alignbytes
       - (alignptr % (intptr_t) shelles.alignbytes));
    /* Initialize the two adjoining shell edges to be the omnipresent shell */
    /*   edge.  These will eventually be changed by various bonding         */
    /*   operations, but their values don't really matter, as long as they  */
    /*   can legally be dereferenced.                                       */
    dummysh[0] = (shelle) dummysh;
    dummysh[1] = (shelle) dummysh;
    /* Two NULL vertex points. */
    dummysh[2] = (shelle) NULL;
    dummysh[3] = (shelle) NULL;
    /* Initialize the two adjoining triangles to be "outer space". */
    dummysh[4] = (shelle) dummytri;
    dummysh[5] = (shelle) dummytri;
    /* Set the boundary marker to zero. */
    * (int *) (dummysh + 6) = 0;

    /* Initialize the three adjoining shell edges of `dummytri' to be */
    /*   the omnipresent shell edge.                                  */
    dummytri[6] = (triangle) dummysh;
    dummytri[7] = (triangle) dummysh;
    dummytri[8] = (triangle) dummysh;
  }
}

/*****************************************************************************/
/*                                                                           */
/*  initializepointpool()   Calculate the size of the point data structure   */
/*                          and initialize its memory pool.                  */
/*                                                                           */
/*  This routine also computes the `pointmarkindex' and `point2triindex'     */
/*  indices used to find values within each point.                           */
/*                                                                           */
/*****************************************************************************/

void initializepointpool(void)
{
  int pointsize;

  /* The index within each point at which the boundary marker is found.  */
  /*   Ensure the point marker is aligned to a sizeof(int)-byte address. */
  pointmarkindex = ((mesh_dim + nextras) * sizeof(REAL) + sizeof(int) - 1)
                 / sizeof(int);
  pointsize = (pointmarkindex + 1) * sizeof(int);
  if (poly) {
    /* The index within each point at which a triangle pointer is found.   */
    /*   Ensure the pointer is aligned to a sizeof(triangle)-byte address. */
    point2triindex = (pointsize + sizeof(triangle) - 1) / sizeof(triangle);
    pointsize = (point2triindex + 1) * sizeof(triangle);
  }
  /* Initialize the pool of points. */
  poolinit(&points, pointsize, POINTPERBLOCK,
           (sizeof(REAL) >= sizeof(triangle)) ? FLOATINGPOINT : POINTER, 0);
}

/*****************************************************************************/
/*                                                                           */
/*  initializetrisegpools()   Calculate the sizes of the triangle and shell  */
/*                            edge data structures and initialize their      */
/*                            memory pools.                                  */
/*                                                                           */
/*  This routine also computes the `highorderindex', `elemattribindex', and  */
/*  `areaboundindex' indices used to find values within each triangle.       */
/*                                                                           */
/*****************************************************************************/

void initializetrisegpools(void)
{
  int trisize;

  /* The index within each triangle at which the extra nodes (above three)  */
  /*   associated with high order elements are found.  There are three      */
  /*   pointers to other triangles, three pointers to corners, and possibly */
  /*   three pointers to shell edges before the extra nodes.                */
  highorderindex = 6 + (useshelles * 3);
  /* The number of bytes occupied by a triangle. */
  trisize = ((order + 1) * (order + 2) / 2 + (highorderindex - 3)) *
            sizeof(triangle);
  /* The index within each triangle at which its attributes are found, */
  /*   where the index is measured in REALs.                           */
  elemattribindex = (trisize + sizeof(REAL) - 1) / sizeof(REAL);
  /* The index within each triangle at which the maximum area constraint  */
  /*   is found, where the index is measured in REALs.  Note that if the  */
  /*   `regionattrib' flag is set, an additional attribute will be added. */
  areaboundindex = elemattribindex + eextras + regionattrib;
  /* If triangle attributes or an area bound are needed, increase the number */
  /*   of bytes occupied by a triangle.                                      */
  if (vararea) {
    trisize = (areaboundindex + 1) * sizeof(REAL);
  }
  else if (eextras + regionattrib > 0) {
    trisize = areaboundindex * sizeof(REAL);
  }
  /* If a Voronoi diagram or triangle neighbor graph is requested, make    */
  /*   sure there's room to store an integer index in each triangle.  This */
  /*   integer index can occupy the same space as the shell edges or       */
  /*   attributes or area constraint or extra nodes.                       */
  if ((voronoi || neighbors) &&
      (trisize < 6 * (int)sizeof(triangle) + (int)sizeof(int))) {
    trisize = 6 * sizeof(triangle) + sizeof(int);
  }
  /* Having determined the memory size of a triangle, initialize the pool. */
  poolinit(&triangles, trisize, TRIPERBLOCK, POINTER, 4);

  if (useshelles) {
    /* Initialize the pool of shell edges. */
    poolinit(&shelles, (int)(6 * sizeof(triangle) + sizeof(int)),
             SHELLEPERBLOCK, POINTER, 4);

    /* Initialize the "outer space" triangle and omnipresent shell edge. */
    dummyinit(triangles.itemwords, shelles.itemwords);
  }
  else {
    /* Initialize the "outer space" triangle. */
    dummyinit(triangles.itemwords, 0);
  }
}

/*****************************************************************************/
/*                                                                           */
/*  triangledealloc()   Deallocate space for a triangle, marking it dead.    */
/*                                                                           */
/*****************************************************************************/

void triangledealloc(triangle *dyingtriangle)
{
  /* Set triangle's vertices to NULL.  This makes it possible to        */
  /*   detect dead triangles when traversing the list of all triangles. */
  dyingtriangle[3] = (triangle) NULL;
  dyingtriangle[4] = (triangle) NULL;
  dyingtriangle[5] = (triangle) NULL;
  pooldealloc(&triangles, (VOID *) dyingtriangle);
}

/*****************************************************************************/
/*                                                                           */
/*  triangletraverse()   Traverse the triangles, skipping dead ones.         */
/*                                                                           */
/*****************************************************************************/

triangle *triangletraverse(void)
{
  triangle *newtriangle;

  do {
    newtriangle = (triangle *) traverse(&triangles);
    if (newtriangle == (triangle *) NULL) {
      return (triangle *) NULL;
    }
  } while (newtriangle[3] == (triangle) NULL);            /* Skip dead ones. */
  return newtriangle;
}

/*****************************************************************************/
/*                                                                           */
/*  shelledealloc()   Deallocate space for a shell edge, marking it dead.    */
/*                                                                           */
/*****************************************************************************/

void shelledealloc(shelle *dyingshelle)
{
  /* Set shell edge's vertices to NULL.  This makes it possible to */
  /*   detect dead shells when traversing the list of all shells.  */
  dyingshelle[2] = (shelle) NULL;
  dyingshelle[3] = (shelle) NULL;
  pooldealloc(&shelles, (VOID *) dyingshelle);
}

/*****************************************************************************/
/*                                                                           */
/*  shelletraverse()   Traverse the shell edges, skipping dead ones.         */
/*                                                                           */
/*****************************************************************************/

shelle *shelletraverse(void)
{
  shelle *newshelle;

  do {
    newshelle = (shelle *) traverse(&shelles);
    if (newshelle == (shelle *) NULL) {
      return (shelle *) NULL;
    }
  } while (newshelle[2] == (shelle) NULL);                /* Skip dead ones. */
  return newshelle;
}

/*****************************************************************************/
/*                                                                           */
/*  pointdealloc()   Deallocate space for a point, marking it dead.          */
/*                                                                           */
/*****************************************************************************/

void pointdealloc(point dyingpoint)
{
  /* Mark the point as dead.  This makes it possible to detect dead points */
  /*   when traversing the list of all points.                             */
  setpointmark(dyingpoint, DEADPOINT);
  pooldealloc(&points, (VOID *) dyingpoint);
}

/*****************************************************************************/
/*                                                                           */
/*  pointtraverse()   Traverse the points, skipping dead ones.               */
/*                                                                           */
/*****************************************************************************/

point pointtraverse(void)
{
  point newpoint;

  do {
    newpoint = (point) traverse(&points);
    if (newpoint == (point) NULL) {
      return (point) NULL;
    }
  } while (pointmark(newpoint) == DEADPOINT);             /* Skip dead ones. */
  return newpoint;
}

/*****************************************************************************/
/*                                                                           */
/*  badsegmentdealloc()   Deallocate space for a bad segment, marking it     */
/*                        dead.                                              */
/*                                                                           */
/*****************************************************************************/

#ifndef CDT_ONLY

void badsegmentdealloc(struct edge *dyingseg)
{
  /* Set segment's orientation to -1.  This makes it possible to      */
  /*   detect dead segments when traversing the list of all segments. */
  dyingseg->shorient = -1;
  pooldealloc(&badsegments, (VOID *) dyingseg);
}

#endif /* not CDT_ONLY */

/*****************************************************************************/
/*                                                                           */
/*  badsegmenttraverse()   Traverse the bad segments, skipping dead ones.    */
/*                                                                           */
/*****************************************************************************/

#ifndef CDT_ONLY

struct edge *badsegmenttraverse(void)
{
  struct edge *newseg;

  do {
    newseg = (struct edge *) traverse(&badsegments);
    if (newseg == (struct edge *) NULL) {
      return (struct edge *) NULL;
    }
  } while (newseg->shorient == -1);                       /* Skip dead ones. */
  return newseg;
}

#endif /* not CDT_ONLY */

/*****************************************************************************/
/*                                                                           */
/*  getpoint()   Get a specific point, by number, from the list.             */
/*                                                                           */
/*  The first point is number 'firstnumber'.                                 */
/*                                                                           */
/*  Note that this takes O(n) time (with a small constant, if POINTPERBLOCK  */
/*  is large).  I don't care to take the trouble to make it work in constant */
/*  time.                                                                    */
/*                                                                           */
/*****************************************************************************/

point getpoint(int number)
{
  VOID **getblock;
  point foundpoint;
  intptr_t alignptr;
  int current;

  getblock = points.firstblock;
  current = firstnumber;
  /* Find the right block. */
  while (current + points.itemsperblock <= number) {
    getblock = (VOID **) *getblock;
    current += points.itemsperblock;
  }
  /* Now find the right point. */
  alignptr = (intptr_t) (getblock + 1);
  foundpoint = (point) (alignptr + (intptr_t) points.alignbytes
                        - (alignptr % (intptr_t) points.alignbytes));
  while (current < number) {
    foundpoint += points.itemwords;
    current++;
  }
  return foundpoint;
}

/*****************************************************************************/
/*                                                                           */
/*  triangledeinit()   Free all remaining allocated memory.                  */
/*                                                                           */
/*****************************************************************************/

void triangledeinit(void)
{
  pooldeinit(&triangles);
  free(dummytribase);
  if (useshelles) {
    pooldeinit(&shelles);
    free(dummyshbase);
  }
  pooldeinit(&points);
#ifndef CDT_ONLY
  if (quality) {
    pooldeinit(&badsegments);
    if ((minangle > 0.0) || vararea || fixedarea) {
      pooldeinit(&badtriangles);
    }
  }
#endif /* not CDT_ONLY */
}

/**                                                                         **/
/**                                                                         **/
/********* Memory management routines end here                       *********/

/********* Constructors begin here                                   *********/
/**                                                                         **/
/**                                                                         **/

/*****************************************************************************/
/*                                                                           */
/*  maketriangle()   Create a new triangle with orientation zero.            */
/*                                                                           */
/*****************************************************************************/

void maketriangle(struct triedge *newtriedge)
{
  int i;

  newtriedge->tri = (triangle *) poolalloc(&triangles);
  /* Initialize the three adjoining triangles to be "outer space". */
  newtriedge->tri[0] = (triangle) dummytri;
  newtriedge->tri[1] = (triangle) dummytri;
  newtriedge->tri[2] = (triangle) dummytri;
  /* Three NULL vertex points. */
  newtriedge->tri[3] = (triangle) NULL;
  newtriedge->tri[4] = (triangle) NULL;
  newtriedge->tri[5] = (triangle) NULL;
  /* Initialize the three adjoining shell edges to be the omnipresent */
  /*   shell edge.                                                    */
  if (useshelles) {
    newtriedge->tri[6] = (triangle) dummysh;
    newtriedge->tri[7] = (triangle) dummysh;
    newtriedge->tri[8] = (triangle) dummysh;
  }
  for (i = 0; i < eextras; i++) {
    setelemattribute(*newtriedge, i, 0.0);
  }
  if (vararea) {
    setareabound(*newtriedge, -1.0);
  }

  newtriedge->orient = 0;
}

/*****************************************************************************/
/*                                                                           */
/*  makeshelle()   Create a new shell edge with orientation zero.            */
/*                                                                           */
/*****************************************************************************/

void makeshelle(struct edge *newedge)
{
  newedge->sh = (shelle *) poolalloc(&shelles);
  /* Initialize the two adjoining shell edges to be the omnipresent */
  /*   shell edge.                                                  */
  newedge->sh[0] = (shelle) dummysh;
  newedge->sh[1] = (shelle) dummysh;
  /* Two NULL vertex points. */
  newedge->sh[2] = (shelle) NULL;
  newedge->sh[3] = (shelle) NULL;
  /* Initialize the two adjoining triangles to be "outer space". */
  newedge->sh[4] = (shelle) dummytri;
  newedge->sh[5] = (shelle) dummytri;
  /* Set the boundary marker to zero. */
  setmark(*newedge, 0);

  newedge->shorient = 0;
}

/**                                                                         **/
/**                                                                         **/
/********* Constructors end here                                     *********/

/********* Determinant evaluation routines begin here                *********/
/**                                                                         **/
/**                                                                         **/

/* The adaptive exact arithmetic geometric predicates implemented herein are */
/*   described in detail in my Technical Report CMU-CS-96-140.  The complete */
/*   reference is given in the header.                                       */

/* Which of the following two methods of finding the absolute values is      */
/*   fastest is compiler-dependent.  A few compilers can inline and optimize */
/*   the fabs() call; but most will incur the overhead of a function call,   */
/*   which is disastrously slow.  A faster way on IEEE machines might be to  */
/*   mask the appropriate bit, but that's difficult to do in C.              */

#define Absolute(a)  ((a) >= 0.0 ? (a) : -(a))
/* #define Absolute(a)  fabs(a) */

/* Many of the operations are broken up into two pieces, a main part that    */
/*   performs an approximate operation, and a "tail" that computes the       */
/*   roundoff error of that operation.                                       */
/*                                                                           */
/* The operations Fast_Two_Sum(), Fast_Two_Diff(), Two_Sum(), Two_Diff(),    */
/*   Split(), and Two_Product() are all implemented as described in the      */
/*   reference.  Each of these macros requires certain variables to be       */
/*   defined in the calling routine.  The variables `bvirt', `c', `abig',    */
/*   `_i', `_j', `_k', `_l', `_m', and `_n' are declared `INEXACT' because   */
/*   they store the result of an operation that may incur roundoff error.    */
/*   The input parameter `x' (or the highest numbered `x_' parameter) must   */
/*   also be declared `INEXACT'.                                             */

#define Fast_Two_Sum_Tail(a, b, x, y) \
  bvirt = x - a; \
  y = b - bvirt

#define Fast_Two_Sum(a, b, x, y) \
  x = (REAL) (a + b); \
  Fast_Two_Sum_Tail(a, b, x, y)

#define Two_Sum_Tail(a, b, x, y) \
  bvirt = (REAL) (x - a); \
  avirt = x - bvirt; \
  bround = b - bvirt; \
  around = a - avirt; \
  y = around + bround

#define Two_Sum(a, b, x, y) \
  x = (REAL) (a + b); \
  Two_Sum_Tail(a, b, x, y)

#define Two_Diff_Tail(a, b, x, y) \
  bvirt = (REAL) (a - x); \
  avirt = x + bvirt; \
  bround = bvirt - b; \
  around = a - avirt; \
  y = around + bround

#define Two_Diff(a, b, x, y) \
  x = (REAL) (a - b); \
  Two_Diff_Tail(a, b, x, y)

#define Split(a, ahi, alo) \
  c = (REAL) (splitter * a); \
  abig = (REAL) (c - a); \
  ahi = c - abig; \
  alo = a - ahi

#define Two_Product_Tail(a, b, x, y) \
  Split(a, ahi, alo); \
  Split(b, bhi, blo); \
  err1 = x - (ahi * bhi); \
  err2 = err1 - (alo * bhi); \
  err3 = err2 - (ahi * blo); \
  y = (alo * blo) - err3

#define Two_Product(a, b, x, y) \
  x = (REAL) (a * b); \
  Two_Product_Tail(a, b, x, y)

/* Two_Product_Presplit() is Two_Product() where one of the inputs has       */
/*   already been split.  Avoids redundant splitting.                        */

#define Two_Product_Presplit(a, b, bhi, blo, x, y) \
  x = (REAL) (a * b); \
  Split(a, ahi, alo); \
  err1 = x - (ahi * bhi); \
  err2 = err1 - (alo * bhi); \
  err3 = err2 - (ahi * blo); \
  y = (alo * blo) - err3

/* Square() can be done more quickly than Two_Product().                     */

#define Square_Tail(a, x, y) \
  Split(a, ahi, alo); \
  err1 = x - (ahi * ahi); \
  err3 = err1 - ((ahi + ahi) * alo); \
  y = (alo * alo) - err3

#define Square(a, x, y) \
  x = (REAL) (a * a); \
  Square_Tail(a, x, y)

/* Macros for summing expansions of various fixed lengths.  These are all    */
/*   unrolled versions of Expansion_Sum().                                   */

#define Two_One_Sum(a1, a0, b, x2, x1, x0) \
  Two_Sum(a0, b , _i, x0); \
  Two_Sum(a1, _i, x2, x1)

#define Two_One_Diff(a1, a0, b, x2, x1, x0) \
  Two_Diff(a0, b , _i, x0); \
  Two_Sum( a1, _i, x2, x1)

#define Two_Two_Sum(a1, a0, b1, b0, x3, x2, x1, x0) \
  Two_One_Sum(a1, a0, b0, _j, _0, x0); \
  Two_One_Sum(_j, _0, b1, x3, x2, x1)

#define Two_Two_Diff(a1, a0, b1, b0, x3, x2, x1, x0) \
  Two_One_Diff(a1, a0, b0, _j, _0, x0); \
  Two_One_Diff(_j, _0, b1, x3, x2, x1)

/*****************************************************************************/
/*                                                                           */
/*  exactinit()   Initialize the variables used for exact arithmetic.        */
/*                                                                           */
/*  `epsilon' is the largest power of two such that 1.0 + epsilon = 1.0 in   */
/*  floating-point arithmetic.  `epsilon' bounds the relative roundoff       */
/*  error.  It is used for floating-point error analysis.                    */
/*                                                                           */
/*  `splitter' is used to split floating-point numbers into two half-        */
/*  length significands for exact multiplication.                            */
/*                                                                           */
/*  I imagine that a highly optimizing compiler might be too smart for its   */
/*  own good, and somehow cause this routine to fail, if it pretends that    */
/*  floating-point arithmetic is too much like real arithmetic.              */
/*                                                                           */
/*  Don't change this routine unless you fully understand it.                */
/*                                                                           */
/*****************************************************************************/

void exactinit(void)
{
  REAL half;
  REAL check, lastcheck;
  int every_other;

  every_other = 1;
  half = 0.5;
  epsilon = 1.0;
  splitter = 1.0;
  check = 1.0;
  /* Repeatedly divide `epsilon' by two until it is too small to add to      */
  /*   one without causing roundoff.  (Also check if the sum is equal to     */
  /*   the previous sum, for machines that round up instead of using exact   */
  /*   rounding.  Not that these routines will work on such machines anyway. */
  do {
    lastcheck = check;
    epsilon *= half;
    if (every_other) {
      splitter *= 2.0;
    }
    every_other = !every_other;
    check = 1.0 + epsilon;
  } while ((check != 1.0) && (check != lastcheck));
  splitter += 1.0;
  if (verbose > 1) {
    printf("Floating point roundoff is of magnitude %.17g\n", epsilon);
    printf("Floating point splitter is %.17g\n", splitter);
  }
  /* Error bounds for orientation and incircle tests. */
  resulterrbound = (3.0 + 8.0 * epsilon) * epsilon;
  ccwerrboundA = (3.0 + 16.0 * epsilon) * epsilon;
  ccwerrboundB = (2.0 + 12.0 * epsilon) * epsilon;
  ccwerrboundC = (9.0 + 64.0 * epsilon) * epsilon * epsilon;
  iccerrboundA = (10.0 + 96.0 * epsilon) * epsilon;
  iccerrboundB = (4.0 + 48.0 * epsilon) * epsilon;
  iccerrboundC = (44.0 + 576.0 * epsilon) * epsilon * epsilon;
}

/*****************************************************************************/
/*                                                                           */
/*  fast_expansion_sum_zeroelim()   Sum two expansions, eliminating zero     */
/*                                  components from the output expansion.    */
/*                                                                           */
/*  Sets h = e + f.  See my Robust Predicates paper for details.             */
/*                                                                           */
/*  If round-to-even is used (as with IEEE 754), maintains the strongly      */
/*  nonoverlapping property.  (That is, if e is strongly nonoverlapping, h   */
/*  will be also.)  Does NOT maintain the nonoverlapping or nonadjacent      */
/*  properties.                                                              */
/*                                                                           */
/*****************************************************************************/

int fast_expansion_sum_zeroelim(int elen, REAL *e, int flen, REAL *f, REAL *h)  /* h cannot be e or f. */
{
  REAL Q;
  INEXACT REAL Qnew;
  INEXACT REAL hh;
  INEXACT REAL bvirt;
  REAL avirt, bround, around;
  int eindex, findex, hindex;
  REAL enow, fnow;

  enow = e[0];
  fnow = f[0];
  eindex = findex = 0;
  if ((fnow > enow) == (fnow > -enow)) {
    Q = enow;
    enow = e[++eindex];
  }
  else {
    Q = fnow;
    fnow = f[++findex];
  }
  hindex = 0;
  if ((eindex < elen) && (findex < flen)) {
    if ((fnow > enow) == (fnow > -enow)) {
      Fast_Two_Sum(enow, Q, Qnew, hh);
      enow = e[++eindex];
    }
    else {
      Fast_Two_Sum(fnow, Q, Qnew, hh);
      fnow = f[++findex];
    }
    Q = Qnew;
    if (hh != 0.0) {
      h[hindex++] = hh;
    }
    while ((eindex < elen) && (findex < flen)) {
      if ((fnow > enow) == (fnow > -enow)) {
        Two_Sum(Q, enow, Qnew, hh);
        enow = e[++eindex];
      }
      else {
        Two_Sum(Q, fnow, Qnew, hh);
        fnow = f[++findex];
      }
      Q = Qnew;
      if (hh != 0.0) {
        h[hindex++] = hh;
      }
    }
  }
  while (eindex < elen) {
    Two_Sum(Q, enow, Qnew, hh);
    enow = e[++eindex];
    Q = Qnew;
    if (hh != 0.0) {
      h[hindex++] = hh;
    }
  }
  while (findex < flen) {
    Two_Sum(Q, fnow, Qnew, hh);
    fnow = f[++findex];
    Q = Qnew;
    if (hh != 0.0) {
      h[hindex++] = hh;
    }
  }
  if ((Q != 0.0) || (hindex == 0)) {
    h[hindex++] = Q;
  }
  return hindex;
}

/*****************************************************************************/
/*                                                                           */
/*  scale_expansion_zeroelim()   Multiply an expansion by a scalar,          */
/*                               eliminating zero components from the        */
/*                               output expansion.                           */
/*                                                                           */
/*  Sets h = be.  See my Robust Predicates paper for details.                */
/*                                                                           */
/*  Maintains the nonoverlapping property.  If round-to-even is used (as     */
/*  with IEEE 754), maintains the strongly nonoverlapping and nonadjacent    */
/*  properties as well.  (That is, if e has one of these properties, so      */
/*  will h.)                                                                 */
/*                                                                           */
/*****************************************************************************/

int scale_expansion_zeroelim(int elen, REAL *e, REAL b, REAL *h)   /* e and h cannot be the same. */
{
  INEXACT REAL Q, sum;
  REAL hh;
  INEXACT REAL product1;
  REAL product0;
  int eindex, hindex;
  REAL enow;
  INEXACT REAL bvirt;
  REAL avirt, bround, around;
  INEXACT REAL c;
  INEXACT REAL abig;
  REAL ahi, alo, bhi, blo;
  REAL err1, err2, err3;

  Split(b, bhi, blo);
  Two_Product_Presplit(e[0], b, bhi, blo, Q, hh);
  hindex = 0;
  if (hh != 0) {
    h[hindex++] = hh;
  }
  for (eindex = 1; eindex < elen; eindex++) {
    enow = e[eindex];
    Two_Product_Presplit(enow, b, bhi, blo, product1, product0);
    Two_Sum(Q, product0, sum, hh);
    if (hh != 0) {
      h[hindex++] = hh;
    }
    Fast_Two_Sum(product1, sum, Q, hh);
    if (hh != 0) {
      h[hindex++] = hh;
    }
  }
  if ((Q != 0.0) || (hindex == 0)) {
    h[hindex++] = Q;
  }
  return hindex;
}

/*****************************************************************************/
/*                                                                           */
/*  estimate()   Produce a one-word estimate of an expansion's value.        */
/*                                                                           */
/*  See my Robust Predicates paper for details.                              */
/*                                                                           */
/*****************************************************************************/

REAL estimate(int elen, REAL *e)
{
  REAL Q;
  int eindex;

  Q = e[0];
  for (eindex = 1; eindex < elen; eindex++) {
    Q += e[eindex];
  }
  return Q;
}

/*****************************************************************************/
/*                                                                           */
/*  counterclockwise()   Return a positive value if the points pa, pb, and   */
/*                       pc occur in counterclockwise order; a negative      */
/*                       value if they occur in clockwise order; and zero    */
/*                       if they are collinear.  The result is also a rough  */
/*                       approximation of twice the signed area of the       */
/*                       triangle defined by the three points.               */
/*                                                                           */
/*  Uses exact arithmetic if necessary to ensure a correct answer.  The      */
/*  result returned is the determinant of a matrix.  This determinant is     */
/*  computed adaptively, in the sense that exact arithmetic is used only to  */
/*  the degree it is needed to ensure that the returned value has the        */
/*  correct sign.  Hence, this function is usually quite fast, but will run  */
/*  more slowly when the input points are collinear or nearly so.            */
/*                                                                           */
/*  See my Robust Predicates paper for details.                              */
/*                                                                           */
/*****************************************************************************/

REAL counterclockwiseadapt(point pa,
                           point pb,
                           point pc,
                           REAL detsum)
{
  INEXACT REAL acx, acy, bcx, bcy;
  REAL acxtail, acytail, bcxtail, bcytail;
  INEXACT REAL detleft, detright;
  REAL detlefttail, detrighttail;
  REAL det, errbound;
  REAL B[4], C1[8], C2[12], D[16];
  INEXACT REAL B3;
  int C1length, C2length, Dlength;
  REAL u[4];
  INEXACT REAL u3;
  INEXACT REAL s1, t1;
  REAL s0, t0;

  INEXACT REAL bvirt;
  REAL avirt, bround, around;
  INEXACT REAL c;
  INEXACT REAL abig;
  REAL ahi, alo, bhi, blo;
  REAL err1, err2, err3;
  INEXACT REAL _i, _j;
  REAL _0;

  acx = (REAL) (pa[0] - pc[0]);
  bcx = (REAL) (pb[0] - pc[0]);
  acy = (REAL) (pa[1] - pc[1]);
  bcy = (REAL) (pb[1] - pc[1]);

  Two_Product(acx, bcy, detleft, detlefttail);
  Two_Product(acy, bcx, detright, detrighttail);

  Two_Two_Diff(detleft, detlefttail, detright, detrighttail,
               B3, B[2], B[1], B[0]);
  B[3] = B3;

  det = estimate(4, B);
  errbound = ccwerrboundB * detsum;
  if ((det >= errbound) || (-det >= errbound)) {
    return det;
  }

  Two_Diff_Tail(pa[0], pc[0], acx, acxtail);
  Two_Diff_Tail(pb[0], pc[0], bcx, bcxtail);
  Two_Diff_Tail(pa[1], pc[1], acy, acytail);
  Two_Diff_Tail(pb[1], pc[1], bcy, bcytail);

  if ((acxtail == 0.0) && (acytail == 0.0)
      && (bcxtail == 0.0) && (bcytail == 0.0)) {
    return det;
  }

  errbound = ccwerrboundC * detsum + resulterrbound * Absolute(det);
  det += (acx * bcytail + bcy * acxtail)
       - (acy * bcxtail + bcx * acytail);
  if ((det >= errbound) || (-det >= errbound)) {
    return det;
  }

  Two_Product(acxtail, bcy, s1, s0);
  Two_Product(acytail, bcx, t1, t0);
  Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]);
  u[3] = u3;
  C1length = fast_expansion_sum_zeroelim(4, B, 4, u, C1);

  Two_Product(acx, bcytail, s1, s0);
  Two_Product(acy, bcxtail, t1, t0);
  Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]);
  u[3] = u3;
  C2length = fast_expansion_sum_zeroelim(C1length, C1, 4, u, C2);

  Two_Product(acxtail, bcytail, s1, s0);
  Two_Product(acytail, bcxtail, t1, t0);
  Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]);
  u[3] = u3;
  Dlength = fast_expansion_sum_zeroelim(C2length, C2, 4, u, D);

  return D[Dlength - 1];
}

REAL counterclockwise(point pa,
                      point pb,
                      point pc)
{
  REAL detleft, detright, det;
  REAL detsum, errbound;

  counterclockcount++;

  detleft = (pa[0] - pc[0]) * (pb[1] - pc[1]);
  detright = (pa[1] - pc[1]) * (pb[0] - pc[0]);
  det = detleft - detright;

  if (noexact) {
    return det;
  }

  if (detleft > 0.0) {
    if (detright <= 0.0) {
      return det;
    }
    else {
      detsum = detleft + detright;
    }
  }
  else if (detleft < 0.0) {
    if (detright >= 0.0) {
      return det;
    }
    else {
      detsum = -detleft - detright;
    }
  }
  else {
    return det;
  }

  errbound = ccwerrboundA * detsum;
  if ((det >= errbound) || (-det >= errbound)) {
    return det;
  }

  return counterclockwiseadapt(pa, pb, pc, detsum);
}

/*****************************************************************************/
/*                                                                           */
/*  incircle()   Return a positive value if the point pd lies inside the     */
/*               circle passing through pa, pb, and pc; a negative value if  */
/*               it lies outside; and zero if the four points are cocircular.*/
/*               The points pa, pb, and pc must be in counterclockwise       */
/*               order, or the sign of the result will be reversed.          */
/*                                                                           */
/*  Uses exact arithmetic if necessary to ensure a correct answer.  The      */
/*  result returned is the determinant of a matrix.  This determinant is     */
/*  computed adaptively, in the sense that exact arithmetic is used only to  */
/*  the degree it is needed to ensure that the returned value has the        */
/*  correct sign.  Hence, this function is usually quite fast, but will run  */
/*  more slowly when the input points are cocircular or nearly so.           */
/*                                                                           */
/*  See my Robust Predicates paper for details.                              */
/*                                                                           */
/*****************************************************************************/

REAL incircleadapt(point pa,
                   point pb,
                   point pc,
                   point pd,
                   REAL permanent)
{
  INEXACT REAL adx, bdx, cdx, ady, bdy, cdy;
  REAL det, errbound;

  INEXACT REAL bdxcdy1, cdxbdy1, cdxady1, adxcdy1, adxbdy1, bdxady1;
  REAL bdxcdy0, cdxbdy0, cdxady0, adxcdy0, adxbdy0, bdxady0;
  REAL bc[4], ca[4], ab[4];
  INEXACT REAL bc3, ca3, ab3;
  REAL axbc[8], axxbc[16], aybc[8], ayybc[16], adet[32];
  int axbclen, axxbclen, aybclen, ayybclen, alen;
  REAL bxca[8], bxxca[16], byca[8], byyca[16], bdet[32];
  int bxcalen, bxxcalen, bycalen, byycalen, blen;
  REAL cxab[8], cxxab[16], cyab[8], cyyab[16], cdet[32];
  int cxablen, cxxablen, cyablen, cyyablen, clen;
  REAL abdet[64];
  int ablen;
  REAL fin1[1152], fin2[1152];
  REAL *finnow, *finother, *finswap;
  int finlength;

  REAL adxtail, bdxtail, cdxtail, adytail, bdytail, cdytail;
  INEXACT REAL adxadx1, adyady1, bdxbdx1, bdybdy1, cdxcdx1, cdycdy1;
  REAL adxadx0, adyady0, bdxbdx0, bdybdy0, cdxcdx0, cdycdy0;
  REAL aa[4], bb[4], cc[4];
  INEXACT REAL aa3, bb3, cc3;
  INEXACT REAL ti1, tj1;
  REAL ti0, tj0;
  REAL u[4], v[4];
  INEXACT REAL u3, v3;
  REAL temp8[8], temp16a[16], temp16b[16], temp16c[16];
  REAL temp32a[32], temp32b[32], temp48[48], temp64[64];
  int temp8len, temp16alen, temp16blen, temp16clen;
  int temp32alen, temp32blen, temp48len, temp64len;
  REAL axtbb[8], axtcc[8], aytbb[8], aytcc[8];
  int axtbblen, axtcclen, aytbblen, aytcclen;
  REAL bxtaa[8], bxtcc[8], bytaa[8], bytcc[8];
  int bxtaalen, bxtcclen, bytaalen, bytcclen;
  REAL cxtaa[8], cxtbb[8], cytaa[8], cytbb[8];
  int cxtaalen, cxtbblen, cytaalen, cytbblen;
  REAL axtbc[8], aytbc[8], bxtca[8], bytca[8], cxtab[8], cytab[8];
  int axtbclen=0, aytbclen=0, bxtcalen=0, bytcalen=0, cxtablen=0, cytablen=0;
  REAL axtbct[16], aytbct[16], bxtcat[16], bytcat[16], cxtabt[16], cytabt[16];
  int axtbctlen, aytbctlen, bxtcatlen, bytcatlen, cxtabtlen, cytabtlen;
  REAL axtbctt[8], aytbctt[8], bxtcatt[8];
  REAL bytcatt[8], cxtabtt[8], cytabtt[8];
  int axtbcttlen, aytbcttlen, bxtcattlen, bytcattlen, cxtabttlen, cytabttlen;
  REAL abt[8], bct[8], cat[8];
  int abtlen, bctlen, catlen;
  REAL abtt[4], bctt[4], catt[4];
  int abttlen, bcttlen, cattlen;
  INEXACT REAL abtt3, bctt3, catt3;
  REAL negate;

  INEXACT REAL bvirt;
  REAL avirt, bround, around;
  INEXACT REAL c;
  INEXACT REAL abig;
  REAL ahi, alo, bhi, blo;
  REAL err1, err2, err3;
  INEXACT REAL _i, _j;
  REAL _0;

  adx = (REAL) (pa[0] - pd[0]);
  bdx = (REAL) (pb[0] - pd[0]);
  cdx = (REAL) (pc[0] - pd[0]);
  ady = (REAL) (pa[1] - pd[1]);
  bdy = (REAL) (pb[1] - pd[1]);
  cdy = (REAL) (pc[1] - pd[1]);

  Two_Product(bdx, cdy, bdxcdy1, bdxcdy0);
  Two_Product(cdx, bdy, cdxbdy1, cdxbdy0);
  Two_Two_Diff(bdxcdy1, bdxcdy0, cdxbdy1, cdxbdy0, bc3, bc[2], bc[1], bc[0]);
  bc[3] = bc3;
  axbclen = scale_expansion_zeroelim(4, bc, adx, axbc);
  axxbclen = scale_expansion_zeroelim(axbclen, axbc, adx, axxbc);
  aybclen = scale_expansion_zeroelim(4, bc, ady, aybc);
  ayybclen = scale_expansion_zeroelim(aybclen, aybc, ady, ayybc);
  alen = fast_expansion_sum_zeroelim(axxbclen, axxbc, ayybclen, ayybc, adet);

  Two_Product(cdx, ady, cdxady1, cdxady0);
  Two_Product(adx, cdy, adxcdy1, adxcdy0);
  Two_Two_Diff(cdxady1, cdxady0, adxcdy1, adxcdy0, ca3, ca[2], ca[1], ca[0]);
  ca[3] = ca3;
  bxcalen = scale_expansion_zeroelim(4, ca, bdx, bxca);
  bxxcalen = scale_expansion_zeroelim(bxcalen, bxca, bdx, bxxca);
  bycalen = scale_expansion_zeroelim(4, ca, bdy, byca);
  byycalen = scale_expansion_zeroelim(bycalen, byca, bdy, byyca);
  blen = fast_expansion_sum_zeroelim(bxxcalen, bxxca, byycalen, byyca, bdet);

  Two_Product(adx, bdy, adxbdy1, adxbdy0);
  Two_Product(bdx, ady, bdxady1, bdxady0);
  Two_Two_Diff(adxbdy1, adxbdy0, bdxady1, bdxady0, ab3, ab[2], ab[1], ab[0]);
  ab[3] = ab3;
  cxablen = scale_expansion_zeroelim(4, ab, cdx, cxab);
  cxxablen = scale_expansion_zeroelim(cxablen, cxab, cdx, cxxab);
  cyablen = scale_expansion_zeroelim(4, ab, cdy, cyab);
  cyyablen = scale_expansion_zeroelim(cyablen, cyab, cdy, cyyab);
  clen = fast_expansion_sum_zeroelim(cxxablen, cxxab, cyyablen, cyyab, cdet);

  ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet);
  finlength = fast_expansion_sum_zeroelim(ablen, abdet, clen, cdet, fin1);

  det = estimate(finlength, fin1);
  errbound = iccerrboundB * permanent;
  if ((det >= errbound) || (-det >= errbound)) {
    return det;
  }

  Two_Diff_Tail(pa[0], pd[0], adx, adxtail);
  Two_Diff_Tail(pa[1], pd[1], ady, adytail);
  Two_Diff_Tail(pb[0], pd[0], bdx, bdxtail);
  Two_Diff_Tail(pb[1], pd[1], bdy, bdytail);
  Two_Diff_Tail(pc[0], pd[0], cdx, cdxtail);
  Two_Diff_Tail(pc[1], pd[1], cdy, cdytail);
  if ((adxtail == 0.0) && (bdxtail == 0.0) && (cdxtail == 0.0)
      && (adytail == 0.0) && (bdytail == 0.0) && (cdytail == 0.0)) {
    return det;
  }

  errbound = iccerrboundC * permanent + resulterrbound * Absolute(det);
  det += ((adx * adx + ady * ady) * ((bdx * cdytail + cdy * bdxtail)
                                     - (bdy * cdxtail + cdx * bdytail))
          + 2.0 * (adx * adxtail + ady * adytail) * (bdx * cdy - bdy * cdx))
       + ((bdx * bdx + bdy * bdy) * ((cdx * adytail + ady * cdxtail)
                                     - (cdy * adxtail + adx * cdytail))
          + 2.0 * (bdx * bdxtail + bdy * bdytail) * (cdx * ady - cdy * adx))
       + ((cdx * cdx + cdy * cdy) * ((adx * bdytail + bdy * adxtail)
                                     - (ady * bdxtail + bdx * adytail))
          + 2.0 * (cdx * cdxtail + cdy * cdytail) * (adx * bdy - ady * bdx));
  if ((det >= errbound) || (-det >= errbound)) {
    return det;
  }

  finnow = fin1;
  finother = fin2;

  if ((bdxtail != 0.0) || (bdytail != 0.0)
      || (cdxtail != 0.0) || (cdytail != 0.0)) {
    Square(adx, adxadx1, adxadx0);
    Square(ady, adyady1, adyady0);
    Two_Two_Sum(adxadx1, adxadx0, adyady1, adyady0, aa3, aa[2], aa[1], aa[0]);
    aa[3] = aa3;
  }
  if ((cdxtail != 0.0) || (cdytail != 0.0)
      || (adxtail != 0.0) || (adytail != 0.0)) {
    Square(bdx, bdxbdx1, bdxbdx0);
    Square(bdy, bdybdy1, bdybdy0);
    Two_Two_Sum(bdxbdx1, bdxbdx0, bdybdy1, bdybdy0, bb3, bb[2], bb[1], bb[0]);
    bb[3] = bb3;
  }
  if ((adxtail != 0.0) || (adytail != 0.0)
      || (bdxtail != 0.0) || (bdytail != 0.0)) {
    Square(cdx, cdxcdx1, cdxcdx0);
    Square(cdy, cdycdy1, cdycdy0);
    Two_Two_Sum(cdxcdx1, cdxcdx0, cdycdy1, cdycdy0, cc3, cc[2], cc[1], cc[0]);
    cc[3] = cc3;
  }

  if (adxtail != 0.0) {
    axtbclen = scale_expansion_zeroelim(4, bc, adxtail, axtbc);
    temp16alen = scale_expansion_zeroelim(axtbclen, axtbc, 2.0 * adx, temp16a);

    axtcclen = scale_expansion_zeroelim(4, cc, adxtail, axtcc);
    temp16blen = scale_expansion_zeroelim(axtcclen, axtcc, bdy, temp16b);

    axtbblen = scale_expansion_zeroelim(4, bb, adxtail, axtbb);
    temp16clen = scale_expansion_zeroelim(axtbblen, axtbb, -cdy, temp16c);

    temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
                                             temp16blen, temp16b, temp32a);
    temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
                                            temp32alen, temp32a, temp48);
    finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
                                            temp48, finother);
    finswap = finnow; finnow = finother; finother = finswap;
  }
  if (adytail != 0.0) {
    aytbclen = scale_expansion_zeroelim(4, bc, adytail, aytbc);
    temp16alen = scale_expansion_zeroelim(aytbclen, aytbc, 2.0 * ady, temp16a);

    aytbblen = scale_expansion_zeroelim(4, bb, adytail, aytbb);
    temp16blen = scale_expansion_zeroelim(aytbblen, aytbb, cdx, temp16b);

    aytcclen = scale_expansion_zeroelim(4, cc, adytail, aytcc);
    temp16clen = scale_expansion_zeroelim(aytcclen, aytcc, -bdx, temp16c);

    temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
                                             temp16blen, temp16b, temp32a);
    temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
                                            temp32alen, temp32a, temp48);
    finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
                                            temp48, finother);
    finswap = finnow; finnow = finother; finother = finswap;
  }
  if (bdxtail != 0.0) {
    bxtcalen = scale_expansion_zeroelim(4, ca, bdxtail, bxtca);
    temp16alen = scale_expansion_zeroelim(bxtcalen, bxtca, 2.0 * bdx, temp16a);

    bxtaalen = scale_expansion_zeroelim(4, aa, bdxtail, bxtaa);
    temp16blen = scale_expansion_zeroelim(bxtaalen, bxtaa, cdy, temp16b);

    bxtcclen = scale_expansion_zeroelim(4, cc, bdxtail, bxtcc);
    temp16clen = scale_expansion_zeroelim(bxtcclen, bxtcc, -ady, temp16c);

    temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
                                             temp16blen, temp16b, temp32a);
    temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
                                            temp32alen, temp32a, temp48);
    finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
                                            temp48, finother);
    finswap = finnow; finnow = finother; finother = finswap;
  }
  if (bdytail != 0.0) {
    bytcalen = scale_expansion_zeroelim(4, ca, bdytail, bytca);
    temp16alen = scale_expansion_zeroelim(bytcalen, bytca, 2.0 * bdy, temp16a);

    bytcclen = scale_expansion_zeroelim(4, cc, bdytail, bytcc);
    temp16blen = scale_expansion_zeroelim(bytcclen, bytcc, adx, temp16b);

    bytaalen = scale_expansion_zeroelim(4, aa, bdytail, bytaa);
    temp16clen = scale_expansion_zeroelim(bytaalen, bytaa, -cdx, temp16c);

    temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
                                             temp16blen, temp16b, temp32a);
    temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
                                            temp32alen, temp32a, temp48);
    finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
                                            temp48, finother);
    finswap = finnow; finnow = finother; finother = finswap;
  }
  if (cdxtail != 0.0) {
    cxtablen = scale_expansion_zeroelim(4, ab, cdxtail, cxtab);
    temp16alen = scale_expansion_zeroelim(cxtablen, cxtab, 2.0 * cdx, temp16a);

    cxtbblen = scale_expansion_zeroelim(4, bb, cdxtail, cxtbb);
    temp16blen = scale_expansion_zeroelim(cxtbblen, cxtbb, ady, temp16b);

    cxtaalen = scale_expansion_zeroelim(4, aa, cdxtail, cxtaa);
    temp16clen = scale_expansion_zeroelim(cxtaalen, cxtaa, -bdy, temp16c);

    temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
                                             temp16blen, temp16b, temp32a);
    temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
                                            temp32alen, temp32a, temp48);
    finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
                                            temp48, finother);
    finswap = finnow; finnow = finother; finother = finswap;
  }
  if (cdytail != 0.0) {
    cytablen = scale_expansion_zeroelim(4, ab, cdytail, cytab);
    temp16alen = scale_expansion_zeroelim(cytablen, cytab, 2.0 * cdy, temp16a);

    cytaalen = scale_expansion_zeroelim(4, aa, cdytail, cytaa);
    temp16blen = scale_expansion_zeroelim(cytaalen, cytaa, bdx, temp16b);

    cytbblen = scale_expansion_zeroelim(4, bb, cdytail, cytbb);
    temp16clen = scale_expansion_zeroelim(cytbblen, cytbb, -adx, temp16c);

    temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
                                             temp16blen, temp16b, temp32a);
    temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
                                            temp32alen, temp32a, temp48);
    finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
                                            temp48, finother);
    finswap = finnow; finnow = finother; finother = finswap;
  }

  if ((adxtail != 0.0) || (adytail != 0.0)) {
    if ((bdxtail != 0.0) || (bdytail != 0.0)
        || (cdxtail != 0.0) || (cdytail != 0.0)) {
      Two_Product(bdxtail, cdy, ti1, ti0);
      Two_Product(bdx, cdytail, tj1, tj0);
      Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]);
      u[3] = u3;
      negate = -bdy;
      Two_Product(cdxtail, negate, ti1, ti0);
      negate = -bdytail;
      Two_Product(cdx, negate, tj1, tj0);
      Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]);
      v[3] = v3;
      bctlen = fast_expansion_sum_zeroelim(4, u, 4, v, bct);

      Two_Product(bdxtail, cdytail, ti1, ti0);
      Two_Product(cdxtail, bdytail, tj1, tj0);
      Two_Two_Diff(ti1, ti0, tj1, tj0, bctt3, bctt[2], bctt[1], bctt[0]);
      bctt[3] = bctt3;
      bcttlen = 4;
    }
    else {
      bct[0] = 0.0;
      bctlen = 1;
      bctt[0] = 0.0;
      bcttlen = 1;
    }

    if (adxtail != 0.0) {
      temp16alen = scale_expansion_zeroelim(axtbclen, axtbc, adxtail, temp16a);
      axtbctlen = scale_expansion_zeroelim(bctlen, bct, adxtail, axtbct);
      temp32alen = scale_expansion_zeroelim(axtbctlen, axtbct, 2.0 * adx, temp32a);
      temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
                                              temp32alen, temp32a, temp48);
      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
                                              temp48, finother);
      finswap = finnow; finnow = finother; finother = finswap;
      if (bdytail != 0.0) {
        temp8len = scale_expansion_zeroelim(4, cc, adxtail, temp8);
        temp16alen = scale_expansion_zeroelim(temp8len, temp8, bdytail, temp16a);
        finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
                                                temp16a, finother);
        finswap = finnow; finnow = finother; finother = finswap;
      }
      if (cdytail != 0.0) {
        temp8len = scale_expansion_zeroelim(4, bb, -adxtail, temp8);
        temp16alen = scale_expansion_zeroelim(temp8len, temp8, cdytail, temp16a);
        finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
                                                temp16a, finother);
        finswap = finnow; finnow = finother; finother = finswap;
      }

      temp32alen = scale_expansion_zeroelim(axtbctlen, axtbct, adxtail, temp32a);
      axtbcttlen = scale_expansion_zeroelim(bcttlen, bctt, adxtail, axtbctt);
      temp16alen = scale_expansion_zeroelim(axtbcttlen, axtbctt, 2.0 * adx, temp16a);
      temp16blen = scale_expansion_zeroelim(axtbcttlen, axtbctt, adxtail, temp16b);
      temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
                                               temp16blen, temp16b, temp32b);
      temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
                                              temp32blen, temp32b, temp64);
      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
                                              temp64, finother);
      finswap = finnow; finnow = finother; finother = finswap;
    }
    if (adytail != 0.0) {
      temp16alen = scale_expansion_zeroelim(aytbclen, aytbc, adytail, temp16a);
      aytbctlen = scale_expansion_zeroelim(bctlen, bct, adytail, aytbct);
      temp32alen = scale_expansion_zeroelim(aytbctlen, aytbct, 2.0 * ady, temp32a);
      temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
                                              temp32alen, temp32a, temp48);
      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
                                              temp48, finother);
      finswap = finnow; finnow = finother; finother = finswap;


      temp32alen = scale_expansion_zeroelim(aytbctlen, aytbct, adytail, temp32a);
      aytbcttlen = scale_expansion_zeroelim(bcttlen, bctt, adytail, aytbctt);
      temp16alen = scale_expansion_zeroelim(aytbcttlen, aytbctt, 2.0 * ady, temp16a);
      temp16blen = scale_expansion_zeroelim(aytbcttlen, aytbctt, adytail, temp16b);
      temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
                                               temp16blen, temp16b, temp32b);
      temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
                                              temp32blen, temp32b, temp64);
      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
                                              temp64, finother);
      finswap = finnow; finnow = finother; finother = finswap;
    }
  }
  if ((bdxtail != 0.0) || (bdytail != 0.0)) {
    if ((cdxtail != 0.0) || (cdytail != 0.0)
        || (adxtail != 0.0) || (adytail != 0.0)) {
      Two_Product(cdxtail, ady, ti1, ti0);
      Two_Product(cdx, adytail, tj1, tj0);
      Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]);
      u[3] = u3;
      negate = -cdy;
      Two_Product(adxtail, negate, ti1, ti0);
      negate = -cdytail;
      Two_Product(adx, negate, tj1, tj0);
      Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]);
      v[3] = v3;
      catlen = fast_expansion_sum_zeroelim(4, u, 4, v, cat);

      Two_Product(cdxtail, adytail, ti1, ti0);
      Two_Product(adxtail, cdytail, tj1, tj0);
      Two_Two_Diff(ti1, ti0, tj1, tj0, catt3, catt[2], catt[1], catt[0]);
      catt[3] = catt3;
      cattlen = 4;
    }
    else {
      cat[0] = 0.0;
      catlen = 1;
      catt[0] = 0.0;
      cattlen = 1;
    }

    if (bdxtail != 0.0) {
      temp16alen = scale_expansion_zeroelim(bxtcalen, bxtca, bdxtail, temp16a);
      bxtcatlen = scale_expansion_zeroelim(catlen, cat, bdxtail, bxtcat);
      temp32alen = scale_expansion_zeroelim(bxtcatlen, bxtcat, 2.0 * bdx, temp32a);
      temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
                                              temp32alen, temp32a, temp48);
      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
                                              temp48, finother);
      finswap = finnow; finnow = finother; finother = finswap;
      if (cdytail != 0.0) {
        temp8len = scale_expansion_zeroelim(4, aa, bdxtail, temp8);
        temp16alen = scale_expansion_zeroelim(temp8len, temp8, cdytail, temp16a);
        finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
                                                temp16a, finother);
        finswap = finnow; finnow = finother; finother = finswap;
      }
      if (adytail != 0.0) {
        temp8len = scale_expansion_zeroelim(4, cc, -bdxtail, temp8);
        temp16alen = scale_expansion_zeroelim(temp8len, temp8, adytail, temp16a);
        finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
                                                temp16a, finother);
        finswap = finnow; finnow = finother; finother = finswap;
      }

      temp32alen = scale_expansion_zeroelim(bxtcatlen, bxtcat, bdxtail, temp32a);
      bxtcattlen = scale_expansion_zeroelim(cattlen, catt, bdxtail, bxtcatt);
      temp16alen = scale_expansion_zeroelim(bxtcattlen, bxtcatt, 2.0 * bdx, temp16a);
      temp16blen = scale_expansion_zeroelim(bxtcattlen, bxtcatt, bdxtail, temp16b);
      temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
                                               temp16blen, temp16b, temp32b);
      temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
                                              temp32blen, temp32b, temp64);
      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
                                              temp64, finother);
      finswap = finnow; finnow = finother; finother = finswap;
    }
    if (bdytail != 0.0) {
      temp16alen = scale_expansion_zeroelim(bytcalen, bytca, bdytail, temp16a);
      bytcatlen = scale_expansion_zeroelim(catlen, cat, bdytail, bytcat);
      temp32alen = scale_expansion_zeroelim(bytcatlen, bytcat, 2.0 * bdy, temp32a);
      temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
                                              temp32alen, temp32a, temp48);
      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
                                              temp48, finother);
      finswap = finnow; finnow = finother; finother = finswap;


      temp32alen = scale_expansion_zeroelim(bytcatlen, bytcat, bdytail, temp32a);
      bytcattlen = scale_expansion_zeroelim(cattlen, catt, bdytail, bytcatt);
      temp16alen = scale_expansion_zeroelim(bytcattlen, bytcatt, 2.0 * bdy, temp16a);
      temp16blen = scale_expansion_zeroelim(bytcattlen, bytcatt, bdytail, temp16b);
      temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
                                               temp16blen, temp16b, temp32b);
      temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
                                              temp32blen, temp32b, temp64);
      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
                                              temp64, finother);
      finswap = finnow; finnow = finother; finother = finswap;
    }
  }
  if ((cdxtail != 0.0) || (cdytail != 0.0)) {
    if ((adxtail != 0.0) || (adytail != 0.0)
        || (bdxtail != 0.0) || (bdytail != 0.0)) {
      Two_Product(adxtail, bdy, ti1, ti0);
      Two_Product(adx, bdytail, tj1, tj0);
      Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]);
      u[3] = u3;
      negate = -ady;
      Two_Product(bdxtail, negate, ti1, ti0);
      negate = -adytail;
      Two_Product(bdx, negate, tj1, tj0);
      Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]);
      v[3] = v3;
      abtlen = fast_expansion_sum_zeroelim(4, u, 4, v, abt);

      Two_Product(adxtail, bdytail, ti1, ti0);
      Two_Product(bdxtail, adytail, tj1, tj0);
      Two_Two_Diff(ti1, ti0, tj1, tj0, abtt3, abtt[2], abtt[1], abtt[0]);
      abtt[3] = abtt3;
      abttlen = 4;
    }
    else {
      abt[0] = 0.0;
      abtlen = 1;
      abtt[0] = 0.0;
      abttlen = 1;
    }

    if (cdxtail != 0.0) {
      temp16alen = scale_expansion_zeroelim(cxtablen, cxtab, cdxtail, temp16a);
      cxtabtlen = scale_expansion_zeroelim(abtlen, abt, cdxtail, cxtabt);
      temp32alen = scale_expansion_zeroelim(cxtabtlen, cxtabt, 2.0 * cdx, temp32a);
      temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
                                              temp32alen, temp32a, temp48);
      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
                                              temp48, finother);
      finswap = finnow; finnow = finother; finother = finswap;
      if (adytail != 0.0) {
        temp8len = scale_expansion_zeroelim(4, bb, cdxtail, temp8);
        temp16alen = scale_expansion_zeroelim(temp8len, temp8, adytail, temp16a);
        finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
                                                temp16a, finother);
        finswap = finnow; finnow = finother; finother = finswap;
      }
      if (bdytail != 0.0) {
        temp8len = scale_expansion_zeroelim(4, aa, -cdxtail, temp8);
        temp16alen = scale_expansion_zeroelim(temp8len, temp8, bdytail, temp16a);
        finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
                                                temp16a, finother);
        finswap = finnow; finnow = finother; finother = finswap;
      }

      temp32alen = scale_expansion_zeroelim(cxtabtlen, cxtabt, cdxtail, temp32a);
      cxtabttlen = scale_expansion_zeroelim(abttlen, abtt, cdxtail, cxtabtt);
      temp16alen = scale_expansion_zeroelim(cxtabttlen, cxtabtt, 2.0 * cdx, temp16a);
      temp16blen = scale_expansion_zeroelim(cxtabttlen, cxtabtt, cdxtail, temp16b);
      temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
                                               temp16blen, temp16b, temp32b);
      temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
                                              temp32blen, temp32b, temp64);
      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
                                              temp64, finother);
      finswap = finnow; finnow = finother; finother = finswap;
    }
    if (cdytail != 0.0) {
      temp16alen = scale_expansion_zeroelim(cytablen, cytab, cdytail, temp16a);
      cytabtlen = scale_expansion_zeroelim(abtlen, abt, cdytail, cytabt);
      temp32alen = scale_expansion_zeroelim(cytabtlen, cytabt, 2.0 * cdy, temp32a);
      temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
                                              temp32alen, temp32a, temp48);
      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
                                              temp48, finother);
      finswap = finnow; finnow = finother; finother = finswap;


      temp32alen = scale_expansion_zeroelim(cytabtlen, cytabt, cdytail, temp32a);
      cytabttlen = scale_expansion_zeroelim(abttlen, abtt, cdytail, cytabtt);
      temp16alen = scale_expansion_zeroelim(cytabttlen, cytabtt, 2.0 * cdy, temp16a);
      temp16blen = scale_expansion_zeroelim(cytabttlen, cytabtt, cdytail, temp16b);
      temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
                                               temp16blen, temp16b, temp32b);
      temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
                                              temp32blen, temp32b, temp64);
      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
                                              temp64, finother);
      finswap = finnow; finnow = finother; /* finother = finswap; */
    }
  }

  return finnow[finlength - 1];
}

REAL incircle(point pa,
              point pb,
              point pc,
              point pd)
{
  REAL adx, bdx, cdx, ady, bdy, cdy;
  REAL bdxcdy, cdxbdy, cdxady, adxcdy, adxbdy, bdxady;
  REAL alift, blift, clift;
  REAL det;
  REAL permanent, errbound;

  incirclecount++;

  adx = pa[0] - pd[0];
  bdx = pb[0] - pd[0];
  cdx = pc[0] - pd[0];
  ady = pa[1] - pd[1];
  bdy = pb[1] - pd[1];
  cdy = pc[1] - pd[1];

  bdxcdy = bdx * cdy;
  cdxbdy = cdx * bdy;
  alift = adx * adx + ady * ady;

  cdxady = cdx * ady;
  adxcdy = adx * cdy;
  blift = bdx * bdx + bdy * bdy;

  adxbdy = adx * bdy;
  bdxady = bdx * ady;
  clift = cdx * cdx + cdy * cdy;

  det = alift * (bdxcdy - cdxbdy)
      + blift * (cdxady - adxcdy)
      + clift * (adxbdy - bdxady);

  if (noexact) {
    return det;
  }

  permanent = (Absolute(bdxcdy) + Absolute(cdxbdy)) * alift
            + (Absolute(cdxady) + Absolute(adxcdy)) * blift
            + (Absolute(adxbdy) + Absolute(bdxady)) * clift;
  errbound = iccerrboundA * permanent;
  if ((det > errbound) || (-det > errbound)) {
    return det;
  }

  return incircleadapt(pa, pb, pc, pd, permanent);
}

/**                                                                         **/
/**                                                                         **/
/********* Determinant evaluation routines end here                  *********/

/*****************************************************************************/
/*                                                                           */
/*  triangleinit()   Initialize some variables.                              */
/*                                                                           */
/*****************************************************************************/

void triangleinit(void)
{
  points.maxitems = triangles.maxitems = shelles.maxitems = viri.maxitems =
    badsegments.maxitems = badtriangles.maxitems = splaynodes.maxitems = 0l;
  points.itembytes = triangles.itembytes = shelles.itembytes = viri.itembytes =
    badsegments.itembytes = badtriangles.itembytes = splaynodes.itembytes = 0;
  recenttri.tri = (triangle *) NULL;    /* No triangle has been visited yet. */
  samples = 1;            /* Point location should take at least one sample. */
  checksegments = 0;      /* There are no segments in the triangulation yet. */
  incirclecount = counterclockcount = hyperbolacount = 0;
  circumcentercount = circletopcount = 0;
  randomseed = 1;

  exactinit();                     /* Initialize exact arithmetic constants. */
}

/*****************************************************************************/
/*                                                                           */
/*  randomnation()   Generate a random number between 0 and `choices' - 1.   */
/*                                                                           */
/*  This is a simple linear congruential random number generator.  Hence, it */
/*  is a bad random number generator, but good enough for most randomized    */
/*  geometric algorithms.                                                    */
/*                                                                           */
/*****************************************************************************/

unsigned long randomnation(unsigned int choices)
{
  randomseed = (randomseed * 1366l + 150889l) % 714025l;
  return randomseed / (714025l / choices + 1);
}

/********* Mesh quality testing routines begin here                  *********/
/**                                                                         **/
/**                                                                         **/

/*****************************************************************************/
/*                                                                           */
/*  checkmesh()   Test the mesh for topological consistency.                 */
/*                                                                           */
/*****************************************************************************/

#ifndef REDUCED

void checkmesh(void)
{
  struct triedge triangleloop;
  struct triedge oppotri, oppooppotri;
  point triorg, tridest, triapex;
  point oppoorg, oppodest;
  int horrors;
  int saveexact;
  triangle ptr;                         /* Temporary variable used by sym(). */

  /* Temporarily turn on exact arithmetic if it's off. */
  saveexact = noexact;
  noexact = 0;
  if (!quiet) {
    printf("  Checking consistency of mesh...\n");
  }
  horrors = 0;
  /* Run through the list of triangles, checking each one. */
  traversalinit(&triangles);
  triangleloop.tri = triangletraverse();
  while (triangleloop.tri != (triangle *) NULL) {
    /* Check all three edges of the triangle. */
    for (triangleloop.orient = 0; triangleloop.orient < 3; triangleloop.orient++) {
      org(triangleloop, triorg);
      dest(triangleloop, tridest);
      if (triangleloop.orient == 0) {       /* Only test for inversion once. */
        /* Test if the triangle is flat or inverted. */
        apex(triangleloop, triapex);
        if (counterclockwise(triorg, tridest, triapex) <= 0.0) {
          printf("  !! !! Inverted ");
          printtriangle(&triangleloop);
          horrors++;
        }
      }
      /* Find the neighboring triangle on this edge. */
      sym(triangleloop, oppotri);
      if (oppotri.tri != dummytri) {
        /* Check that the triangle's neighbor knows it's a neighbor. */
        sym(oppotri, oppooppotri);
        if ((triangleloop.tri != oppooppotri.tri)
            || (triangleloop.orient != oppooppotri.orient)) {
          printf("  !! !! Asymmetric triangle-triangle bond:\n");
          if (triangleloop.tri == oppooppotri.tri) {
            printf("   (Right triangle, wrong orientation)\n");
          }
          printf("    First ");
          printtriangle(&triangleloop);
          printf("    Second (nonreciprocating) ");
          printtriangle(&oppotri);
          horrors++;
        }
        /* Check that both triangles agree on the identities */
        /*   of their shared vertices.                       */
        org(oppotri, oppoorg);
        dest(oppotri, oppodest);
        if ((triorg != oppodest) || (tridest != oppoorg)) {
          printf("  !! !! Mismatched edge coordinates between two triangles:\n");
          printf("    First mismatched ");
          printtriangle(&triangleloop);
          printf("    Second mismatched ");
          printtriangle(&oppotri);
          horrors++;
        }
      }
    }
    triangleloop.tri = triangletraverse();
  }
  if (horrors == 0) {
    if (!quiet) {
      printf("  In my studied opinion, the mesh appears to be consistent.\n");
    }
  }
  else if (horrors == 1) {
    printf("  !! !! !! !! Precisely one festering wound discovered.\n");
  }
  else {
    printf("  !! !! !! !! %d abominations witnessed.\n", horrors);
  }
  /* Restore the status of exact arithmetic. */
  noexact = saveexact;
}

#endif /* not REDUCED */

/*****************************************************************************/
/*                                                                           */
/*  checkdelaunay()   Ensure that the mesh is (constrained) Delaunay.        */
/*                                                                           */
/*****************************************************************************/

#ifndef REDUCED

void checkdelaunay(void)
{
  struct triedge triangleloop;
  struct triedge oppotri;
  struct edge opposhelle;
  point triorg, tridest, triapex;
  point oppoapex;
  int shouldbedelaunay;
  int horrors;
  int saveexact;
  triangle ptr;                         /* Temporary variable used by sym(). */
  shelle sptr;                      /* Temporary variable used by tspivot(). */

  /* Temporarily turn on exact arithmetic if it's off. */
  saveexact = noexact;
  noexact = 0;
  if (!quiet) {
    printf("  Checking Delaunay property of mesh...\n");
  }
  horrors = 0;
  /* Run through the list of triangles, checking each one. */
  traversalinit(&triangles);
  triangleloop.tri = triangletraverse();
  while (triangleloop.tri != (triangle *) NULL) {
    /* Check all three edges of the triangle. */
    for (triangleloop.orient = 0; triangleloop.orient < 3; triangleloop.orient++) {
      org(triangleloop, triorg);
      dest(triangleloop, tridest);
      apex(triangleloop, triapex);
      sym(triangleloop, oppotri);
      apex(oppotri, oppoapex);
      /* Only test that the edge is locally Delaunay if there is an   */
      /*   adjoining triangle whose pointer is larger (to ensure that */
      /*   each pair isn't tested twice).                             */
      shouldbedelaunay = (oppotri.tri != dummytri)
            && (triapex != (point) NULL) && (oppoapex != (point) NULL)
            && (triangleloop.tri < oppotri.tri);
      if (checksegments && shouldbedelaunay) {
        /* If a shell edge separates the triangles, then the edge is */
        /*   constrained, so no local Delaunay test should be done.  */
        tspivot(triangleloop, opposhelle);
        if (opposhelle.sh != dummysh){
          shouldbedelaunay = 0;
        }
      }
      if (shouldbedelaunay) {
        if (incircle(triorg, tridest, triapex, oppoapex) > 0.0) {
          printf("  !! !! Non-Delaunay pair of triangles:\n");
          printf("    First non-Delaunay ");
          printtriangle(&triangleloop);
          printf("    Second non-Delaunay ");
          printtriangle(&oppotri);
          horrors++;
        }
      }
    }
    triangleloop.tri = triangletraverse();
  }
  if (horrors == 0) {
    if (!quiet) {
      printf("  By virtue of my perceptive intelligence, I declare the mesh Delaunay.\n");
    }
  }
  else if (horrors == 1) {
    printf("  !! !! !! !! Precisely one terrifying transgression identified.\n");
  }
  else {
    printf("  !! !! !! !! %d obscenities viewed with horror.\n", horrors);
  }
  /* Restore the status of exact arithmetic. */
  noexact = saveexact;
}

#endif /* not REDUCED */

/*****************************************************************************/
/*                                                                           */
/*  enqueuebadtri()   Add a bad triangle to the end of a queue.              */
/*                                                                           */
/*  The queue is actually a set of 64 queues.  I use multiple queues to give */
/*  priority to smaller angles.  I originally implemented a heap, but the    */
/*  queues are (to my surprise) much faster.                                 */
/*                                                                           */
/*****************************************************************************/

#ifndef CDT_ONLY

void enqueuebadtri(struct triedge *instri,
                   REAL angle,
                   point insapex,
                   point insorg,
                   point insdest)
{
  struct badface *newface;
  int queuenumber;

  if (verbose > 2) {
    printf("  Queueing bad triangle:\n");
    printf("    (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n", insorg[0],
           insorg[1], insdest[0], insdest[1], insapex[0], insapex[1]);
  }
  /* Allocate space for the bad triangle. */
  newface = (struct badface *) poolalloc(&badtriangles);
  triedgecopy(*instri, newface->badfacetri);
  newface->key = angle;
  newface->faceapex = insapex;
  newface->faceorg = insorg;
  newface->facedest = insdest;
  newface->nextface = (struct badface *) NULL;
  /* Determine the appropriate queue to put the bad triangle into. */
  if (angle > 0.6) {
    queuenumber = (int) (160.0 * (angle - 0.6));
    if (queuenumber > 63) {
      queuenumber = 63;
    }
  }
  else {
    /* It's not a bad angle; put the triangle in the lowest-priority queue. */
    queuenumber = 0;
  }
  /* Add the triangle to the end of a queue. */
  *queuetail[queuenumber] = newface;
  /* Maintain a pointer to the NULL pointer at the end of the queue. */
  queuetail[queuenumber] = &newface->nextface;
}

#endif /* not CDT_ONLY */

/*****************************************************************************/
/*                                                                           */
/*  dequeuebadtri()   Remove a triangle from the front of the queue.         */
/*                                                                           */
/*****************************************************************************/

#ifndef CDT_ONLY

struct badface *dequeuebadtri(void)
{
  struct badface *result;
  int queuenumber;

  /* Look for a nonempty queue. */
  for (queuenumber = 63; queuenumber >= 0; queuenumber--) {
    result = queuefront[queuenumber];
    if (result != (struct badface *) NULL) {
      /* Remove the triangle from the queue. */
      queuefront[queuenumber] = result->nextface;
      /* Maintain a pointer to the NULL pointer at the end of the queue. */
      if (queuefront[queuenumber] == (struct badface *) NULL) {
        queuetail[queuenumber] = &queuefront[queuenumber];
      }
      return result;
    }
  }
  return (struct badface *) NULL;
}

#endif /* not CDT_ONLY */

/*****************************************************************************/
/*                                                                           */
/*  checkedge4encroach()   Check a segment to see if it is encroached; add   */
/*                         it to the list if it is.                          */
/*                                                                           */
/*  An encroached segment is an unflippable edge that has a point in its     */
/*  diametral circle (that is, it faces an angle greater than 90 degrees).   */
/*  This definition is due to Ruppert.                                       */
/*                                                                           */
/*  Returns a nonzero value if the edge is encroached.                       */
/*                                                                           */
/*****************************************************************************/

#ifndef CDT_ONLY

int checkedge4encroach(struct edge *testedge)
{
  struct triedge neighbortri;
  struct edge testsym;
  struct edge *badedge;
  int addtolist;
  int sides;
  point eorg, edest, eapex;
  triangle ptr;                     /* Temporary variable used by stpivot(). */

  addtolist = 0;
  sides = 0;

  sorg(*testedge, eorg);
  sdest(*testedge, edest);
  /* Check one neighbor of the shell edge. */
  stpivot(*testedge, neighbortri);
  /* Does the neighbor exist, or is this a boundary edge? */
  if (neighbortri.tri != dummytri) {
    sides++;
    /* Find a vertex opposite this edge. */
    apex(neighbortri, eapex);
    /* Check whether the vertex is inside the diametral circle of the  */
    /*   shell edge.  Pythagoras' Theorem is used to check whether the */
    /*   angle at the vertex is greater than 90 degrees.               */
    if (eapex[0] * (eorg[0] + edest[0]) + eapex[1] * (eorg[1] + edest[1]) >
        eapex[0] * eapex[0] + eorg[0] * edest[0] +
        eapex[1] * eapex[1] + eorg[1] * edest[1]) {
      addtolist = 1;
    }
  }
  /* Check the other neighbor of the shell edge. */
  ssym(*testedge, testsym);
  stpivot(testsym, neighbortri);
  /* Does the neighbor exist, or is this a boundary edge? */
  if (neighbortri.tri != dummytri) {
    sides++;
    /* Find the other vertex opposite this edge. */
    apex(neighbortri, eapex);
    /* Check whether the vertex is inside the diametral circle of the  */
    /*   shell edge.  Pythagoras' Theorem is used to check whether the */
    /*   angle at the vertex is greater than 90 degrees.               */
    if (eapex[0] * (eorg[0] + edest[0]) +
        eapex[1] * (eorg[1] + edest[1]) >
        eapex[0] * eapex[0] + eorg[0] * edest[0] +
        eapex[1] * eapex[1] + eorg[1] * edest[1]) {
      addtolist += 2;
    }
  }

  if (addtolist && (!nobisect || ((nobisect == 1) && (sides == 2)))) {
    if (verbose > 2) {
      printf("  Queueing encroached segment (%.12g, %.12g) (%.12g, %.12g).\n",
             eorg[0], eorg[1], edest[0], edest[1]);
    }
    /* Add the shell edge to the list of encroached segments. */
    /*   Be sure to get the orientation right.                */
    badedge = (struct edge *) poolalloc(&badsegments);
    if (addtolist == 1) {
      shellecopy(*testedge, *badedge);
    }
    else {
      shellecopy(testsym, *badedge);
    }
  }
  return addtolist;
}

#endif /* not CDT_ONLY */

/*****************************************************************************/
/*                                                                           */
/*  testtriangle()   Test a face for quality measures.                       */
/*                                                                           */
/*  Tests a triangle to see if it satisfies the minimum angle condition and  */
/*  the maximum area condition.  Triangles that aren't up to spec are added  */
/*  to the bad triangle queue.                                               */
/*                                                                           */
/*****************************************************************************/

#ifndef CDT_ONLY

void testtriangle(struct triedge *testtri)
{
  struct triedge sametesttri;
  struct edge edge1, edge2;
  point torg, tdest, tapex;
  point anglevertex;
  REAL dxod, dyod, dxda, dyda, dxao, dyao;
  REAL dxod2, dyod2, dxda2, dyda2, dxao2, dyao2;
  REAL apexlen, orglen, destlen;
  REAL angle;
  REAL area;
  shelle sptr;                      /* Temporary variable used by tspivot(). */

  org(*testtri, torg);
  dest(*testtri, tdest);
  apex(*testtri, tapex);
  dxod = torg[0] - tdest[0];
  dyod = torg[1] - tdest[1];
  dxda = tdest[0] - tapex[0];
  dyda = tdest[1] - tapex[1];
  dxao = tapex[0] - torg[0];
  dyao = tapex[1] - torg[1];
  dxod2 = dxod * dxod;
  dyod2 = dyod * dyod;
  dxda2 = dxda * dxda;
  dyda2 = dyda * dyda;
  dxao2 = dxao * dxao;
  dyao2 = dyao * dyao;
  /* Find the lengths of the triangle's three edges. */
  apexlen = dxod2 + dyod2;
  orglen = dxda2 + dyda2;
  destlen = dxao2 + dyao2;
  if ((apexlen < orglen) && (apexlen < destlen)) {
    /* The edge opposite the apex is shortest. */
    /* Find the square of the cosine of the angle at the apex. */
    angle = dxda * dxao + dyda * dyao;
    angle = angle * angle / (orglen * destlen);
    anglevertex = tapex;
    lnext(*testtri, sametesttri);
    tspivot(sametesttri, edge1);
    lnextself(sametesttri);
    tspivot(sametesttri, edge2);
  }
  else if (orglen < destlen) {
    /* The edge opposite the origin is shortest. */
    /* Find the square of the cosine of the angle at the origin. */
    angle = dxod * dxao + dyod * dyao;
    angle = angle * angle / (apexlen * destlen);
    anglevertex = torg;
    tspivot(*testtri, edge1);
    lprev(*testtri, sametesttri);
    tspivot(sametesttri, edge2);
  }
  else {
    /* The edge opposite the destination is shortest. */
    /* Find the square of the cosine of the angle at the destination. */
    angle = dxod * dxda + dyod * dyda;
    angle = angle * angle / (apexlen * orglen);
    anglevertex = tdest;
    tspivot(*testtri, edge1);
    lnext(*testtri, sametesttri);
    tspivot(sametesttri, edge2);
  }
  /* Check if both edges that form the angle are segments. */
  if ((edge1.sh != dummysh) && (edge2.sh != dummysh)) {
    /* The angle is a segment intersection. */
    if ((angle > 0.9924) && !quiet) {                  /* Roughly 5 degrees. */
      if (angle > 1.0) {
        /* Beware of a floating exception in acos(). */
        angle = 1.0;
      }
      /* Find the actual angle in degrees, for printing. */
      angle = acos(sqrt(angle)) * (180.0 / PI);
      printf("Warning:  Small angle (%.4g degrees) between segments at point\n", angle);
      printf("  (%.12g, %.12g)\n", anglevertex[0], anglevertex[1]);
    }
    /* Don't add this bad triangle to the list; there's nothing that */
    /*   can be done about a small angle between two segments.       */
    angle = 0.0;
  }
  /* Check whether the angle is smaller than permitted. */
  if (angle > goodangle) {
    /* Add this triangle to the list of bad triangles. */
    enqueuebadtri(testtri, angle, tapex, torg, tdest);
    return;
  }
  if (vararea || fixedarea) {
    /* Check whether the area is larger than permitted. */
    area = 0.5 * (dxod * dyda - dyod * dxda);
    if (fixedarea && (area > maxarea)) {
      /* Add this triangle to the list of bad triangles. */
      enqueuebadtri(testtri, angle, tapex, torg, tdest);
    }
    else if (vararea) {
      /* Nonpositive area constraints are treated as unconstrained. */
      if ((area > areabound(*testtri)) && (areabound(*testtri) > 0.0)) {
        /* Add this triangle to the list of bad triangles. */
        enqueuebadtri(testtri, angle, tapex, torg, tdest);
      }
    }
  }
}

#endif /* not CDT_ONLY */

/**                                                                         **/
/**                                                                         **/
/********* Mesh quality testing routines end here                    *********/

/********* Point location routines begin here                        *********/
/**                                                                         **/
/**                                                                         **/

/*****************************************************************************/
/*                                                                           */
/*  makepointmap()   Construct a mapping from points to triangles to improve  */
/*                  the speed of point location for segment insertion.       */
/*                                                                           */
/*  Traverses all the triangles, and provides each corner of each triangle   */
/*  with a pointer to that triangle.  Of course, pointers will be            */
/*  overwritten by other pointers because (almost) each point is a corner    */
/*  of several triangles, but in the end every point will point to some      */
/*  triangle that contains it.                                               */
/*                                                                           */
/*****************************************************************************/

void makepointmap(void)
{
  struct triedge triangleloop;
  point triorg;

  if (verbose) {
    printf("    Constructing mapping from points to triangles.\n");
  }
  traversalinit(&triangles);
  triangleloop.tri = triangletraverse();
  while (triangleloop.tri != (triangle *) NULL) {
    /* Check all three points of the triangle. */
    for (triangleloop.orient = 0; triangleloop.orient < 3; triangleloop.orient++) {
      org(triangleloop, triorg);
      setpoint2tri(triorg, encode(triangleloop));
    }
    triangleloop.tri = triangletraverse();
  }
}

/*****************************************************************************/
/*                                                                           */
/*  preciselocate()   Find a triangle or edge containing a given point.      */
/*                                                                           */
/*  Begins its search from `searchtri'.  It is important that `searchtri'    */
/*  be a handle with the property that `searchpoint' is strictly to the left */
/*  of the edge denoted by `searchtri', or is collinear with that edge and   */
/*  does not intersect that edge.  (In particular, `searchpoint' should not  */
/*  be the origin or destination of that edge.)                              */
/*                                                                           */
/*  These conditions are imposed because preciselocate() is normally used in */
/*  one of two situations:                                                   */
/*                                                                           */
/*  (1)  To try to find the location to insert a new point.  Normally, we    */
/*       know an edge that the point is strictly to the left of.  In the     */
/*       incremental Delaunay algorithm, that edge is a bounding box edge.   */
/*       In Ruppert's Delaunay refinement algorithm for quality meshing,     */
/*       that edge is the shortest edge of the triangle whose circumcenter   */
/*       is being inserted.                                                  */
/*                                                                           */
/*  (2)  To try to find an existing point.  In this case, any edge on the    */
/*       convex hull is a good starting edge.  The possibility that the      */
/*       vertex one seeks is an endpoint of the starting edge must be        */
/*       screened out before preciselocate() is called.                      */
/*                                                                           */
/*  On completion, `searchtri' is a triangle that contains `searchpoint'.    */
/*                                                                           */
/*  This implementation differs from that given by Guibas and Stolfi.  It    */
/*  walks from triangle to triangle, crossing an edge only if `searchpoint'  */
/*  is on the other side of the line containing that edge.  After entering   */
/*  a triangle, there are two edges by which one can leave that triangle.    */
/*  If both edges are valid (`searchpoint' is on the other side of both      */
/*  edges), one of the two is chosen by drawing a line perpendicular to      */
/*  the entry edge (whose endpoints are `forg' and `fdest') passing through  */
/*  `fapex'.  Depending on which side of this perpendicular `searchpoint'    */
/*  falls on, an exit edge is chosen.                                        */
/*                                                                           */
/*  This implementation is empirically faster than the Guibas and Stolfi     */
/*  point location routine (which I originally used), which tends to spiral  */
/*  in toward its target.                                                    */
/*                                                                           */
/*  Returns ONVERTEX if the point lies on an existing vertex.  `searchtri'   */
/*  is a handle whose origin is the existing vertex.                         */
/*                                                                           */
/*  Returns ONEDGE if the point lies on a mesh edge.  `searchtri' is a       */
/*  handle whose primary edge is the edge on which the point lies.           */
/*                                                                           */
/*  Returns INTRIANGLE if the point lies strictly within a triangle.         */
/*  `searchtri' is a handle on the triangle that contains the point.         */
/*                                                                           */
/*  Returns OUTSIDE if the point lies outside the mesh.  `searchtri' is a    */
/*  handle whose primary edge the point is to the right of.  This might      */
/*  occur when the circumcenter of a triangle falls just slightly outside    */
/*  the mesh due to floating-point roundoff error.  It also occurs when      */
/*  seeking a hole or region point that a foolish user has placed outside    */
/*  the mesh.                                                                */
/*                                                                           */
/*  WARNING:  This routine is designed for convex triangulations, and will   */
/*  not generally work after the holes and concavities have been carved.     */
/*  However, it can still be used to find the circumcenter of a triangle, as */
/*  long as the search is begun from the triangle in question.               */
/*                                                                           */
/*****************************************************************************/

enum locateresult preciselocate(point searchpoint,
                                struct triedge *searchtri)
{
  struct triedge backtracktri;
  point forg, fdest, fapex;
  point swappoint;
  REAL orgorient, destorient;
  int moveleft;
  triangle ptr;                         /* Temporary variable used by sym(). */

  if (verbose > 2) {
    printf("  Searching for point (%.12g, %.12g).\n",
           searchpoint[0], searchpoint[1]);
  }
  /* Where are we? */
  org(*searchtri, forg);
  dest(*searchtri, fdest);
  apex(*searchtri, fapex);
  while (1) {
    if (verbose > 2) {
      printf("    At (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
             forg[0], forg[1], fdest[0], fdest[1], fapex[0], fapex[1]);
    }
    /* Check whether the apex is the point we seek. */
    if ((fapex[0] == searchpoint[0]) && (fapex[1] == searchpoint[1])) {
      lprevself(*searchtri);
      return ONVERTEX;
    }
    /* Does the point lie on the other side of the line defined by the */
    /*   triangle edge opposite the triangle's destination?            */
    destorient = counterclockwise(forg, fapex, searchpoint);
    /* Does the point lie on the other side of the line defined by the */
    /*   triangle edge opposite the triangle's origin?                 */
    orgorient = counterclockwise(fapex, fdest, searchpoint);
    if (destorient > 0.0) {
      if (orgorient > 0.0) {
        /* Move left if the inner product of (fapex - searchpoint) and  */
        /*   (fdest - forg) is positive.  This is equivalent to drawing */
        /*   a line perpendicular to the line (forg, fdest) passing     */
        /*   through `fapex', and determining which side of this line   */
        /*   `searchpoint' falls on.                                    */
        moveleft = (fapex[0] - searchpoint[0]) * (fdest[0] - forg[0]) +
                   (fapex[1] - searchpoint[1]) * (fdest[1] - forg[1]) > 0.0;
      }
      else {
        moveleft = 1;
      }
    }
    else {
      if (orgorient > 0.0) {
        moveleft = 0;
      }
      else {
        /* The point we seek must be on the boundary of or inside this */
        /*   triangle.                                                 */
        if (destorient == 0.0) {
          lprevself(*searchtri);
          return ONEDGE;
        }
        if (orgorient == 0.0) {
          lnextself(*searchtri);
          return ONEDGE;
        }
        return INTRIANGLE;
      }
    }

    /* Move to another triangle.  Leave a trace `backtracktri' in case */
    /*   floating-point roundoff or some such bogey causes us to walk  */
    /*   off a boundary of the triangulation.  We can just bounce off  */
    /*   the boundary as if it were an elastic band.                   */
    if (moveleft) {
      lprev(*searchtri, backtracktri);
      fdest = fapex;
    }
    else {
      lnext(*searchtri, backtracktri);
      forg = fapex;
    }
    sym(backtracktri, *searchtri);

    /* Check for walking off the edge. */
    if (searchtri->tri == dummytri) {
      /* Turn around. */
      triedgecopy(backtracktri, *searchtri);
      swappoint = forg;
      forg = fdest;
      fdest = swappoint;
      apex(*searchtri, fapex);
      /* Check if the point really is beyond the triangulation boundary. */
      destorient = counterclockwise(forg, fapex, searchpoint);
      orgorient = counterclockwise(fapex, fdest, searchpoint);
      if ((orgorient < 0.0) && (destorient < 0.0)) {
        return OUTSIDE;
      }
    }
    else {
      apex(*searchtri, fapex);
    }
  }
}

/*****************************************************************************/
/*                                                                           */
/*  locate()   Find a triangle or edge containing a given point.             */
/*                                                                           */
/*  Searching begins from one of:  the input `searchtri', a recently         */
/*  encountered triangle `recenttri', or from a triangle chosen from a       */
/*  random sample.  The choice is made by determining which triangle's       */
/*  origin is closest to the point we are searcing for.  Normally,           */
/*  `searchtri' should be a handle on the convex hull of the triangulation.  */
/*                                                                           */
/*  Details on the random sampling method can be found in the Mucke, Saias,  */
/*  and Zhu paper cited in the header of this code.                          */
/*                                                                           */
/*  On completion, `searchtri' is a triangle that contains `searchpoint'.    */
/*                                                                           */
/*  Returns ONVERTEX if the point lies on an existing vertex.  `searchtri'   */
/*  is a handle whose origin is the existing vertex.                         */
/*                                                                           */
/*  Returns ONEDGE if the point lies on a mesh edge.  `searchtri' is a       */
/*  handle whose primary edge is the edge on which the point lies.           */
/*                                                                           */
/*  Returns INTRIANGLE if the point lies strictly within a triangle.         */
/*  `searchtri' is a handle on the triangle that contains the point.         */
/*                                                                           */
/*  Returns OUTSIDE if the point lies outside the mesh.  `searchtri' is a    */
/*  handle whose primary edge the point is to the right of.  This might      */
/*  occur when the circumcenter of a triangle falls just slightly outside    */
/*  the mesh due to floating-point roundoff error.  It also occurs when      */
/*  seeking a hole or region point that a foolish user has placed outside    */
/*  the mesh.                                                                */
/*                                                                           */
/*  WARNING:  This routine is designed for convex triangulations, and will   */
/*  not generally work after the holes and concavities have been carved.     */
/*                                                                           */
/*****************************************************************************/

enum locateresult locate(point searchpoint,
                         struct triedge *searchtri)
{
  VOID **sampleblock;
  triangle *firsttri;
  struct triedge sampletri;
  point torg, tdest;
  intptr_t alignptr;
  REAL searchdist, dist;
  REAL ahead;
  long sampleblocks, samplesperblock, samplenum;
  long triblocks;
  long i, j;
  triangle ptr;                         /* Temporary variable used by sym(). */

  if (verbose > 2) {
    printf("  Randomly sampling for a triangle near point (%.12g, %.12g).\n",
           searchpoint[0], searchpoint[1]);
  }
  /* Record the distance from the suggested starting triangle to the */
  /*   point we seek.                                                */
  org(*searchtri, torg);
  searchdist = (searchpoint[0] - torg[0]) * (searchpoint[0] - torg[0])
             + (searchpoint[1] - torg[1]) * (searchpoint[1] - torg[1]);
  if (verbose > 2) {
    printf("    Boundary triangle has origin (%.12g, %.12g).\n",
           torg[0], torg[1]);
  }

  /* If a recently encountered triangle has been recorded and has not been */
  /*   deallocated, test it as a good starting point.                      */
  if (recenttri.tri != (triangle *) NULL) {
    if (recenttri.tri[3] != (triangle) NULL) {
      org(recenttri, torg);
      if ((torg[0] == searchpoint[0]) && (torg[1] == searchpoint[1])) {
        triedgecopy(recenttri, *searchtri);
        return ONVERTEX;
      }
      dist = (searchpoint[0] - torg[0]) * (searchpoint[0] - torg[0])
           + (searchpoint[1] - torg[1]) * (searchpoint[1] - torg[1]);
      if (dist < searchdist) {
        triedgecopy(recenttri, *searchtri);
        searchdist = dist;
        if (verbose > 2) {
          printf("    Choosing recent triangle with origin (%.12g, %.12g).\n",
                 torg[0], torg[1]);
        }
      }
    }
  }

  /* The number of random samples taken is proportional to the cube root of */
  /*   the number of triangles in the mesh.  The next bit of code assumes   */
  /*   that the number of triangles increases monotonically.                */
  while (SAMPLEFACTOR * samples * samples * samples < triangles.items) {
    samples++;
  }
  triblocks = (triangles.maxitems + TRIPERBLOCK - 1) / TRIPERBLOCK;
  samplesperblock = 1 + (samples / triblocks);
  sampleblocks = samples / samplesperblock;
  sampleblock = triangles.firstblock;
  sampletri.orient = 0;
  for (i = 0; i < sampleblocks; i++) {
    alignptr = (intptr_t) (sampleblock + 1);
    firsttri = (triangle *) (alignptr + (intptr_t) triangles.alignbytes
                          - (alignptr % (intptr_t) triangles.alignbytes));
    for (j = 0; j < samplesperblock; j++) {
      if (i == triblocks - 1) {
        samplenum = randomnation((int)
                                 (triangles.maxitems - (i * TRIPERBLOCK)));
      }
      else {
        samplenum = randomnation(TRIPERBLOCK);
      }
      sampletri.tri = (triangle *)
                      (firsttri + (samplenum * triangles.itemwords));
      if (sampletri.tri[3] != (triangle) NULL) {
        org(sampletri, torg);
        dist = (searchpoint[0] - torg[0]) * (searchpoint[0] - torg[0])
             + (searchpoint[1] - torg[1]) * (searchpoint[1] - torg[1]);
        if (dist < searchdist) {
          triedgecopy(sampletri, *searchtri);
          searchdist = dist;
          if (verbose > 2) {
            printf("    Choosing triangle with origin (%.12g, %.12g).\n",
                   torg[0], torg[1]);
          }
        }
      }
    }
    sampleblock = (VOID **) *sampleblock;
  }
  /* Where are we? */
  org(*searchtri, torg);
  dest(*searchtri, tdest);
  /* Check the starting triangle's vertices. */
  if ((torg[0] == searchpoint[0]) && (torg[1] == searchpoint[1])) {
    return ONVERTEX;
  }
  if ((tdest[0] == searchpoint[0]) && (tdest[1] == searchpoint[1])) {
    lnextself(*searchtri);
    return ONVERTEX;
  }
  /* Orient `searchtri' to fit the preconditions of calling preciselocate(). */
  ahead = counterclockwise(torg, tdest, searchpoint);
  if (ahead < 0.0) {
    /* Turn around so that `searchpoint' is to the left of the */
    /*   edge specified by `searchtri'.                        */
    symself(*searchtri);
  }
  else if (ahead == 0.0) {
    /* Check if `searchpoint' is between `torg' and `tdest'. */
    if (((torg[0] < searchpoint[0]) == (searchpoint[0] < tdest[0]))
        && ((torg[1] < searchpoint[1]) == (searchpoint[1] < tdest[1]))) {
      return ONEDGE;
    }
  }
  return preciselocate(searchpoint, searchtri);
}

/**                                                                         **/
/**                                                                         **/
/********* Point location routines end here                          *********/

/********* Mesh transformation routines begin here                   *********/
/**                                                                         **/
/**                                                                         **/

/*****************************************************************************/
/*                                                                           */
/*  insertshelle()   Create a new shell edge and insert it between two       */
/*                   triangles.                                              */
/*                                                                           */
/*  The new shell edge is inserted at the edge described by the handle       */
/*  `tri'.  Its vertices are properly initialized.  The marker `shellemark'  */
/*  is applied to the shell edge and, if appropriate, its vertices.          */
/*                                                                           */
/*****************************************************************************/

void insertshelle(struct triedge *tri, /* Edge at which to insert the new shell edge. */
                  int shellemark)      /* Marker for the new shell edge. */
{
  struct triedge oppotri;
  struct edge newshelle;
  point triorg, tridest;
  triangle ptr;                         /* Temporary variable used by sym(). */
  shelle sptr;                      /* Temporary variable used by tspivot(). */

  /* Mark points if possible. */
  org(*tri, triorg);
  dest(*tri, tridest);
  if (pointmark(triorg) == 0) {
    setpointmark(triorg, shellemark);
  }
  if (pointmark(tridest) == 0) {
    setpointmark(tridest, shellemark);
  }
  /* Check if there's already a shell edge here. */
  tspivot(*tri, newshelle);
  if (newshelle.sh == dummysh) {
    /* Make new shell edge and initialize its vertices. */
    makeshelle(&newshelle);
    setsorg(newshelle, tridest);
    setsdest(newshelle, triorg);
    /* Bond new shell edge to the two triangles it is sandwiched between. */
    /*   Note that the facing triangle `oppotri' might be equal to        */
    /*   `dummytri' (outer space), but the new shell edge is bonded to it */
    /*   all the same.                                                    */
    tsbond(*tri, newshelle);
    sym(*tri, oppotri);
    ssymself(newshelle);
    tsbond(oppotri, newshelle);
    setmark(newshelle, shellemark);
    if (verbose > 2) {
      printf("  Inserting new ");
      printshelle(&newshelle);
    }
  }
  else {
    if (mark(newshelle) == 0) {
      setmark(newshelle, shellemark);
    }
  }
}

/*****************************************************************************/
/*                                                                           */
/*  Terminology                                                              */
/*                                                                           */
/*  A "local transformation" replaces a small set of triangles with another  */
/*  set of triangles.  This may or may not involve inserting or deleting a   */
/*  point.                                                                   */
/*                                                                           */
/*  The term "casing" is used to describe the set of triangles that are      */
/*  attached to the triangles being transformed, but are not transformed     */
/*  themselves.  Think of the casing as a fixed hollow structure inside      */
/*  which all the action happens.  A "casing" is only defined relative to    */
/*  a single transformation; each occurrence of a transformation will        */
/*  involve a different casing.                                              */
/*                                                                           */
/*  A "shell" is similar to a "casing".  The term "shell" describes the set  */
/*  of shell edges (if any) that are attached to the triangles being         */
/*  transformed.  However, I sometimes use "shell" to refer to a single      */
/*  shell edge, so don't get confused.                                       */
/*                                                                           */
/*****************************************************************************/

/*****************************************************************************/
/*                                                                           */
/*  flip()   Transform two triangles to two different triangles by flipping  */
/*           an edge within a quadrilateral.                                 */
/*                                                                           */
/*  Imagine the original triangles, abc and bad, oriented so that the        */
/*  shared edge ab lies in a horizontal plane, with the point b on the left  */
/*  and the point a on the right.  The point c lies below the edge, and the  */
/*  point d lies above the edge.  The `flipedge' handle holds the edge ab    */
/*  of triangle abc, and is directed left, from vertex a to vertex b.        */
/*                                                                           */
/*  The triangles abc and bad are deleted and replaced by the triangles cdb  */
/*  and dca.  The triangles that represent abc and bad are NOT deallocated;  */
/*  they are reused for dca and cdb, respectively.  Hence, any handles that  */
/*  may have held the original triangles are still valid, although not       */
/*  directed as they were before.                                            */
/*                                                                           */
/*  Upon completion of this routine, the `flipedge' handle holds the edge    */
/*  dc of triangle dca, and is directed down, from vertex d to vertex c.     */
/*  (Hence, the two triangles have rotated counterclockwise.)                */
/*                                                                           */
/*  WARNING:  This transformation is geometrically valid only if the         */
/*  quadrilateral adbc is convex.  Furthermore, this transformation is       */
/*  valid only if there is not a shell edge between the triangles abc and    */
/*  bad.  This routine does not check either of these preconditions, and     */
/*  it is the responsibility of the calling routine to ensure that they are  */
/*  met.  If they are not, the streets shall be filled with wailing and      */
/*  gnashing of teeth.                                                       */
/*                                                                           */
/*****************************************************************************/

void flip(struct triedge *flipedge)  /* Handle for the triangle abc. */
{
  struct triedge botleft, botright;
  struct triedge topleft, topright;
  struct triedge top;
  struct triedge botlcasing, botrcasing;
  struct triedge toplcasing, toprcasing;
  struct edge botlshelle, botrshelle;
  struct edge toplshelle, toprshelle;
  point leftpoint, rightpoint, botpoint;
  point farpoint;
  triangle ptr;                         /* Temporary variable used by sym(). */
  shelle sptr;                      /* Temporary variable used by tspivot(). */

  /* Identify the vertices of the quadrilateral. */
  org(*flipedge, rightpoint);
  dest(*flipedge, leftpoint);
  apex(*flipedge, botpoint);
  sym(*flipedge, top);
#ifdef SELF_CHECK
  if (top.tri == dummytri) {
    printf("Internal error in flip():  Attempt to flip on boundary.\n");
    lnextself(*flipedge);
    return;
  }
  if (checksegments) {
    tspivot(*flipedge, toplshelle);
    if (toplshelle.sh != dummysh) {
      printf("Internal error in flip():  Attempt to flip a segment.\n");
      lnextself(*flipedge);
      return;
    }
  }
#endif /* SELF_CHECK */
  apex(top, farpoint);

  /* Identify the casing of the quadrilateral. */
  lprev(top, topleft);
  sym(topleft, toplcasing);
  lnext(top, topright);
  sym(topright, toprcasing);
  lnext(*flipedge, botleft);
  sym(botleft, botlcasing);
  lprev(*flipedge, botright);
  sym(botright, botrcasing);
  /* Rotate the quadrilateral one-quarter turn counterclockwise. */
  bond(topleft, botlcasing);
  bond(botleft, botrcasing);
  bond(botright, toprcasing);
  bond(topright, toplcasing);

  if (checksegments) {
    /* Check for shell edges and rebond them to the quadrilateral. */
    tspivot(topleft, toplshelle);
    tspivot(botleft, botlshelle);
    tspivot(botright, botrshelle);
    tspivot(topright, toprshelle);
    if (toplshelle.sh == dummysh) {
      tsdissolve(topright);
    }
    else {
      tsbond(topright, toplshelle);
    }
    if (botlshelle.sh == dummysh) {
      tsdissolve(topleft);
    }
    else {
      tsbond(topleft, botlshelle);
    }
    if (botrshelle.sh == dummysh) {
      tsdissolve(botleft);
    }
    else {
      tsbond(botleft, botrshelle);
    }
    if (toprshelle.sh == dummysh) {
      tsdissolve(botright);
    }
    else {
      tsbond(botright, toprshelle);
    }
  }

  /* New point assignments for the rotated quadrilateral. */
  setorg(*flipedge, farpoint);
  setdest(*flipedge, botpoint);
  setapex(*flipedge, rightpoint);
  setorg(top, botpoint);
  setdest(top, farpoint);
  setapex(top, leftpoint);
  if (verbose > 2) {
    printf("  Edge flip results in left ");
    lnextself(topleft);
    printtriangle(&topleft);
    printf("  and right ");
    printtriangle(flipedge);
  }
}

/*****************************************************************************/
/*                                                                           */
/*  insertsite()   Insert a vertex into a Delaunay triangulation,            */
/*                 performing flips as necessary to maintain the Delaunay    */
/*                 property.                                                 */
/*                                                                           */
/*  The point `insertpoint' is located.  If `searchtri.tri' is not NULL,     */
/*  the search for the containing triangle begins from `searchtri'.  If      */
/*  `searchtri.tri' is NULL, a full point location procedure is called.      */
/*  If `insertpoint' is found inside a triangle, the triangle is split into  */
/*  three; if `insertpoint' lies on an edge, the edge is split in two,       */
/*  thereby splitting the two adjacent triangles into four.  Edge flips are  */
/*  used to restore the Delaunay property.  If `insertpoint' lies on an      */
/*  existing vertex, no action is taken, and the value DUPLICATEPOINT is     */
/*  returned.  On return, `searchtri' is set to a handle whose origin is the */
/*  existing vertex.                                                         */
/*                                                                           */
/*  Normally, the parameter `splitedge' is set to NULL, implying that no     */
/*  segment should be split.  In this case, if `insertpoint' is found to     */
/*  lie on a segment, no action is taken, and the value VIOLATINGPOINT is    */
/*  returned.  On return, `searchtri' is set to a handle whose primary edge  */
/*  is the violated segment.                                                 */
/*                                                                           */
/*  If the calling routine wishes to split a segment by inserting a point in */
/*  it, the parameter `splitedge' should be that segment.  In this case,     */
/*  `searchtri' MUST be the triangle handle reached by pivoting from that    */
/*  segment; no point location is done.                                      */
/*                                                                           */
/*  `segmentflaws' and `triflaws' are flags that indicate whether or not     */
/*  there should be checks for the creation of encroached segments or bad    */
/*  quality faces.  If a newly inserted point encroaches upon segments,      */
/*  these segments are added to the list of segments to be split if          */
/*  `segmentflaws' is set.  If bad triangles are created, these are added    */
/*  to the queue if `triflaws' is set.                                       */
/*                                                                           */
/*  If a duplicate point or violated segment does not prevent the point      */
/*  from being inserted, the return value will be ENCROACHINGPOINT if the    */
/*  point encroaches upon a segment (and checking is enabled), or            */
/*  SUCCESSFULPOINT otherwise.  In either case, `searchtri' is set to a      */
/*  handle whose origin is the newly inserted vertex.                        */
/*                                                                           */
/*  insertsite() does not use flip() for reasons of speed; some              */
/*  information can be reused from edge flip to edge flip, like the          */
/*  locations of shell edges.                                                */
/*                                                                           */
/*****************************************************************************/

enum insertsiteresult insertsite(point insertpoint,
                                 struct triedge *searchtri,
                                 struct edge *splitedge,
                                 int segmentflaws,
                                 int triflaws)
{
  struct triedge horiz;
  struct triedge top;
  struct triedge botleft, botright;
  struct triedge topleft, topright;
  struct triedge newbotleft, newbotright;
  struct triedge newtopright;
  struct triedge botlcasing, botrcasing;
  struct triedge toplcasing = {0,0}, toprcasing = {0,0};
  struct triedge testtri;
  struct edge botlshelle, botrshelle;
  struct edge toplshelle, toprshelle;
  struct edge brokenshelle;
  struct edge checkshelle;
  struct edge rightedge;
  struct edge newedge;
  struct edge *encroached;
  point first;
  point leftpoint, rightpoint, botpoint, toppoint, farpoint;
  REAL attrib;
  REAL area;
  enum insertsiteresult success;
  enum locateresult intersect;
  int doflip;
  int mirrorflag;
  int i;
  triangle ptr;                         /* Temporary variable used by sym(). */
  shelle sptr;         /* Temporary variable used by spivot() and tspivot(). */

  if (verbose > 1) {
    printf("  Inserting (%.12g, %.12g).\n", insertpoint[0], insertpoint[1]);
  }
  if (splitedge == (struct edge *) NULL) {
    /* Find the location of the point to be inserted.  Check if a good */
    /*   starting triangle has already been provided by the caller.    */
    if (searchtri->tri == (triangle *) NULL) {
      /* Find a boundary triangle. */
      horiz.tri = dummytri;
      horiz.orient = 0;
      symself(horiz);
      /* Search for a triangle containing `insertpoint'. */
      intersect = locate(insertpoint, &horiz);
    }
    else {
      /* Start searching from the triangle provided by the caller. */
      triedgecopy(*searchtri, horiz);
      intersect = preciselocate(insertpoint, &horiz);
    }
  }
  else {
    /* The calling routine provides the edge in which the point is inserted. */
    triedgecopy(*searchtri, horiz);
    intersect = ONEDGE;
  }
  if (intersect == ONVERTEX) {
    /* There's already a vertex there.  Return in `searchtri' a triangle */
    /*   whose origin is the existing vertex.                            */
    triedgecopy(horiz, *searchtri);
    triedgecopy(horiz, recenttri);
    return DUPLICATEPOINT;
  }
  if ((intersect == ONEDGE) || (intersect == OUTSIDE)) {
    /* The vertex falls on an edge or boundary. */
    if (checksegments && (splitedge == (struct edge *) NULL)) {
      /* Check whether the vertex falls on a shell edge. */
      tspivot(horiz, brokenshelle);
      if (brokenshelle.sh != dummysh) {
        /* The vertex falls on a shell edge. */
        if (segmentflaws) {
          if (nobisect == 0) {
            /* Add the shell edge to the list of encroached segments. */
            encroached = (struct edge *) poolalloc(&badsegments);
            shellecopy(brokenshelle, *encroached);
          }
          else if ((nobisect == 1) && (intersect == ONEDGE)) {
            /* This segment may be split only if it is an internal boundary. */
            sym(horiz, testtri);
            if (testtri.tri != dummytri) {
              /* Add the shell edge to the list of encroached segments. */
              encroached = (struct edge *) poolalloc(&badsegments);
              shellecopy(brokenshelle, *encroached);
            }
          }
        }
        /* Return a handle whose primary edge contains the point, */
        /*   which has not been inserted.                         */
        triedgecopy(horiz, *searchtri);
        triedgecopy(horiz, recenttri);
        return VIOLATINGPOINT;
      }
    }
    /* Insert the point on an edge, dividing one triangle into two (if */
    /*   the edge lies on a boundary) or two triangles into four.      */
    lprev(horiz, botright);
    sym(botright, botrcasing);
    sym(horiz, topright);
    /* Is there a second triangle?  (Or does this edge lie on a boundary?) */
    mirrorflag = topright.tri != dummytri;
    if (mirrorflag) {
      lnextself(topright);
      sym(topright, toprcasing);
      maketriangle(&newtopright);
    }
    else {
      /* Splitting the boundary edge increases the number of boundary edges. */
      hullsize++;
    }
    maketriangle(&newbotright);

    /* Set the vertices of changed and new triangles. */
    org(horiz, rightpoint);
    dest(horiz, leftpoint);
    apex(horiz, botpoint);
    setorg(newbotright, botpoint);
    setdest(newbotright, rightpoint);
    setapex(newbotright, insertpoint);
    setorg(horiz, insertpoint);
    for (i = 0; i < eextras; i++) {
      /* Set the element attributes of a new triangle. */
      setelemattribute(newbotright, i, elemattribute(botright, i));
    }
    if (vararea) {
      /* Set the area constraint of a new triangle. */
      setareabound(newbotright, areabound(botright));
    }
    if (mirrorflag) {
      dest(topright, toppoint);
      setorg(newtopright, rightpoint);
      setdest(newtopright, toppoint);
      setapex(newtopright, insertpoint);
      setorg(topright, insertpoint);
      for (i = 0; i < eextras; i++) {
        /* Set the element attributes of another new triangle. */
        setelemattribute(newtopright, i, elemattribute(topright, i));
      }
      if (vararea) {
        /* Set the area constraint of another new triangle. */
        setareabound(newtopright, areabound(topright));
      }
    }

    /* There may be shell edges that need to be bonded */
    /*   to the new triangle(s).                       */
    if (checksegments) {
      tspivot(botright, botrshelle);
      if (botrshelle.sh != dummysh) {
        tsdissolve(botright);
        tsbond(newbotright, botrshelle);
      }
      if (mirrorflag) {
        tspivot(topright, toprshelle);
        if (toprshelle.sh != dummysh) {
          tsdissolve(topright);
          tsbond(newtopright, toprshelle);
        }
      }
    }

    /* Bond the new triangle(s) to the surrounding triangles. */
    bond(newbotright, botrcasing);
    lprevself(newbotright);
    bond(newbotright, botright);
    lprevself(newbotright);
    if (mirrorflag) {
      bond(newtopright, toprcasing);
      lnextself(newtopright);
      bond(newtopright, topright);
      lnextself(newtopright);
      bond(newtopright, newbotright);
    }

    if (splitedge != (struct edge *) NULL) {
      /* Split the shell edge into two. */
      setsdest(*splitedge, insertpoint);
      ssymself(*splitedge);
      spivot(*splitedge, rightedge);
      insertshelle(&newbotright, mark(*splitedge));
      tspivot(newbotright, newedge);
      sbond(*splitedge, newedge);
      ssymself(newedge);
      sbond(newedge, rightedge);
      ssymself(*splitedge);
    }

#ifdef SELF_CHECK
    if (counterclockwise(rightpoint, leftpoint, botpoint) < 0.0) {
      printf("Internal error in insertsite():\n");
      printf("  Clockwise triangle prior to edge point insertion (bottom).\n");
    }
    if (mirrorflag) {
      if (counterclockwise(leftpoint, rightpoint, toppoint) < 0.0) {
        printf("Internal error in insertsite():\n");
        printf("  Clockwise triangle prior to edge point insertion (top).\n");
      }
      if (counterclockwise(rightpoint, toppoint, insertpoint) < 0.0) {
        printf("Internal error in insertsite():\n");
        printf("  Clockwise triangle after edge point insertion (top right).\n"
               );
      }
      if (counterclockwise(toppoint, leftpoint, insertpoint) < 0.0) {
        printf("Internal error in insertsite():\n");
        printf("  Clockwise triangle after edge point insertion (top left).\n"
               );
      }
    }
    if (counterclockwise(leftpoint, botpoint, insertpoint) < 0.0) {
      printf("Internal error in insertsite():\n");
      printf("  Clockwise triangle after edge point insertion (bottom left).\n"
             );
    }
    if (counterclockwise(botpoint, rightpoint, insertpoint) < 0.0) {
      printf("Internal error in insertsite():\n");
      printf("  Clockwise triangle after edge point insertion (bottom right).\n");
    }
#endif /* SELF_CHECK */
    if (verbose > 2) {
      printf("  Updating bottom left ");
      printtriangle(&botright);
      if (mirrorflag) {
        printf("  Updating top left ");
        printtriangle(&topright);
        printf("  Creating top right ");
        printtriangle(&newtopright);
      }
      printf("  Creating bottom right ");
      printtriangle(&newbotright);
    }

    /* Position `horiz' on the first edge to check for */
    /*   the Delaunay property.                        */
    lnextself(horiz);
  }
  else {
    /* Insert the point in a triangle, splitting it into three. */
    lnext(horiz, botleft);
    lprev(horiz, botright);
    sym(botleft, botlcasing);
    sym(botright, botrcasing);
    maketriangle(&newbotleft);
    maketriangle(&newbotright);

    /* Set the vertices of changed and new triangles. */
    org(horiz, rightpoint);
    dest(horiz, leftpoint);
    apex(horiz, botpoint);
    setorg(newbotleft, leftpoint);
    setdest(newbotleft, botpoint);
    setapex(newbotleft, insertpoint);
    setorg(newbotright, botpoint);
    setdest(newbotright, rightpoint);
    setapex(newbotright, insertpoint);
    setapex(horiz, insertpoint);
    for (i = 0; i < eextras; i++) {
      /* Set the element attributes of the new triangles. */
      attrib = elemattribute(horiz, i);
      setelemattribute(newbotleft, i, attrib);
      setelemattribute(newbotright, i, attrib);
    }
    if (vararea) {
      /* Set the area constraint of the new triangles. */
      area = areabound(horiz);
      setareabound(newbotleft, area);
      setareabound(newbotright, area);
    }

    /* There may be shell edges that need to be bonded */
    /*   to the new triangles.                         */
    if (checksegments) {
      tspivot(botleft, botlshelle);
      if (botlshelle.sh != dummysh) {
        tsdissolve(botleft);
        tsbond(newbotleft, botlshelle);
      }
      tspivot(botright, botrshelle);
      if (botrshelle.sh != dummysh) {
        tsdissolve(botright);
        tsbond(newbotright, botrshelle);
      }
    }

    /* Bond the new triangles to the surrounding triangles. */
    bond(newbotleft, botlcasing);
    bond(newbotright, botrcasing);
    lnextself(newbotleft);
    lprevself(newbotright);
    bond(newbotleft, newbotright);
    lnextself(newbotleft);
    bond(botleft, newbotleft);
    lprevself(newbotright);
    bond(botright, newbotright);

#ifdef SELF_CHECK
    if (counterclockwise(rightpoint, leftpoint, botpoint) < 0.0) {
      printf("Internal error in insertsite():\n");
      printf("  Clockwise triangle prior to point insertion.\n");
    }
    if (counterclockwise(rightpoint, leftpoint, insertpoint) < 0.0) {
      printf("Internal error in insertsite():\n");
      printf("  Clockwise triangle after point insertion (top).\n");
    }
    if (counterclockwise(leftpoint, botpoint, insertpoint) < 0.0) {
      printf("Internal error in insertsite():\n");
      printf("  Clockwise triangle after point insertion (left).\n");
    }
    if (counterclockwise(botpoint, rightpoint, insertpoint) < 0.0) {
      printf("Internal error in insertsite():\n");
      printf("  Clockwise triangle after point insertion (right).\n");
    }
#endif /* SELF_CHECK */
    if (verbose > 2) {
      printf("  Updating top ");
      printtriangle(&horiz);
      printf("  Creating left ");
      printtriangle(&newbotleft);
      printf("  Creating right ");
      printtriangle(&newbotright);
    }
  }

  /* The insertion is successful by default, unless an encroached */
  /*   edge is found.                                             */
  success = SUCCESSFULPOINT;
  /* Circle around the newly inserted vertex, checking each edge opposite */
  /*   it for the Delaunay property.  Non-Delaunay edges are flipped.     */
  /*   `horiz' is always the edge being checked.  `first' marks where to  */
  /*   stop circling.                                                     */
  org(horiz, first);
  rightpoint = first;
  dest(horiz, leftpoint);
  /* Circle until finished. */
  while (1) {
    /* By default, the edge will be flipped. */
    doflip = 1;
    if (checksegments) {
      /* Check for a segment, which cannot be flipped. */
      tspivot(horiz, checkshelle);
      if (checkshelle.sh != dummysh) {
        /* The edge is a segment and cannot be flipped. */
        doflip = 0;
#ifndef CDT_ONLY
        if (segmentflaws) {
          /* Does the new point encroach upon this segment? */
          if (checkedge4encroach(&checkshelle)) {
            success = ENCROACHINGPOINT;
          }
        }
#endif /* not CDT_ONLY */
      }
    }
    if (doflip) {
      /* Check if the edge is a boundary edge. */
      sym(horiz, top);
      if (top.tri == dummytri) {
        /* The edge is a boundary edge and cannot be flipped. */
        doflip = 0;
      }
      else {
        /* Find the point on the other side of the edge. */
        apex(top, farpoint);
        /* In the incremental Delaunay triangulation algorithm, any of    */
        /*   `leftpoint', `rightpoint', and `farpoint' could be vertices  */
        /*   of the triangular bounding box.  These vertices must be      */
        /*   treated as if they are infinitely distant, even though their */
        /*   "coordinates" are not.                                       */
        if ((leftpoint == infpoint1) ||
            (leftpoint == infpoint2) ||
            (leftpoint == infpoint3)) {
          /* `leftpoint' is infinitely distant.  Check the convexity of */
          /*   the boundary of the triangulation.  'farpoint' might be  */
          /*   infinite as well, but trust me, this same condition      */
          /*   should be applied.                                       */
          doflip = counterclockwise(insertpoint, rightpoint, farpoint) > 0.0;
        }
        else if ((rightpoint == infpoint1) ||
                 (rightpoint == infpoint2) ||
                 (rightpoint == infpoint3)) {
          /* `rightpoint' is infinitely distant.  Check the convexity of */
          /*   the boundary of the triangulation.  'farpoint' might be  */
          /*   infinite as well, but trust me, this same condition      */
          /*   should be applied.                                       */
          doflip = counterclockwise(farpoint, leftpoint, insertpoint) > 0.0;
        }
        else if ((farpoint == infpoint1) ||
                 (farpoint == infpoint2) ||
                 (farpoint == infpoint3)) {
          /* `farpoint' is infinitely distant and cannot be inside */
          /*   the circumcircle of the triangle `horiz'.           */
          doflip = 0;
        }
        else {
          /* Test whether the edge is locally Delaunay. */
          doflip = incircle(leftpoint, insertpoint, rightpoint, farpoint)
                   > 0.0;
        }
        if (doflip) {
          /* We made it!  Flip the edge `horiz' by rotating its containing */
          /*   quadrilateral (the two triangles adjacent to `horiz').      */
          /* Identify the casing of the quadrilateral. */
          lprev(top, topleft);
          sym(topleft, toplcasing);
          lnext(top, topright);
          sym(topright, toprcasing);
          lnext(horiz, botleft);
          sym(botleft, botlcasing);
          lprev(horiz, botright);
          sym(botright, botrcasing);
          /* Rotate the quadrilateral one-quarter turn counterclockwise. */
          bond(topleft, botlcasing);
          bond(botleft, botrcasing);
          bond(botright, toprcasing);
          bond(topright, toplcasing);
          if (checksegments) {
            /* Check for shell edges and rebond them to the quadrilateral. */
            tspivot(topleft, toplshelle);
            tspivot(botleft, botlshelle);
            tspivot(botright, botrshelle);
            tspivot(topright, toprshelle);
            if (toplshelle.sh == dummysh) {
              tsdissolve(topright);
            }
            else {
              tsbond(topright, toplshelle);
            }
            if (botlshelle.sh == dummysh) {
              tsdissolve(topleft);
            }
            else {
              tsbond(topleft, botlshelle);
            }
            if (botrshelle.sh == dummysh) {
              tsdissolve(botleft);
            }
            else {
              tsbond(botleft, botrshelle);
            }
            if (toprshelle.sh == dummysh) {
              tsdissolve(botright);
            }
            else {
              tsbond(botright, toprshelle);
            }
          }
          /* New point assignments for the rotated quadrilateral. */
          setorg(horiz, farpoint);
          setdest(horiz, insertpoint);
          setapex(horiz, rightpoint);
          setorg(top, insertpoint);
          setdest(top, farpoint);
          setapex(top, leftpoint);
          for (i = 0; i < eextras; i++) {
            /* Take the average of the two triangles' attributes. */
            attrib = 0.5 * (elemattribute(top, i) + elemattribute(horiz, i));
            setelemattribute(top, i, attrib);
            setelemattribute(horiz, i, attrib);
          }
          if (vararea) {
            if ((areabound(top) <= 0.0) || (areabound(horiz) <= 0.0)) {
              area = -1.0;
            }
            else {
              /* Take the average of the two triangles' area constraints.    */
              /*   This prevents small area constraints from migrating a     */
              /*   long, long way from their original location due to flips. */
              area = 0.5 * (areabound(top) + areabound(horiz));
            }
            setareabound(top, area);
            setareabound(horiz, area);
          }
#ifdef SELF_CHECK
          if (insertpoint != (point) NULL) {
            if (counterclockwise(leftpoint, insertpoint, rightpoint) < 0.0) {
              printf("Internal error in insertsite():\n");
              printf("  Clockwise triangle prior to edge flip (bottom).\n");
            }
            /* The following test has been removed because constrainededge() */
            /*   sometimes generates inverted triangles that insertsite()    */
            /*   removes.                                                    */
/*
            if (counterclockwise(rightpoint, farpoint, leftpoint) < 0.0) {
              printf("Internal error in insertsite():\n");
              printf("  Clockwise triangle prior to edge flip (top).\n");
            }
*/
            if (counterclockwise(farpoint, leftpoint, insertpoint) < 0.0) {
              printf("Internal error in insertsite():\n");
              printf("  Clockwise triangle after edge flip (left).\n");
            }
            if (counterclockwise(insertpoint, rightpoint, farpoint) < 0.0) {
              printf("Internal error in insertsite():\n");
              printf("  Clockwise triangle after edge flip (right).\n");
            }
          }
#endif /* SELF_CHECK */
          if (verbose > 2) {
            printf("  Edge flip results in left ");
            lnextself(topleft);
            printtriangle(&topleft);
            printf("  and right ");
            printtriangle(&horiz);
          }
          /* On the next iterations, consider the two edges that were  */
          /*   exposed (this is, are now visible to the newly inserted */
          /*   point) by the edge flip.                                */
          lprevself(horiz);
          leftpoint = farpoint;
        }
      }
    }
    if (!doflip) {
      /* The handle `horiz' is accepted as locally Delaunay. */
#ifndef CDT_ONLY
      if (triflaws) {
        /* Check the triangle `horiz' for quality. */
        testtriangle(&horiz);
      }
#endif /* not CDT_ONLY */
      /* Look for the next edge around the newly inserted point. */
      lnextself(horiz);
      sym(horiz, testtri);
      /* Check for finishing a complete revolution about the new point, or */
      /*   falling off the edge of the triangulation.  The latter will     */
      /*   happen when a point is inserted at a boundary.                  */
      if ((leftpoint == first) || (testtri.tri == dummytri)) {
        /* We're done.  Return a triangle whose origin is the new point. */
        lnext(horiz, *searchtri);
        lnext(horiz, recenttri);
        return success;
      }
      /* Finish finding the next edge around the newly inserted point. */
      lnext(testtri, horiz);
      rightpoint = leftpoint;
      dest(horiz, leftpoint);
    }
  }
}

/*****************************************************************************/
/*                                                                           */
/*  triangulatepolygon()   Find the Delaunay triangulation of a polygon that */
/*                         has a certain "nice" shape.  This includes the    */
/*                         polygons that result from deletion of a point or  */
/*                         insertion of a segment.                           */
/*                                                                           */
/*  This is a conceptually difficult routine.  The starting assumption is    */
/*  that we have a polygon with n sides.  n - 1 of these sides are currently */
/*  represented as edges in the mesh.  One side, called the "base", need not */
/*  be.                                                                      */
/*                                                                           */
/*  Inside the polygon is a structure I call a "fan", consisting of n - 1    */
/*  triangles that share a common origin.  For each of these triangles, the  */
/*  edge opposite the origin is one of the sides of the polygon.  The        */
/*  primary edge of each triangle is the edge directed from the origin to    */
/*  the destination; note that this is not the same edge that is a side of   */
/*  the polygon.  `firstedge' is the primary edge of the first triangle.     */
/*  From there, the triangles follow in counterclockwise order about the     */
/*  polygon, until `lastedge', the primary edge of the last triangle.        */
/*  `firstedge' and `lastedge' are probably connected to other triangles     */
/*  beyond the extremes of the fan, but their identity is not important, as  */
/*  long as the fan remains connected to them.                               */
/*                                                                           */
/*  Imagine the polygon oriented so that its base is at the bottom.  This    */
/*  puts `firstedge' on the far right, and `lastedge' on the far left.       */
/*  The right vertex of the base is the destination of `firstedge', and the  */
/*  left vertex of the base is the apex of `lastedge'.                       */
/*                                                                           */
/*  The challenge now is to find the right sequence of edge flips to         */
/*  transform the fan into a Delaunay triangulation of the polygon.  Each    */
/*  edge flip effectively removes one triangle from the fan, committing it   */
/*  to the polygon.  The resulting polygon has one fewer edge.  If `doflip'  */
/*  is set, the final flip will be performed, resulting in a fan of one      */
/*  (useless?) triangle.  If `doflip' is not set, the final flip is not      */
/*  performed, resulting in a fan of two triangles, and an unfinished        */
/*  triangular polygon that is not yet filled out with a single triangle.    */
/*  On completion of the routine, `lastedge' is the last remaining triangle, */
/*  or the leftmost of the last two.                                         */
/*                                                                           */
/*  Although the flips are performed in the order described above, the       */
/*  decisions about what flips to perform are made in precisely the reverse  */
/*  order.  The recursive triangulatepolygon() procedure makes a decision,   */
/*  uses up to two recursive calls to triangulate the "subproblems"          */
/*  (polygons with fewer edges), and then performs an edge flip.             */
/*                                                                           */
/*  The "decision" it makes is which vertex of the polygon should be         */
/*  connected to the base.  This decision is made by testing every possible  */
/*  vertex.  Once the best vertex is found, the two edges that connect this  */
/*  vertex to the base become the bases for two smaller polygons.  These     */
/*  are triangulated recursively.  Unfortunately, this approach can take     */
/*  O(n^2) time not only in the worst case, but in many common cases.  It's  */
/*  rarely a big deal for point deletion, where n is rarely larger than ten, */
/*  but it could be a big deal for segment insertion, especially if there's  */
/*  a lot of long segments that each cut many triangles.  I ought to code    */
/*  a faster algorithm some time.                                            */
/*                                                                           */
/*  The `edgecount' parameter is the number of sides of the polygon,         */
/*  including its base.  `triflaws' is a flag that determines whether the    */
/*  new triangles should be tested for quality, and enqueued if they are     */
/*  bad.                                                                     */
/*                                                                           */
/*****************************************************************************/

void triangulatepolygon(struct triedge *firstedge,
                        struct triedge *lastedge,
                        int edgecount,
                        int doflip,
                        int triflaws)
{
  struct triedge testtri;
  struct triedge besttri;
  struct triedge tempedge;
  point leftbasepoint, rightbasepoint;
  point testpoint;
  point bestpoint;
  int bestnumber;
  int i;
  triangle ptr;   /* Temporary variable used by sym(), onext(), and oprev(). */

  /* Identify the base vertices. */
  apex(*lastedge, leftbasepoint);
  dest(*firstedge, rightbasepoint);
  if (verbose > 2) {
    printf("  Triangulating interior polygon at edge\n");
    printf("    (%.12g, %.12g) (%.12g, %.12g)\n", leftbasepoint[0],
           leftbasepoint[1], rightbasepoint[0], rightbasepoint[1]);
  }
  /* Find the best vertex to connect the base to. */
  onext(*firstedge, besttri);
  dest(besttri, bestpoint);
  triedgecopy(besttri, testtri);
  bestnumber = 1;
  for (i = 2; i <= edgecount - 2; i++) {
    onextself(testtri);
    dest(testtri, testpoint);
    /* Is this a better vertex? */
    if (incircle(leftbasepoint, rightbasepoint, bestpoint, testpoint) > 0.0) {
      triedgecopy(testtri, besttri);
      bestpoint = testpoint;
      bestnumber = i;
    }
  }
  if (verbose > 2) {
    printf("    Connecting edge to (%.12g, %.12g)\n", bestpoint[0],
           bestpoint[1]);
  }
  if (bestnumber > 1) {
    /* Recursively triangulate the smaller polygon on the right. */
    oprev(besttri, tempedge);
    triangulatepolygon(firstedge, &tempedge, bestnumber + 1, 1, triflaws);
  }
  if (bestnumber < edgecount - 2) {
    /* Recursively triangulate the smaller polygon on the left. */
    sym(besttri, tempedge);
    triangulatepolygon(&besttri, lastedge, edgecount - bestnumber, 1, triflaws);
    /* Find `besttri' again; it may have been lost to edge flips. */
    sym(tempedge, besttri);
  }
  if (doflip) {
    /* Do one final edge flip. */
    flip(&besttri);
#ifndef CDT_ONLY
    if (triflaws) {
      /* Check the quality of the newly committed triangle. */
      sym(besttri, testtri);
      testtriangle(&testtri);
    }
#endif /* not CDT_ONLY */
  }
  /* Return the base triangle. */
  triedgecopy(besttri, *lastedge);
}

/*****************************************************************************/
/*                                                                           */
/*  deletesite()   Delete a vertex from a Delaunay triangulation, ensuring   */
/*                 that the triangulation remains Delaunay.                  */
/*                                                                           */
/*  The origin of `deltri' is deleted.  The union of the triangles adjacent  */
/*  to this point is a polygon, for which the Delaunay triangulation is      */
/*  found.  Two triangles are removed from the mesh.                         */
/*                                                                           */
/*  Only interior points that do not lie on segments (shell edges) or        */
/*  boundaries may be deleted.                                               */
/*                                                                           */
/*****************************************************************************/

#ifndef CDT_ONLY

void deletesite(struct triedge *deltri)
{
  struct triedge countingtri;
  struct triedge firstedge, lastedge;
  struct triedge deltriright;
  struct triedge lefttri, righttri;
  struct triedge leftcasing, rightcasing;
  struct edge leftshelle, rightshelle;
  point delpoint;
  point neworg;
  int edgecount;
  triangle ptr;   /* Temporary variable used by sym(), onext(), and oprev(). */
  shelle sptr;                      /* Temporary variable used by tspivot(). */

  org(*deltri, delpoint);
  if (verbose > 1) {
    printf("  Deleting (%.12g, %.12g).\n", delpoint[0], delpoint[1]);
  }
  pointdealloc(delpoint);

  /* Count the degree of the point being deleted. */
  onext(*deltri, countingtri);
  edgecount = 1;
  while (!triedgeequal(*deltri, countingtri)) {
#ifdef SELF_CHECK
    if (countingtri.tri == dummytri) {
      printf("Internal error in deletesite():\n");
      printf("  Attempt to delete boundary point.\n");
      internalerror();
    }
#endif /* SELF_CHECK */
    edgecount++;
    onextself(countingtri);
  }

#ifdef SELF_CHECK
  if (edgecount < 3) {
    printf("Internal error in deletesite():\n  Point has degree %d.\n",
           edgecount);
    internalerror();
  }
#endif /* SELF_CHECK */
  if (edgecount > 3) {
    /* Triangulate the polygon defined by the union of all triangles */
    /*   adjacent to the point being deleted.  Check the quality of  */
    /*   the resulting triangles.                                    */
    onext(*deltri, firstedge);
    oprev(*deltri, lastedge);
    triangulatepolygon(&firstedge, &lastedge, edgecount, 0, !nobisect);
  }
  /* Splice out two triangles. */
  lprev(*deltri, deltriright);
  dnext(*deltri, lefttri);
  sym(lefttri, leftcasing);
  oprev(deltriright, righttri);
  sym(righttri, rightcasing);
  bond(*deltri, leftcasing);
  bond(deltriright, rightcasing);
  tspivot(lefttri, leftshelle);
  if (leftshelle.sh != dummysh) {
    tsbond(*deltri, leftshelle);
  }
  tspivot(righttri, rightshelle);
  if (rightshelle.sh != dummysh) {
    tsbond(deltriright, rightshelle);
  }

  /* Set the new origin of `deltri' and check its quality. */
  org(lefttri, neworg);
  setorg(*deltri, neworg);
  if (!nobisect) {
    testtriangle(deltri);
  }

  /* Delete the two spliced-out triangles. */
  triangledealloc(lefttri.tri);
  triangledealloc(righttri.tri);
}

#endif /* not CDT_ONLY */

/**                                                                         **/
/**                                                                         **/
/********* Mesh transformation routines end here                     *********/

/********* Divide-and-conquer Delaunay triangulation begins here     *********/
/**                                                                         **/
/**                                                                         **/

/*****************************************************************************/
/*                                                                           */
/*  The divide-and-conquer bounding box                                      */
/*                                                                           */
/*  I originally implemented the divide-and-conquer and incremental Delaunay */
/*  triangulations using the edge-based data structure presented by Guibas   */
/*  and Stolfi.  Switching to a triangle-based data structure doubled the    */
/*  speed.  However, I had to think of a few extra tricks to maintain the    */
/*  elegance of the original algorithms.                                     */
/*                                                                           */
/*  The "bounding box" used by my variant of the divide-and-conquer          */
/*  algorithm uses one triangle for each edge of the convex hull of the      */
/*  triangulation.  These bounding triangles all share a common apical       */
/*  vertex, which is represented by NULL and which represents nothing.       */
/*  The bounding triangles are linked in a circular fan about this NULL      */
/*  vertex, and the edges on the convex hull of the triangulation appear     */
/*  opposite the NULL vertex.  You might find it easiest to imagine that     */
/*  the NULL vertex is a point in 3D space behind the center of the          */
/*  triangulation, and that the bounding triangles form a sort of cone.      */
/*                                                                           */
/*  This bounding box makes it easy to represent degenerate cases.  For      */
/*  instance, the triangulation of two vertices is a single edge.  This edge */
/*  is represented by two bounding box triangles, one on each "side" of the  */
/*  edge.  These triangles are also linked together in a fan about the NULL  */
/*  vertex.                                                                  */
/*                                                                           */
/*  The bounding box also makes it easy to traverse the convex hull, as the  */
/*  divide-and-conquer algorithm needs to do.                                */
/*                                                                           */
/*****************************************************************************/

/*****************************************************************************/
/*                                                                           */
/*  pointsort()   Sort an array of points by x-coordinate, using the         */
/*                y-coordinate as a secondary key.                           */
/*                                                                           */
/*  Uses quicksort.  Randomized O(n log n) time.  No, I did not make any of  */
/*  the usual quicksort mistakes.                                            */
/*                                                                           */
/*****************************************************************************/

void pointsort(point *sortarray,
               int arraysize)
{
  int left, right;
  int pivot;
  REAL pivotx, pivoty;
  point temp;

  if (arraysize == 2) {
    /* Recursive base case. */
    if ((sortarray[0][0] > sortarray[1][0]) ||
        ((sortarray[0][0] == sortarray[1][0]) &&
         (sortarray[0][1] > sortarray[1][1]))) {
      temp = sortarray[1];
      sortarray[1] = sortarray[0];
      sortarray[0] = temp;
    }
    return;
  }
  /* Choose a random pivot to split the array. */
  pivot = (int) randomnation(arraysize);
  pivotx = sortarray[pivot][0];
  pivoty = sortarray[pivot][1];
  /* Split the array. */
  left = -1;
  right = arraysize;
  while (left < right) {
    /* Search for a point whose x-coordinate is too large for the left. */
    do {
      left++;
    } while ((left <= right) && ((sortarray[left][0] < pivotx) ||
                                 ((sortarray[left][0] == pivotx) &&
                                  (sortarray[left][1] < pivoty))));
    /* Search for a point whose x-coordinate is too small for the right. */
    do {
      right--;
    } while ((left <= right) && ((sortarray[right][0] > pivotx) ||
                                 ((sortarray[right][0] == pivotx) &&
                                  (sortarray[right][1] > pivoty))));
    if (left < right) {
      /* Swap the left and right points. */
      temp = sortarray[left];
      sortarray[left] = sortarray[right];
      sortarray[right] = temp;
    }
  }
  if (left > 1) {
    /* Recursively sort the left subset. */
    pointsort(sortarray, left);
  }
  if (right < arraysize - 2) {
    /* Recursively sort the right subset. */
    pointsort(&sortarray[right + 1], arraysize - right - 1);
  }
}

/*****************************************************************************/
/*                                                                           */
/*  pointmedian()   An order statistic algorithm, almost.  Shuffles an array */
/*                  of points so that the first `median' points occur        */
/*                  lexicographically before the remaining points.           */
/*                                                                           */
/*  Uses the x-coordinate as the primary key if axis == 0; the y-coordinate  */
/*  if axis == 1.  Very similar to the pointsort() procedure, but runs in    */
/*  randomized linear time.                                                  */
/*                                                                           */
/*****************************************************************************/

void pointmedian(point *sortarray,
                 int arraysize,
                 int median,
                 int axis)
{
  int left, right;
  int pivot;
  REAL pivot1, pivot2;
  point temp;

  if (arraysize == 2) {
    /* Recursive base case. */
    if ((sortarray[0][axis] > sortarray[1][axis]) ||
        ((sortarray[0][axis] == sortarray[1][axis]) &&
         (sortarray[0][1 - axis] > sortarray[1][1 - axis]))) {
      temp = sortarray[1];
      sortarray[1] = sortarray[0];
      sortarray[0] = temp;
    }
    return;
  }
  /* Choose a random pivot to split the array. */
  pivot = (int) randomnation(arraysize);
  pivot1 = sortarray[pivot][axis];
  pivot2 = sortarray[pivot][1 - axis];
  /* Split the array. */
  left = -1;
  right = arraysize;
  while (left < right) {
    /* Search for a point whose x-coordinate is too large for the left. */
    do {
      left++;
    } while ((left <= right) && ((sortarray[left][axis] < pivot1) ||
                                 ((sortarray[left][axis] == pivot1) &&
                                  (sortarray[left][1 - axis] < pivot2))));
    /* Search for a point whose x-coordinate is too small for the right. */
    do {
      right--;
    } while ((left <= right) && ((sortarray[right][axis] > pivot1) ||
                                 ((sortarray[right][axis] == pivot1) &&
                                  (sortarray[right][1 - axis] > pivot2))));
    if (left < right) {
      /* Swap the left and right points. */
      temp = sortarray[left];
      sortarray[left] = sortarray[right];
      sortarray[right] = temp;
    }
  }
  /* Unlike in pointsort(), at most one of the following */
  /*   conditionals is true.                             */
  if (left > median) {
    /* Recursively shuffle the left subset. */
    pointmedian(sortarray, left, median, axis);
  }
  if (right < median - 1) {
    /* Recursively shuffle the right subset. */
    pointmedian(&sortarray[right + 1], arraysize - right - 1,
                median - right - 1, axis);
  }
}

/*****************************************************************************/
/*                                                                           */
/*  alternateaxes()   Sorts the points as appropriate for the divide-and-    */
/*                    conquer algorithm with alternating cuts.               */
/*                                                                           */
/*  Partitions by x-coordinate if axis == 0; by y-coordinate if axis == 1.   */
/*  For the base case, subsets containing only two or three points are       */
/*  always sorted by x-coordinate.                                           */
/*                                                                           */
/*****************************************************************************/

void alternateaxes(point *sortarray,
                   int arraysize,
                   int axis)
{
  int divider;

  divider = arraysize >> 1;
  if (arraysize <= 3) {
    /* Recursive base case:  subsets of two or three points will be      */
    /*   handled specially, and should always be sorted by x-coordinate. */
    axis = 0;
  }
  /* Partition with a horizontal or vertical cut. */
  pointmedian(sortarray, arraysize, divider, axis);
  /* Recursively partition the subsets with a cross cut. */
  if (arraysize - divider >= 2) {
    if (divider >= 2) {
      alternateaxes(sortarray, divider, 1 - axis);
    }
    alternateaxes(&sortarray[divider], arraysize - divider, 1 - axis);
  }
}

/*****************************************************************************/
/*                                                                           */
/*  mergehulls()   Merge two adjacent Delaunay triangulations into a         */
/*                 single Delaunay triangulation.                            */
/*                                                                           */
/*  This is similar to the algorithm given by Guibas and Stolfi, but uses    */
/*  a triangle-based, rather than edge-based, data structure.                */
/*                                                                           */
/*  The algorithm walks up the gap between the two triangulations, knitting  */
/*  them together.  As they are merged, some of their bounding triangles     */
/*  are converted into real triangles of the triangulation.  The procedure   */
/*  pulls each hull's bounding triangles apart, then knits them together     */
/*  like the teeth of two gears.  The Delaunay property determines, at each  */
/*  step, whether the next "tooth" is a bounding triangle of the left hull   */
/*  or the right.  When a bounding triangle becomes real, its apex is        */
/*  changed from NULL to a real point.                                       */
/*                                                                           */
/*  Only two new triangles need to be allocated.  These become new bounding  */
/*  triangles at the top and bottom of the seam.  They are used to connect   */
/*  the remaining bounding triangles (those that have not been converted     */
/*  into real triangles) into a single fan.                                  */
/*                                                                           */
/*  On entry, `farleft' and `innerleft' are bounding triangles of the left   */
/*  triangulation.  The origin of `farleft' is the leftmost vertex, and      */
/*  the destination of `innerleft' is the rightmost vertex of the            */
/*  triangulation.  Similarly, `innerright' and `farright' are bounding      */
/*  triangles of the right triangulation.  The origin of `innerright' and    */
/*  destination of `farright' are the leftmost and rightmost vertices.       */
/*                                                                           */
/*  On completion, the origin of `farleft' is the leftmost vertex of the     */
/*  merged triangulation, and the destination of `farright' is the rightmost */
/*  vertex.                                                                  */
/*                                                                           */
/*****************************************************************************/

void mergehulls(struct triedge *farleft,
                struct triedge *innerleft,
                struct triedge *innerright,
                struct triedge *farright,
                int axis)
{
  struct triedge leftcand, rightcand;
  struct triedge baseedge;
  struct triedge nextedge;
  struct triedge sidecasing, topcasing, outercasing;
  struct triedge checkedge;
  point innerleftdest;
  point innerrightorg;
  point innerleftapex, innerrightapex;
  point farleftpt, farrightpt;
  point farleftapex, farrightapex;
  point lowerleft, lowerright;
  point upperleft, upperright;
  point nextapex;
  point checkvertex;
  int changemade;
  int badedge;
  int leftfinished, rightfinished;
  triangle ptr;                         /* Temporary variable used by sym(). */

  dest(*innerleft, innerleftdest);
  apex(*innerleft, innerleftapex);
  org(*innerright, innerrightorg);
  apex(*innerright, innerrightapex);
  /* Special treatment for horizontal cuts. */
  if (dwyer && (axis == 1)) {
    org(*farleft, farleftpt);
    apex(*farleft, farleftapex);
    dest(*farright, farrightpt);
    apex(*farright, farrightapex);
    /* The pointers to the extremal points are shifted to point to the */
    /*   topmost and bottommost point of each hull, rather than the    */
    /*   leftmost and rightmost points.                                */
    while (farleftapex[1] < farleftpt[1]) {
      lnextself(*farleft);
      symself(*farleft);
      farleftpt = farleftapex;
      apex(*farleft, farleftapex);
    }
    sym(*innerleft, checkedge);
    apex(checkedge, checkvertex);
    while (checkvertex[1] > innerleftdest[1]) {
      lnext(checkedge, *innerleft);
      innerleftapex = innerleftdest;
      innerleftdest = checkvertex;
      sym(*innerleft, checkedge);
      apex(checkedge, checkvertex);
    }
    while (innerrightapex[1] < innerrightorg[1]) {
      lnextself(*innerright);
      symself(*innerright);
      innerrightorg = innerrightapex;
      apex(*innerright, innerrightapex);
    }
    sym(*farright, checkedge);
    apex(checkedge, checkvertex);
    while (checkvertex[1] > farrightpt[1]) {
      lnext(checkedge, *farright);
      /*farrightapex = farrightpt;*/
      farrightpt = checkvertex;
      sym(*farright, checkedge);
      apex(checkedge, checkvertex);
    }
  }
  /* Find a line tangent to and below both hulls. */
  do {
    changemade = 0;
    /* Make innerleftdest the "bottommost" point of the left hull. */
    if (counterclockwise(innerleftdest, innerleftapex, innerrightorg) > 0.0) {
      lprevself(*innerleft);
      symself(*innerleft);
      innerleftdest = innerleftapex;
      apex(*innerleft, innerleftapex);
      changemade = 1;
    }
    /* Make innerrightorg the "bottommost" point of the right hull. */
    if (counterclockwise(innerrightapex, innerrightorg, innerleftdest) > 0.0) {
      lnextself(*innerright);
      symself(*innerright);
      innerrightorg = innerrightapex;
      apex(*innerright, innerrightapex);
      changemade = 1;
    }
  } while (changemade);
  /* Find the two candidates to be the next "gear tooth". */
  sym(*innerleft, leftcand);
  sym(*innerright, rightcand);
  /* Create the bottom new bounding triangle. */
  maketriangle(&baseedge);
  /* Connect it to the bounding boxes of the left and right triangulations. */
  bond(baseedge, *innerleft);
  lnextself(baseedge);
  bond(baseedge, *innerright);
  lnextself(baseedge);
  setorg(baseedge, innerrightorg);
  setdest(baseedge, innerleftdest);
  /* Apex is intentionally left NULL. */
  if (verbose > 2) {
    printf("  Creating base bounding ");
    printtriangle(&baseedge);
  }
  /* Fix the extreme triangles if necessary. */
  org(*farleft, farleftpt);
  if (innerleftdest == farleftpt) {
    lnext(baseedge, *farleft);
  }
  dest(*farright, farrightpt);
  if (innerrightorg == farrightpt) {
    lprev(baseedge, *farright);
  }
  /* The vertices of the current knitting edge. */
  lowerleft = innerleftdest;
  lowerright = innerrightorg;
  /* The candidate vertices for knitting. */
  apex(leftcand, upperleft);
  apex(rightcand, upperright);
  /* Walk up the gap between the two triangulations, knitting them together. */
  while (1) {
    /* Have we reached the top?  (This isn't quite the right question,       */
    /*   because even though the left triangulation might seem finished now, */
    /*   moving up on the right triangulation might reveal a new point of    */
    /*   the left triangulation.  And vice-versa.)                           */
    leftfinished = counterclockwise(upperleft, lowerleft, lowerright) <= 0.0;
    rightfinished = counterclockwise(upperright, lowerleft, lowerright) <= 0.0;
    if (leftfinished && rightfinished) {
      /* Create the top new bounding triangle. */
      maketriangle(&nextedge);
      setorg(nextedge, lowerleft);
      setdest(nextedge, lowerright);
      /* Apex is intentionally left NULL. */
      /* Connect it to the bounding boxes of the two triangulations. */
      bond(nextedge, baseedge);
      lnextself(nextedge);
      bond(nextedge, rightcand);
      lnextself(nextedge);
      bond(nextedge, leftcand);
      if (verbose > 2) {
        printf("  Creating top bounding ");
        printtriangle(&baseedge);
      }
      /* Special treatment for horizontal cuts. */
      if (dwyer && (axis == 1)) {
        org(*farleft, farleftpt);
        apex(*farleft, farleftapex);
        dest(*farright, farrightpt);
        apex(*farright, farrightapex);
        sym(*farleft, checkedge);
        apex(checkedge, checkvertex);
        /* The pointers to the extremal points are restored to the leftmost */
        /*   and rightmost points (rather than topmost and bottommost).     */
        while (checkvertex[0] < farleftpt[0]) {
          lprev(checkedge, *farleft);
          /*farleftapex = farleftpt;*/
          farleftpt = checkvertex;
          sym(*farleft, checkedge);
          apex(checkedge, checkvertex);
        }
        while (farrightapex[0] > farrightpt[0]) {
          lprevself(*farright);
          symself(*farright);
          farrightpt = farrightapex;
          apex(*farright, farrightapex);
        }
      }
      return;
    }
    /* Consider eliminating edges from the left triangulation. */
    if (!leftfinished) {
      /* What vertex would be exposed if an edge were deleted? */
      lprev(leftcand, nextedge);
      symself(nextedge);
      apex(nextedge, nextapex);
      /* If nextapex is NULL, then no vertex would be exposed; the */
      /*   triangulation would have been eaten right through.      */
      if (nextapex != (point) NULL) {
        /* Check whether the edge is Delaunay. */
        badedge = incircle(lowerleft, lowerright, upperleft, nextapex) > 0.0;
        while (badedge) {
          /* Eliminate the edge with an edge flip.  As a result, the    */
          /*   left triangulation will have one more boundary triangle. */
          lnextself(nextedge);
          sym(nextedge, topcasing);
          lnextself(nextedge);
          sym(nextedge, sidecasing);
          bond(nextedge, topcasing);
          bond(leftcand, sidecasing);
          lnextself(leftcand);
          sym(leftcand, outercasing);
          lprevself(nextedge);
          bond(nextedge, outercasing);
          /* Correct the vertices to reflect the edge flip. */
          setorg(leftcand, lowerleft);
          setdest(leftcand, NULL);
          setapex(leftcand, nextapex);
          setorg(nextedge, NULL);
          setdest(nextedge, upperleft);
          setapex(nextedge, nextapex);
          /* Consider the newly exposed vertex. */
          upperleft = nextapex;
          /* What vertex would be exposed if another edge were deleted? */
          triedgecopy(sidecasing, nextedge);
          apex(nextedge, nextapex);
          if (nextapex != (point) NULL) {
            /* Check whether the edge is Delaunay. */
            badedge = incircle(lowerleft, lowerright, upperleft, nextapex)
                      > 0.0;
          }
          else {
            /* Avoid eating right through the triangulation. */
            badedge = 0;
          }
        }
      }
    }
    /* Consider eliminating edges from the right triangulation. */
    if (!rightfinished) {
      /* What vertex would be exposed if an edge were deleted? */
      lnext(rightcand, nextedge);
      symself(nextedge);
      apex(nextedge, nextapex);
      /* If nextapex is NULL, then no vertex would be exposed; the */
      /*   triangulation would have been eaten right through.      */
      if (nextapex != (point) NULL) {
        /* Check whether the edge is Delaunay. */
        badedge = incircle(lowerleft, lowerright, upperright, nextapex) > 0.0;
        while (badedge) {
          /* Eliminate the edge with an edge flip.  As a result, the     */
          /*   right triangulation will have one more boundary triangle. */
          lprevself(nextedge);
          sym(nextedge, topcasing);
          lprevself(nextedge);
          sym(nextedge, sidecasing);
          bond(nextedge, topcasing);
          bond(rightcand, sidecasing);
          lprevself(rightcand);
          sym(rightcand, outercasing);
          lnextself(nextedge);
          bond(nextedge, outercasing);
          /* Correct the vertices to reflect the edge flip. */
          setorg(rightcand, NULL);
          setdest(rightcand, lowerright);
          setapex(rightcand, nextapex);
          setorg(nextedge, upperright);
          setdest(nextedge, NULL);
          setapex(nextedge, nextapex);
          /* Consider the newly exposed vertex. */
          upperright = nextapex;
          /* What vertex would be exposed if another edge were deleted? */
          triedgecopy(sidecasing, nextedge);
          apex(nextedge, nextapex);
          if (nextapex != (point) NULL) {
            /* Check whether the edge is Delaunay. */
            badedge = incircle(lowerleft, lowerright, upperright, nextapex)
                      > 0.0;
          }
          else {
            /* Avoid eating right through the triangulation. */
            badedge = 0;
          }
        }
      }
    }
    if (leftfinished || (!rightfinished &&
           (incircle(upperleft, lowerleft, lowerright, upperright) > 0.0))) {
      /* Knit the triangulations, adding an edge from `lowerleft' */
      /*   to `upperright'.                                       */
      bond(baseedge, rightcand);
      lprev(rightcand, baseedge);
      setdest(baseedge, lowerleft);
      lowerright = upperright;
      sym(baseedge, rightcand);
      apex(rightcand, upperright);
    }
    else {
      /* Knit the triangulations, adding an edge from `upperleft' */
      /*   to `lowerright'.                                       */
      bond(baseedge, leftcand);
      lnext(leftcand, baseedge);
      setorg(baseedge, lowerright);
      lowerleft = upperleft;
      sym(baseedge, leftcand);
      apex(leftcand, upperleft);
    }
    if (verbose > 2) {
      printf("  Connecting ");
      printtriangle(&baseedge);
    }
  }
}

/*****************************************************************************/
/*                                                                           */
/*  divconqrecurse()   Recursively form a Delaunay triangulation by the      */
/*                     divide-and-conquer method.                            */
/*                                                                           */
/*  Recursively breaks down the problem into smaller pieces, which are       */
/*  knitted together by mergehulls().  The base cases (problems of two or    */
/*  three points) are handled specially here.                                */
/*                                                                           */
/*  On completion, `farleft' and `farright' are bounding triangles such that */
/*  the origin of `farleft' is the leftmost vertex (breaking ties by         */
/*  choosing the highest leftmost vertex), and the destination of            */
/*  `farright' is the rightmost vertex (breaking ties by choosing the        */
/*  lowest rightmost vertex).                                                */
/*                                                                           */
/*****************************************************************************/

void divconqrecurse(point *sortarray,
                    int vertices,
                    int axis,
                    struct triedge *farleft,
                    struct triedge *farright)
{
  struct triedge midtri, tri1, tri2, tri3;
  struct triedge innerleft, innerright;
  REAL area;
  int divider;

  if (verbose > 2) {
    printf("  Triangulating %d points.\n", vertices);
  }
  if (vertices == 2) {
    /* The triangulation of two vertices is an edge.  An edge is */
    /*   represented by two bounding triangles.                  */
    maketriangle(farleft);
    setorg(*farleft, sortarray[0]);
    setdest(*farleft, sortarray[1]);
    /* The apex is intentionally left NULL. */
    maketriangle(farright);
    setorg(*farright, sortarray[1]);
    setdest(*farright, sortarray[0]);
    /* The apex is intentionally left NULL. */
    bond(*farleft, *farright);
    lprevself(*farleft);
    lnextself(*farright);
    bond(*farleft, *farright);
    lprevself(*farleft);
    lnextself(*farright);
    bond(*farleft, *farright);
    if (verbose > 2) {
      printf("  Creating ");
      printtriangle(farleft);
      printf("  Creating ");
      printtriangle(farright);
    }
    /* Ensure that the origin of `farleft' is sortarray[0]. */
    lprev(*farright, *farleft);
    return;
  }
  else if (vertices == 3) {
    /* The triangulation of three vertices is either a triangle (with */
    /*   three bounding triangles) or two edges (with four bounding   */
    /*   triangles).  In either case, four triangles are created.     */
    maketriangle(&midtri);
    maketriangle(&tri1);
    maketriangle(&tri2);
    maketriangle(&tri3);
    area = counterclockwise(sortarray[0], sortarray[1], sortarray[2]);
    if (area == 0.0) {
      /* Three collinear points; the triangulation is two edges. */
      setorg(midtri, sortarray[0]);
      setdest(midtri, sortarray[1]);
      setorg(tri1, sortarray[1]);
      setdest(tri1, sortarray[0]);
      setorg(tri2, sortarray[2]);
      setdest(tri2, sortarray[1]);
      setorg(tri3, sortarray[1]);
      setdest(tri3, sortarray[2]);
      /* All apices are intentionally left NULL. */
      bond(midtri, tri1);
      bond(tri2, tri3);
      lnextself(midtri);
      lprevself(tri1);
      lnextself(tri2);
      lprevself(tri3);
      bond(midtri, tri3);
      bond(tri1, tri2);
      lnextself(midtri);
      lprevself(tri1);
      lnextself(tri2);
      lprevself(tri3);
      bond(midtri, tri1);
      bond(tri2, tri3);
      /* Ensure that the origin of `farleft' is sortarray[0]. */
      triedgecopy(tri1, *farleft);
      /* Ensure that the destination of `farright' is sortarray[2]. */
      triedgecopy(tri2, *farright);
    }
    else {
      /* The three points are not collinear; the triangulation is one */
      /*   triangle, namely `midtri'.                                 */
      setorg(midtri, sortarray[0]);
      setdest(tri1, sortarray[0]);
      setorg(tri3, sortarray[0]);
      /* Apices of tri1, tri2, and tri3 are left NULL. */
      if (area > 0.0) {
        /* The vertices are in counterclockwise order. */
        setdest(midtri, sortarray[1]);
        setorg(tri1, sortarray[1]);
        setdest(tri2, sortarray[1]);
        setapex(midtri, sortarray[2]);
        setorg(tri2, sortarray[2]);
        setdest(tri3, sortarray[2]);
      }
      else {
        /* The vertices are in clockwise order. */
        setdest(midtri, sortarray[2]);
        setorg(tri1, sortarray[2]);
        setdest(tri2, sortarray[2]);
        setapex(midtri, sortarray[1]);
        setorg(tri2, sortarray[1]);
        setdest(tri3, sortarray[1]);
      }
      /* The topology does not depend on how the vertices are ordered. */
      bond(midtri, tri1);
      lnextself(midtri);
      bond(midtri, tri2);
      lnextself(midtri);
      bond(midtri, tri3);
      lprevself(tri1);
      lnextself(tri2);
      bond(tri1, tri2);
      lprevself(tri1);
      lprevself(tri3);
      bond(tri1, tri3);
      lnextself(tri2);
      lprevself(tri3);
      bond(tri2, tri3);
      /* Ensure that the origin of `farleft' is sortarray[0]. */
      triedgecopy(tri1, *farleft);
      /* Ensure that the destination of `farright' is sortarray[2]. */
      if (area > 0.0) {
        triedgecopy(tri2, *farright);
      }
      else {
        lnext(*farleft, *farright);
      }
    }
    if (verbose > 2) {
      printf("  Creating ");
      printtriangle(&midtri);
      printf("  Creating ");
      printtriangle(&tri1);
      printf("  Creating ");
      printtriangle(&tri2);
      printf("  Creating ");
      printtriangle(&tri3);
    }
    return;
  }
  else {
    /* Split the vertices in half. */
    divider = vertices >> 1;
    /* Recursively triangulate each half. */
    divconqrecurse(sortarray, divider, 1 - axis, farleft, &innerleft);
    divconqrecurse(&sortarray[divider], vertices - divider, 1 - axis,
                   &innerright, farright);
    if (verbose > 1) {
      printf("  Joining triangulations with %d and %d vertices.\n", divider,
             vertices - divider);
    }
    /* Merge the two triangulations into one. */
    mergehulls(farleft, &innerleft, &innerright, farright, axis);
  }
}

long removeghosts(struct triedge *startghost)
{
  struct triedge searchedge;
  struct triedge dissolveedge;
  struct triedge deadtri;
  point markorg;
  long hullsize;
  triangle ptr;                         /* Temporary variable used by sym(). */

  if (verbose) {
    printf("  Removing ghost triangles.\n");
  }
  /* Find an edge on the convex hull to start point location from. */
  lprev(*startghost, searchedge);
  symself(searchedge);
  dummytri[0] = encode(searchedge);
  /* Remove the bounding box and count the convex hull edges. */
  triedgecopy(*startghost, dissolveedge);
  hullsize = 0;
  do {
    hullsize++;
    lnext(dissolveedge, deadtri);
    lprevself(dissolveedge);
    symself(dissolveedge);
    /* If no PSLG is involved, set the boundary markers of all the points */
    /*   on the convex hull.  If a PSLG is used, this step is done later. */
    if (!poly) {
      /* Watch out for the case where all the input points are collinear. */
      if (dissolveedge.tri != dummytri) {
        org(dissolveedge, markorg);
        if (pointmark(markorg) == 0) {
          setpointmark(markorg, 1);
        }
      }
    }
    /* Remove a bounding triangle from a convex hull triangle. */
    dissolve(dissolveedge);
    /* Find the next bounding triangle. */
    sym(deadtri, dissolveedge);
    /* Delete the bounding triangle. */
    triangledealloc(deadtri.tri);
  } while (!triedgeequal(dissolveedge, *startghost));
  return hullsize;
}

/*****************************************************************************/
/*                                                                           */
/*  divconqdelaunay()   Form a Delaunay triangulation by the divide-and-     */
/*                      conquer method.                                      */
/*                                                                           */
/*  Sorts the points, calls a recursive procedure to triangulate them, and   */
/*  removes the bounding box, setting boundary markers as appropriate.       */
/*                                                                           */
/*****************************************************************************/

long divconqdelaunay(void)
{
  point *sortarray;
  struct triedge hullleft, hullright;
  int divider;
  int i, j;

  /* Allocate an array of pointers to points for sorting. */
  sortarray = (point *) malloc(inpoints * sizeof(point));
  if (sortarray == (point *) NULL) {
    printf("Error:  Out of memory.\n");
    exit(1);
  }
  traversalinit(&points);
  for (i = 0; i < inpoints; i++) {
    sortarray[i] = pointtraverse();
  }
  if (verbose) {
    printf("  Sorting points.\n");
  }
  /* Sort the points. */
  pointsort(sortarray, inpoints);
  /* Discard duplicate points, which can really mess up the algorithm. */
  i = 0;
  for (j = 1; j < inpoints; j++) {
    if ((sortarray[i][0] == sortarray[j][0])
        && (sortarray[i][1] == sortarray[j][1])) {
      if (!quiet) {
        printf("Warning:  A duplicate point at (%.12g, %.12g) appeared and was ignored.\n",
               sortarray[j][0], sortarray[j][1]);
      }
/*  Commented out - would eliminate point from output .node file, but causes
    a failure if some segment has this point as an endpoint.
      setpointmark(sortarray[j], DEADPOINT);
*/
    }
    else {
      i++;
      sortarray[i] = sortarray[j];
    }
  }
  i++;
  if (dwyer) {
    /* Re-sort the array of points to accommodate alternating cuts. */
    divider = i >> 1;
    if (i - divider >= 2) {
      if (divider >= 2) {
        alternateaxes(sortarray, divider, 1);
      }
      alternateaxes(&sortarray[divider], i - divider, 1);
    }
  }
  if (verbose) {
    printf("  Forming triangulation.\n");
  }
  /* Form the Delaunay triangulation. */
  divconqrecurse(sortarray, i, 0, &hullleft, &hullright);
  free(sortarray);

  return removeghosts(&hullleft);
}

/**                                                                         **/
/**                                                                         **/
/********* Divide-and-conquer Delaunay triangulation ends here       *********/

/********* Incremental Delaunay triangulation begins here            *********/
/**                                                                         **/
/**                                                                         **/

/*****************************************************************************/
/*                                                                           */
/*  boundingbox()   Form an "infinite" bounding triangle to insert points    */
/*                  into.                                                    */
/*                                                                           */
/*  The points at "infinity" are assigned finite coordinates, which are used */
/*  by the point location routines, but (mostly) ignored by the Delaunay     */
/*  edge flip routines.                                                      */
/*                                                                           */
/*****************************************************************************/

#ifndef REDUCED

void boundingbox(void)
{
  struct triedge inftri;          /* Handle for the triangular bounding box. */
  REAL width;

  if (verbose) {
    printf("  Creating triangular bounding box.\n");
  }
  /* Find the width (or height, whichever is larger) of the triangulation. */
  width = xmax - xmin;
  if (ymax - ymin > width) {
    width = ymax - ymin;
  }
  if (width == 0.0) {
    width = 1.0;
  }
  /* Create the vertices of the bounding box. */
  infpoint1 = (point) malloc(points.itembytes);
  infpoint2 = (point) malloc(points.itembytes);
  infpoint3 = (point) malloc(points.itembytes);
  if ((infpoint1 == (point) NULL) || (infpoint2 == (point) NULL)
      || (infpoint3 == (point) NULL)) {
    printf("Error:  Out of memory.\n");
    exit(1);
  }
  infpoint1[0] = xmin - 50.0 * width;
  infpoint1[1] = ymin - 40.0 * width;
  infpoint2[0] = xmax + 50.0 * width;
  infpoint2[1] = ymin - 40.0 * width;
  infpoint3[0] = 0.5 * (xmin + xmax);
  infpoint3[1] = ymax + 60.0 * width;

  /* Create the bounding box. */
  maketriangle(&inftri);
  setorg(inftri, infpoint1);
  setdest(inftri, infpoint2);
  setapex(inftri, infpoint3);
  /* Link dummytri to the bounding box so we can always find an */
  /*   edge to begin searching (point location) from.           */
  dummytri[0] = (triangle) inftri.tri;
  if (verbose > 2) {
    printf("  Creating ");
    printtriangle(&inftri);
  }
}

#endif /* not REDUCED */

/*****************************************************************************/
/*                                                                           */
/*  removebox()   Remove the "infinite" bounding triangle, setting boundary  */
/*                markers as appropriate.                                    */
/*                                                                           */
/*  The triangular bounding box has three boundary triangles (one for each   */
/*  side of the bounding box), and a bunch of triangles fanning out from     */
/*  the three bounding box vertices (one triangle for each edge of the       */
/*  convex hull of the inner mesh).  This routine removes these triangles.   */
/*                                                                           */
/*****************************************************************************/

#ifndef REDUCED

long removebox(void)
{
  struct triedge deadtri;
  struct triedge searchedge;
  struct triedge checkedge;
  struct triedge nextedge, finaledge, dissolveedge;
  point markorg;
  long hullsize;
  triangle ptr;                         /* Temporary variable used by sym(). */

  if (verbose) {
    printf("  Removing triangular bounding box.\n");
  }
  /* Find a boundary triangle. */
  nextedge.tri = dummytri;
  nextedge.orient = 0;
  symself(nextedge);
  /* Mark a place to stop. */
  lprev(nextedge, finaledge);
  lnextself(nextedge);
  symself(nextedge);
  /* Find a triangle (on the boundary of the point set) that isn't */
  /*   a bounding box triangle.                                    */
  lprev(nextedge, searchedge);
  symself(searchedge);
  /* Check whether nextedge is another boundary triangle */
  /*   adjacent to the first one.                        */
  lnext(nextedge, checkedge);
  symself(checkedge);
  if (checkedge.tri == dummytri) {
    /* Go on to the next triangle.  There are only three boundary   */
    /*   triangles, and this next triangle cannot be the third one, */
    /*   so it's safe to stop here.                                 */
    lprevself(searchedge);
    symself(searchedge);
  }
  /* Find a new boundary edge to search from, as the current search */
  /*   edge lies on a bounding box triangle and will be deleted.    */
  dummytri[0] = encode(searchedge);
  hullsize = -2l;
  while (!triedgeequal(nextedge, finaledge)) {
    hullsize++;
    lprev(nextedge, dissolveedge);
    symself(dissolveedge);
    /* If not using a PSLG, the vertices should be marked now. */
    /*   (If using a PSLG, markhull() will do the job.)        */
    if (!poly) {
      /* Be careful!  One must check for the case where all the input   */
      /*   points are collinear, and thus all the triangles are part of */
      /*   the bounding box.  Otherwise, the setpointmark() call below  */
      /*   will cause a bad pointer reference.                          */
      if (dissolveedge.tri != dummytri) {
        org(dissolveedge, markorg);
        if (pointmark(markorg) == 0) {
          setpointmark(markorg, 1);
        }
      }
    }
    /* Disconnect the bounding box triangle from the mesh triangle. */
    dissolve(dissolveedge);
    lnext(nextedge, deadtri);
    sym(deadtri, nextedge);
    /* Get rid of the bounding box triangle. */
    triangledealloc(deadtri.tri);
    /* Do we need to turn the corner? */
    if (nextedge.tri == dummytri) {
      /* Turn the corner. */
      triedgecopy(dissolveedge, nextedge);
    }
  }
  triangledealloc(finaledge.tri);

  free(infpoint1);                  /* Deallocate the bounding box vertices. */
  free(infpoint2);
  free(infpoint3);

  return hullsize;
}

#endif /* not REDUCED */

/*****************************************************************************/
/*                                                                           */
/*  incrementaldelaunay()   Form a Delaunay triangulation by incrementally   */
/*                          adding vertices.                                 */
/*                                                                           */
/*****************************************************************************/

#ifndef REDUCED

long incrementaldelaunay(void)
{
  struct triedge starttri;
  point pointloop;

  /* Create a triangular bounding box. */
  boundingbox();
  if (verbose) {
    printf("  Incrementally inserting points.\n");
  }
  traversalinit(&points);
  pointloop = pointtraverse();
  while (pointloop != (point) NULL) {
    /* Find a boundary triangle to search from. */
    starttri.tri = (triangle *) NULL;
    if (insertsite(pointloop, &starttri, (struct edge *) NULL, 0, 0) ==
        DUPLICATEPOINT) {
      if (!quiet) {
        printf("Warning:  A duplicate point at (%.12g, %.12g) appeared and was ignored.\n",
               pointloop[0], pointloop[1]);
      }
/*  Commented out - would eliminate point from output .node file.
      setpointmark(pointloop, DEADPOINT);
*/
    }
    pointloop = pointtraverse();
  }
  /* Remove the bounding box. */
  return removebox();
}

#endif /* not REDUCED */

/**                                                                         **/
/**                                                                         **/
/********* Incremental Delaunay triangulation ends here              *********/

/********* Sweepline Delaunay triangulation begins here              *********/
/**                                                                         **/
/**                                                                         **/

#ifndef REDUCED

void eventheapinsert(struct event **heap,
                     int heapsize,
                     struct event *newevent)
{
  REAL eventx, eventy;
  int eventnum;
  int parent;
  int notdone;

  eventx = newevent->xkey;
  eventy = newevent->ykey;
  eventnum = heapsize;
  notdone = eventnum > 0;
  while (notdone) {
    parent = (eventnum - 1) >> 1;
    if ((heap[parent]->ykey < eventy) ||
        ((heap[parent]->ykey == eventy)
         && (heap[parent]->xkey <= eventx))) {
      notdone = 0;
    }
    else {
      heap[eventnum] = heap[parent];
      heap[eventnum]->heapposition = eventnum;

      eventnum = parent;
      notdone = eventnum > 0;
    }
  }
  heap[eventnum] = newevent;
  newevent->heapposition = eventnum;
}

#endif /* not REDUCED */

#ifndef REDUCED

void eventheapify(struct event **heap,
                  int heapsize,
                  int eventnum)
{
  struct event *thisevent;
  REAL eventx, eventy;
  int leftchild, rightchild;
  int smallest;
  int notdone;

  thisevent = heap[eventnum];
  eventx = thisevent->xkey;
  eventy = thisevent->ykey;
  leftchild = 2 * eventnum + 1;
  notdone = leftchild < heapsize;
  while (notdone) {
    if ((heap[leftchild]->ykey < eventy) ||
        ((heap[leftchild]->ykey == eventy)
         && (heap[leftchild]->xkey < eventx))) {
      smallest = leftchild;
    }
    else {
      smallest = eventnum;
    }
    rightchild = leftchild + 1;
    if (rightchild < heapsize) {
      if ((heap[rightchild]->ykey < heap[smallest]->ykey) ||
          ((heap[rightchild]->ykey == heap[smallest]->ykey)
           && (heap[rightchild]->xkey < heap[smallest]->xkey))) {
        smallest = rightchild;
      }
    }
    if (smallest == eventnum) {
      notdone = 0;
    }
    else {
      heap[eventnum] = heap[smallest];
      heap[eventnum]->heapposition = eventnum;
      heap[smallest] = thisevent;
      thisevent->heapposition = smallest;

      eventnum = smallest;
      leftchild = 2 * eventnum + 1;
      notdone = leftchild < heapsize;
    }
  }
}

#endif /* not REDUCED */

#ifndef REDUCED

void eventheapdelete(struct event **heap,
                     int heapsize,
                     int eventnum)
{
  struct event *moveevent;
  REAL eventx, eventy;
  int parent;
  int notdone;

  moveevent = heap[heapsize - 1];
  if (eventnum > 0) {
    eventx = moveevent->xkey;
    eventy = moveevent->ykey;
    do {
      parent = (eventnum - 1) >> 1;
      if ((heap[parent]->ykey < eventy) ||
          ((heap[parent]->ykey == eventy)
           && (heap[parent]->xkey <= eventx))) {
        notdone = 0;
      }
      else {
        heap[eventnum] = heap[parent];
        heap[eventnum]->heapposition = eventnum;

        eventnum = parent;
        notdone = eventnum > 0;
      }
    } while (notdone);
  }
  heap[eventnum] = moveevent;
  moveevent->heapposition = eventnum;
  eventheapify(heap, heapsize - 1, eventnum);
}

#endif /* not REDUCED */

#ifndef REDUCED

void createeventheap(struct event ***eventheap,
                     struct event **events,
                     struct event **freeevents)
{
  point thispoint;
  int maxevents;
  int i;

  maxevents = (3 * inpoints) / 2;
  *eventheap = (struct event **) malloc(maxevents * sizeof(struct event *));
  if (*eventheap == (struct event **) NULL) {
    printf("Error:  Out of memory.\n");
    exit(1);
  }
  *events = (struct event *) malloc(maxevents * sizeof(struct event));
  if (*events == (struct event *) NULL) {
    printf("Error:  Out of memory.\n");
    exit(1);
  }
  traversalinit(&points);
  for (i = 0; i < inpoints; i++) {
    thispoint = pointtraverse();
    (*events)[i].eventptr = (VOID *) thispoint;
    (*events)[i].xkey = thispoint[0];
    (*events)[i].ykey = thispoint[1];
    eventheapinsert(*eventheap, i, *events + i);
  }
  *freeevents = (struct event *) NULL;
  for (i = maxevents - 1; i >= inpoints; i--) {
    (*events)[i].eventptr = (VOID *) *freeevents;
    *freeevents = *events + i;
  }
}

#endif /* not REDUCED */

#ifndef REDUCED

int rightofhyperbola(struct triedge *fronttri,
                     point newsite)
{
  point leftpoint, rightpoint;
  REAL dxa, dya, dxb, dyb;

  hyperbolacount++;

  dest(*fronttri, leftpoint);
  apex(*fronttri, rightpoint);
  if ((leftpoint[1] < rightpoint[1])
      || ((leftpoint[1] == rightpoint[1]) && (leftpoint[0] < rightpoint[0]))) {
    if (newsite[0] >= rightpoint[0]) {
      return 1;
    }
  }
  else {
    if (newsite[0] <= leftpoint[0]) {
      return 0;
    }
  }
  dxa = leftpoint[0] - newsite[0];
  dya = leftpoint[1] - newsite[1];
  dxb = rightpoint[0] - newsite[0];
  dyb = rightpoint[1] - newsite[1];
  return dya * (dxb * dxb + dyb * dyb) > dyb * (dxa * dxa + dya * dya);
}

#endif /* not REDUCED */

#ifndef REDUCED

REAL circletop(point pa,
               point pb,
               point pc,
               REAL ccwabc)
{
  REAL xac, yac, xbc, ybc, xab, yab;
  REAL aclen2, bclen2, ablen2;

  circletopcount++;

  xac = pa[0] - pc[0];
  yac = pa[1] - pc[1];
  xbc = pb[0] - pc[0];
  ybc = pb[1] - pc[1];
  xab = pa[0] - pb[0];
  yab = pa[1] - pb[1];
  aclen2 = xac * xac + yac * yac;
  bclen2 = xbc * xbc + ybc * ybc;
  ablen2 = xab * xab + yab * yab;
  return pc[1] + (xac * bclen2 - xbc * aclen2 + sqrt(aclen2 * bclen2 * ablen2))
               / (2.0 * ccwabc);
}

#endif /* not REDUCED */

#ifndef REDUCED

void check4deadevent(struct triedge *checktri,
                     struct event **freeevents,
                     struct event **eventheap,
                     int *heapsize)
{
  struct event *deadevent;
  point eventpoint;
  int eventnum;

  org(*checktri, eventpoint);
  if (eventpoint != (point) NULL) {
    deadevent = (struct event *) eventpoint;
    eventnum = deadevent->heapposition;
    deadevent->eventptr = (VOID *) *freeevents;
    *freeevents = deadevent;
    eventheapdelete(eventheap, *heapsize, eventnum);
    (*heapsize)--;
    setorg(*checktri, NULL);
  }
}

#endif /* not REDUCED */

#ifndef REDUCED

struct splaynode *splay(struct splaynode *splaytree,
                        point searchpoint,
                        struct triedge *searchtri)
{
  struct splaynode *child, *grandchild;
  struct splaynode *lefttree, *righttree;
  struct splaynode *leftright;
  point checkpoint;
  int rightofroot, rightofchild;

  if (splaytree == (struct splaynode *) NULL) {
    return (struct splaynode *) NULL;
  }
  dest(splaytree->keyedge, checkpoint);
  if (checkpoint == splaytree->keydest) {
    rightofroot = rightofhyperbola(&splaytree->keyedge, searchpoint);
    if (rightofroot) {
      triedgecopy(splaytree->keyedge, *searchtri);
      child = splaytree->rchild;
    }
    else {
      child = splaytree->lchild;
    }
    if (child == (struct splaynode *) NULL) {
      return splaytree;
    }
    dest(child->keyedge, checkpoint);
    if (checkpoint != child->keydest) {
      child = splay(child, searchpoint, searchtri);
      if (child == (struct splaynode *) NULL) {
        if (rightofroot) {
          splaytree->rchild = (struct splaynode *) NULL;
        }
        else {
          splaytree->lchild = (struct splaynode *) NULL;
        }
        return splaytree;
      }
    }
    rightofchild = rightofhyperbola(&child->keyedge, searchpoint);
    if (rightofchild) {
      triedgecopy(child->keyedge, *searchtri);
      grandchild = splay(child->rchild, searchpoint, searchtri);
      child->rchild = grandchild;
    }
    else {
      grandchild = splay(child->lchild, searchpoint, searchtri);
      child->lchild = grandchild;
    }
    if (grandchild == (struct splaynode *) NULL) {
      if (rightofroot) {
        splaytree->rchild = child->lchild;
        child->lchild = splaytree;
      }
      else {
        splaytree->lchild = child->rchild;
        child->rchild = splaytree;
      }
      return child;
    }
    if (rightofchild) {
      if (rightofroot) {
        splaytree->rchild = child->lchild;
        child->lchild = splaytree;
      }
      else {
        splaytree->lchild = grandchild->rchild;
        grandchild->rchild = splaytree;
      }
      child->rchild = grandchild->lchild;
      grandchild->lchild = child;
    }
    else {
      if (rightofroot) {
        splaytree->rchild = grandchild->lchild;
        grandchild->lchild = splaytree;
      }
      else {
        splaytree->lchild = child->rchild;
        child->rchild = splaytree;
      }
      child->lchild = grandchild->rchild;
      grandchild->rchild = child;
    }
    return grandchild;
  }
  else {
    lefttree = splay(splaytree->lchild, searchpoint, searchtri);
    righttree = splay(splaytree->rchild, searchpoint, searchtri);

    pooldealloc(&splaynodes, (VOID *) splaytree);
    if (lefttree == (struct splaynode *) NULL) {
      return righttree;
    }
    else if (righttree == (struct splaynode *) NULL) {
      return lefttree;
    }
    else if (lefttree->rchild == (struct splaynode *) NULL) {
      lefttree->rchild = righttree->lchild;
      righttree->lchild = lefttree;
      return righttree;
    }
    else if (righttree->lchild == (struct splaynode *) NULL) {
      righttree->lchild = lefttree->rchild;
      lefttree->rchild = righttree;
      return lefttree;
    }
    else {
/*      printf("Holy Toledo!!!\n"); */
      leftright = lefttree->rchild;
      while (leftright->rchild != (struct splaynode *) NULL) {
        leftright = leftright->rchild;
      }
      leftright->rchild = righttree;
      return lefttree;
    }
  }
}

#endif /* not REDUCED */

#ifndef REDUCED

struct splaynode *splayinsert(struct splaynode *splayroot,
                              struct triedge *newkey,
                              point searchpoint)
{
  struct splaynode *newsplaynode;

  newsplaynode = (struct splaynode *) poolalloc(&splaynodes);
  triedgecopy(*newkey, newsplaynode->keyedge);
  dest(*newkey, newsplaynode->keydest);
  if (splayroot == (struct splaynode *) NULL) {
    newsplaynode->lchild = (struct splaynode *) NULL;
    newsplaynode->rchild = (struct splaynode *) NULL;
  }
  else if (rightofhyperbola(&splayroot->keyedge, searchpoint)) {
    newsplaynode->lchild = splayroot;
    newsplaynode->rchild = splayroot->rchild;
    splayroot->rchild = (struct splaynode *) NULL;
  }
  else {
    newsplaynode->lchild = splayroot->lchild;
    newsplaynode->rchild = splayroot;
    splayroot->lchild = (struct splaynode *) NULL;
  }
  return newsplaynode;
}

#endif /* not REDUCED */

#ifndef REDUCED

struct splaynode *circletopinsert(struct splaynode *splayroot,
                                  struct triedge *newkey,
                                  point pa,
                                  point pb,
                                  point pc,
                                  REAL topy)
{
  REAL ccwabc;
  REAL xac, yac, xbc, ybc;
  REAL aclen2, bclen2;
  REAL searchpoint[2];
  struct triedge dummytri;

  ccwabc = counterclockwise(pa, pb, pc);
  xac = pa[0] - pc[0];
  yac = pa[1] - pc[1];
  xbc = pb[0] - pc[0];
  ybc = pb[1] - pc[1];
  aclen2 = xac * xac + yac * yac;
  bclen2 = xbc * xbc + ybc * ybc;
  searchpoint[0] = pc[0] - (yac * bclen2 - ybc * aclen2) / (2.0 * ccwabc);
  searchpoint[1] = topy;
  return splayinsert(splay(splayroot, (point) searchpoint, &dummytri), newkey,
                     (point) searchpoint);
}

#endif /* not REDUCED */

#ifndef REDUCED

struct splaynode *frontlocate(struct splaynode *splayroot,
                              struct triedge *bottommost,
                              point searchpoint,
                              struct triedge *searchtri,
                              int *farright)
{
  int farrightflag;
  triangle ptr;                       /* Temporary variable used by onext(). */

  triedgecopy(*bottommost, *searchtri);
  splayroot = splay(splayroot, searchpoint, searchtri);

  farrightflag = 0;
  while (!farrightflag && rightofhyperbola(searchtri, searchpoint)) {
    onextself(*searchtri);
    farrightflag = triedgeequal(*searchtri, *bottommost);
  }
  *farright = farrightflag;
  return splayroot;
}

#endif /* not REDUCED */

#ifndef REDUCED

long sweeplinedelaunay(void)
{
  struct event **eventheap;
  struct event *events;
  struct event *freeevents;
  struct event *nextevent;
  struct event *newevent;
  struct splaynode *splayroot;
  struct triedge bottommost;
  struct triedge searchtri;
  struct triedge fliptri;
  struct triedge lefttri, righttri, farlefttri, farrighttri;
  struct triedge inserttri;
  point firstpoint, secondpoint;
  point nextpoint, lastpoint;
  point connectpoint;
  point leftpoint, midpoint, rightpoint;
  REAL lefttest, righttest;
  int heapsize;
  int check4events, farrightflag;
  triangle ptr;   /* Temporary variable used by sym(), onext(), and oprev(). */

  poolinit(&splaynodes, (int)sizeof(struct splaynode),
           SPLAYNODEPERBLOCK, POINTER, 0);
  splayroot = (struct splaynode *) NULL;

  if (verbose) {
    printf("  Placing points in event heap.\n");
  }
  createeventheap(&eventheap, &events, &freeevents);
  heapsize = inpoints;

  if (verbose) {
    printf("  Forming triangulation.\n");
  }
  maketriangle(&lefttri);
  maketriangle(&righttri);
  bond(lefttri, righttri);
  lnextself(lefttri);
  lprevself(righttri);
  bond(lefttri, righttri);
  lnextself(lefttri);
  lprevself(righttri);
  bond(lefttri, righttri);
  firstpoint = (point) eventheap[0]->eventptr;
  eventheap[0]->eventptr = (VOID *) freeevents;
  freeevents = eventheap[0];
  eventheapdelete(eventheap, heapsize, 0);
  heapsize--;
  do {
    if (heapsize == 0) {
      printf("Error:  Input points are all identical.\n");
      exit(1);
    }
    secondpoint = (point) eventheap[0]->eventptr;
    eventheap[0]->eventptr = (VOID *) freeevents;
    freeevents = eventheap[0];
    eventheapdelete(eventheap, heapsize, 0);
    heapsize--;
    if ((firstpoint[0] == secondpoint[0])
        && (firstpoint[1] == secondpoint[1])) {
      printf("Warning:  A duplicate point at (%.12g, %.12g) appeared and was ignored.\n",
             secondpoint[0], secondpoint[1]);
/*  Commented out - would eliminate point from output .node file.
      setpointmark(secondpoint, DEADPOINT);
*/
    }
  } while ((firstpoint[0] == secondpoint[0])
           && (firstpoint[1] == secondpoint[1]));
  setorg(lefttri, firstpoint);
  setdest(lefttri, secondpoint);
  setorg(righttri, secondpoint);
  setdest(righttri, firstpoint);
  lprev(lefttri, bottommost);
  lastpoint = secondpoint;
  while (heapsize > 0) {
    nextevent = eventheap[0];
    eventheapdelete(eventheap, heapsize, 0);
    heapsize--;
    check4events = 1;
    if (nextevent->xkey < xmin) {
      decode(nextevent->eventptr, fliptri);
      oprev(fliptri, farlefttri);
      check4deadevent(&farlefttri, &freeevents, eventheap, &heapsize);
      onext(fliptri, farrighttri);
      check4deadevent(&farrighttri, &freeevents, eventheap, &heapsize);

      if (triedgeequal(farlefttri, bottommost)) {
        lprev(fliptri, bottommost);
      }
      flip(&fliptri);
      setapex(fliptri, NULL);
      lprev(fliptri, lefttri);
      lnext(fliptri, righttri);
      sym(lefttri, farlefttri);

      if (randomnation(SAMPLERATE) == 0) {
        symself(fliptri);
        dest(fliptri, leftpoint);
        apex(fliptri, midpoint);
        org(fliptri, rightpoint);
        splayroot = circletopinsert(splayroot, &lefttri, leftpoint, midpoint,
                                    rightpoint, nextevent->ykey);
      }
    }
    else {
      nextpoint = (point) nextevent->eventptr;
      if ((nextpoint[0] == lastpoint[0]) && (nextpoint[1] == lastpoint[1])) {
        printf("Warning:  A duplicate point at (%.12g, %.12g) appeared and was ignored.\n",
               nextpoint[0], nextpoint[1]);
/*  Commented out - would eliminate point from output .node file.
        setpointmark(nextpoint, DEADPOINT);
*/
        check4events = 0;
      }
      else {
        lastpoint = nextpoint;

        splayroot = frontlocate(splayroot, &bottommost, nextpoint, &searchtri,
                                &farrightflag);
/*
        triedgecopy(bottommost, searchtri);
        farrightflag = 0;
        while (!farrightflag && rightofhyperbola(&searchtri, nextpoint)) {
          onextself(searchtri);
          farrightflag = triedgeequal(searchtri, bottommost);
        }
*/

        check4deadevent(&searchtri, &freeevents, eventheap, &heapsize);

        triedgecopy(searchtri, farrighttri);
        sym(searchtri, farlefttri);
        maketriangle(&lefttri);
        maketriangle(&righttri);
        dest(farrighttri, connectpoint);
        setorg(lefttri, connectpoint);
        setdest(lefttri, nextpoint);
        setorg(righttri, nextpoint);
        setdest(righttri, connectpoint);
        bond(lefttri, righttri);
        lnextself(lefttri);
        lprevself(righttri);
        bond(lefttri, righttri);
        lnextself(lefttri);
        lprevself(righttri);
        bond(lefttri, farlefttri);
        bond(righttri, farrighttri);
        if (!farrightflag && triedgeequal(farrighttri, bottommost)) {
          triedgecopy(lefttri, bottommost);
        }

        if (randomnation(SAMPLERATE) == 0) {
          splayroot = splayinsert(splayroot, &lefttri, nextpoint);
        }
        else if (randomnation(SAMPLERATE) == 0) {
          lnext(righttri, inserttri);
          splayroot = splayinsert(splayroot, &inserttri, nextpoint);
        }
      }
    }
    nextevent->eventptr = (VOID *) freeevents;
    freeevents = nextevent;

    if (check4events) {
      apex(farlefttri, leftpoint);
      dest(lefttri, midpoint);
      apex(lefttri, rightpoint);
      lefttest = counterclockwise(leftpoint, midpoint, rightpoint);
      if (lefttest > 0.0) {
        newevent = freeevents;
        freeevents = (struct event *) freeevents->eventptr;
        newevent->xkey = xminextreme;
        newevent->ykey = circletop(leftpoint, midpoint, rightpoint, lefttest);
        newevent->eventptr = (VOID *) encode(lefttri);
        eventheapinsert(eventheap, heapsize, newevent);
        heapsize++;
        setorg(lefttri, newevent);
      }
      apex(righttri, leftpoint);
      org(righttri, midpoint);
      apex(farrighttri, rightpoint);
      righttest = counterclockwise(leftpoint, midpoint, rightpoint);
      if (righttest > 0.0) {
        newevent = freeevents;
        freeevents = (struct event *) freeevents->eventptr;
        newevent->xkey = xminextreme;
        newevent->ykey = circletop(leftpoint, midpoint, rightpoint, righttest);
        newevent->eventptr = (VOID *) encode(farrighttri);
        eventheapinsert(eventheap, heapsize, newevent);
        heapsize++;
        setorg(farrighttri, newevent);
      }
    }
  }

  pooldeinit(&splaynodes);
  lprevself(bottommost);
  return removeghosts(&bottommost);
}

#endif /* not REDUCED */

/**                                                                         **/
/**                                                                         **/
/********* Sweepline Delaunay triangulation ends here                *********/

/********* General mesh construction routines begin here             *********/
/**                                                                         **/
/**                                                                         **/

/*****************************************************************************/
/*                                                                           */
/*  delaunay()   Form a Delaunay triangulation.                              */
/*                                                                           */
/*****************************************************************************/

long delaunay(void)
{
  eextras = 0;
  initializetrisegpools();

#ifdef REDUCED
  if (!quiet) {
    printf("Constructing Delaunay triangulation by divide-and-conquer method.\n");
  }
  return divconqdelaunay();
#else /* not REDUCED */
  if (!quiet) {
    printf("Constructing Delaunay triangulation ");
    if (incremental) {
      printf("by incremental method.\n");
    }
    else if (sweepline) {
      printf("by sweepline method.\n");
    }
    else {
      printf("by divide-and-conquer method.\n");
    }
  }
  if (incremental) {
    return incrementaldelaunay();
  }
  else if (sweepline) {
    return sweeplinedelaunay();
  }
  else {
    return divconqdelaunay();
  }
#endif /* not REDUCED */
}

/*****************************************************************************/
/*                                                                           */
/*  reconstruct()   Reconstruct a triangulation from its .ele (and possibly  */
/*                  .poly) file.  Used when the -r switch is used.           */
/*                                                                           */
/*  Reads an .ele file and reconstructs the original mesh.  If the -p switch */
/*  is used, this procedure will also read a .poly file and reconstruct the  */
/*  shell edges of the original mesh.  If the -a switch is used, this        */
/*  procedure will also read an .area file and set a maximum area constraint */
/*  on each triangle.                                                        */
/*                                                                           */
/*  Points that are not corners of triangles, such as nodes on edges of      */
/*  subparametric elements, are discarded.                                   */
/*                                                                           */
/*  This routine finds the adjacencies between triangles (and shell edges)   */
/*  by forming one stack of triangles for each vertex.  Each triangle is on  */
/*  three different stacks simultaneously.  Each triangle's shell edge       */
/*  pointers are used to link the items in each stack.  This memory-saving   */
/*  feature makes the code harder to read.  The most important thing to keep */
/*  in mind is that each triangle is removed from a stack precisely when     */
/*  the corresponding pointer is adjusted to refer to a shell edge rather    */
/*  than the next triangle of the stack.                                     */
/*                                                                           */
/*****************************************************************************/

#ifndef CDT_ONLY

#ifdef TRILIBRARY

int reconstruct(int *trianglelist,
                REAL *triangleattriblist,
                REAL *trianglearealist,
                int elements,
                int corners,
                int attribs,
                int *segmentlist,
                int *segmentmarkerlist,
                int numberofsegments)

#else /* not TRILIBRARY */

long reconstruct(char *elefilename,
                 char *areafilename,
                 char *polyfilename,
                 FILE *polyfile)

#endif /* not TRILIBRARY */
{
#ifdef TRILIBRARY
  int pointindex;
  int attribindex;
#else /* not TRILIBRARY */
  FILE *elefile;
  FILE *areafile;
  char inputline[INPUTLINESIZE];
  char *stringptr;
  int areaelements;
#endif /* not TRILIBRARY */
  struct triedge triangleloop;
  struct triedge triangleleft;
  struct triedge checktri;
  struct triedge checkleft;
  struct triedge checkneighbor;
  struct edge shelleloop;
  triangle *vertexarray;
  triangle *prevlink;
  triangle nexttri;
  point tdest, tapex;
  point checkdest, checkapex;
  point shorg;
  point killpoint;
  REAL area;
  int corner[3];
  int end[2];
  int killpointindex;
  int incorners;
  int segmentmarkers=0;
  int boundmarker;
  int aroundpoint;
  long hullsize;
  int notfound;
  int elementnumber, segmentnumber;
  int i, j;
  triangle ptr;                         /* Temporary variable used by sym(). */

#ifdef TRILIBRARY
  inelements = elements;
  incorners = corners;
  if (incorners < 3) {
    printf("Error:  Triangles must have at least 3 points.\n");
    exit(1);
  }
  eextras = attribs;
#else /* not TRILIBRARY */
  /* Read the triangles from an .ele file. */
  if (!quiet) {
    printf("Opening %s.\n", elefilename);
  }
  elefile = fopen(elefilename, "r");
  if (elefile == (FILE *) NULL) {
    printf("  Error:  Cannot access file %s.\n", elefilename);
    exit(1);
  }
  /* Read number of triangles, number of points per triangle, and */
  /*   number of triangle attributes from .ele file.              */
  stringptr = readline(inputline, elefile, elefilename);
  inelements = (int) strtol (stringptr, &stringptr, 0);
  stringptr = findfield(stringptr);
  if (*stringptr == '\0') {
    incorners = 3;
  }
  else {
    incorners = (int) strtol (stringptr, &stringptr, 0);
    if (incorners < 3) {
      printf("Error:  Triangles in %s must have at least 3 points.\n",
             elefilename);
      exit(1);
    }
  }
  stringptr = findfield(stringptr);
  if (*stringptr == '\0') {
    eextras = 0;
  }
  else {
    eextras = (int) strtol (stringptr, &stringptr, 0);
  }
#endif /* not TRILIBRARY */

  initializetrisegpools();

  /* Create the triangles. */
  for (elementnumber = 1; elementnumber <= inelements; elementnumber++) {
    maketriangle(&triangleloop);
    /* Mark the triangle as living. */
    triangleloop.tri[3] = (triangle) triangleloop.tri;
  }

  if (poly) {
#ifdef TRILIBRARY
    insegments = numberofsegments;
    segmentmarkers = segmentmarkerlist != (int *) NULL;
#else /* not TRILIBRARY */
    /* Read number of segments and number of segment */
    /*   boundary markers from .poly file.           */
    stringptr = readline(inputline, polyfile, inpolyfilename);
    insegments = (int) strtol (stringptr, &stringptr, 0);
    stringptr = findfield(stringptr);
    if (*stringptr == '\0') {
      segmentmarkers = 0;
    }
    else {
      segmentmarkers = (int) strtol (stringptr, &stringptr, 0);
    }
#endif /* not TRILIBRARY */

    /* Create the shell edges. */
    for (segmentnumber = 1; segmentnumber <= insegments; segmentnumber++) {
      makeshelle(&shelleloop);
      /* Mark the shell edge as living. */
      shelleloop.sh[2] = (shelle) shelleloop.sh;
    }
  }

#ifdef TRILIBRARY
  pointindex = 0;
  attribindex = 0;
#else /* not TRILIBRARY */
  if (vararea) {
    /* Open an .area file, check for consistency with the .ele file. */
    if (!quiet) {
      printf("Opening %s.\n", areafilename);
    }
    areafile = fopen(areafilename, "r");
    if (areafile == (FILE *) NULL) {
      printf("  Error:  Cannot access file %s.\n", areafilename);
      exit(1);
    }
    stringptr = readline(inputline, areafile, areafilename);
    areaelements = (int) strtol (stringptr, &stringptr, 0);
    if (areaelements != inelements) {
      printf("Error:  %s and %s disagree on number of triangles.\n",
             elefilename, areafilename);
      exit(1);
    }
  }
#endif /* not TRILIBRARY */

  if (!quiet) {
    printf("Reconstructing mesh.\n");
  }
  /* Allocate a temporary array that maps each point to some adjacent  */
  /*   triangle.  I took care to allocate all the permanent memory for */
  /*   triangles and shell edges first.                                */
  vertexarray = (triangle *) malloc(points.items * sizeof(triangle));
  if (vertexarray == (triangle *) NULL) {
    printf("Error:  Out of memory.\n");
    exit(1);
  }
  /* Each point is initially unrepresented. */
  for (i = 0; i < points.items; i++) {
    vertexarray[i] = (triangle) dummytri;
  }

  if (verbose) {
    printf("  Assembling triangles.\n");
  }
  /* Read the triangles from the .ele file, and link */
  /*   together those that share an edge.            */
  traversalinit(&triangles);
  triangleloop.tri = triangletraverse();
  elementnumber = firstnumber;
  while (triangleloop.tri != (triangle *) NULL) {
#ifdef TRILIBRARY
    /* Copy the triangle's three corners. */
    for (j = 0; j < 3; j++) {
      corner[j] = trianglelist[pointindex++];
      if ((corner[j] < firstnumber) || (corner[j] >= firstnumber + inpoints)) {
        printf("Error:  Triangle %d has an invalid vertex index.\n",
               elementnumber);
        exit(1);
      }
    }
#else /* not TRILIBRARY */
    /* Read triangle number and the triangle's three corners. */
    stringptr = readline(inputline, elefile, elefilename);
    for (j = 0; j < 3; j++) {
      stringptr = findfield(stringptr);
      if (*stringptr == '\0') {
        printf("Error:  Triangle %d is missing point %d in %s.\n",
               elementnumber, j + 1, elefilename);
        exit(1);
      }
      else {
        corner[j] = (int) strtol (stringptr, &stringptr, 0);
        if ((corner[j] < firstnumber) ||
            (corner[j] >= firstnumber + inpoints)) {
          printf("Error:  Triangle %d has an invalid vertex index.\n",
                 elementnumber);
          exit(1);
        }
      }
    }
#endif /* not TRILIBRARY */

    /* Find out about (and throw away) extra nodes. */
    for (j = 3; j < incorners; j++) {
#ifdef TRILIBRARY
      killpointindex = trianglelist[pointindex++];
#else /* not TRILIBRARY */
      stringptr = findfield(stringptr);
      if (*stringptr != '\0') {
        killpointindex = (int) strtol (stringptr, &stringptr, 0);
#endif /* not TRILIBRARY */
        if ((killpointindex >= firstnumber) &&
            (killpointindex < firstnumber + inpoints)) {
          /* Delete the non-corner point if it's not already deleted. */
          killpoint = getpoint(killpointindex);
          if (pointmark(killpoint) != DEADPOINT) {
            pointdealloc(killpoint);
          }
        }
#ifndef TRILIBRARY
      }
#endif /* not TRILIBRARY */
    }

    /* Read the triangle's attributes. */
    for (j = 0; j < eextras; j++) {
#ifdef TRILIBRARY
      setelemattribute(triangleloop, j, triangleattriblist[attribindex++]);
#else /* not TRILIBRARY */
      stringptr = findfield(stringptr);
      if (*stringptr == '\0') {
        setelemattribute(triangleloop, j, 0);
      }
      else {
        setelemattribute(triangleloop, j,
                         (REAL) strtod (stringptr, &stringptr));
      }
#endif /* not TRILIBRARY */
    }

    if (vararea) {
#ifdef TRILIBRARY
      area = trianglearealist[elementnumber - firstnumber];
#else /* not TRILIBRARY */
      /* Read an area constraint from the .area file. */
      stringptr = readline(inputline, areafile, areafilename);
      stringptr = findfield(stringptr);
      if (*stringptr == '\0') {
        area = -1.0;                      /* No constraint on this triangle. */
      }
      else {
        area = (REAL) strtod(stringptr, &stringptr);
      }
#endif /* not TRILIBRARY */
      setareabound(triangleloop, area);
    }

    /* Set the triangle's vertices. */
    triangleloop.orient = 0;
    setorg(triangleloop, getpoint(corner[0]));
    setdest(triangleloop, getpoint(corner[1]));
    setapex(triangleloop, getpoint(corner[2]));
    /* Try linking the triangle to others that share these vertices. */
    for (triangleloop.orient = 0; triangleloop.orient < 3; triangleloop.orient++) {
      /* Take the number for the origin of triangleloop. */
      aroundpoint = corner[triangleloop.orient];
      /* Look for other triangles having this vertex. */
      nexttri = vertexarray[aroundpoint - firstnumber];
      /* Link the current triangle to the next one in the stack. */
      triangleloop.tri[6 + triangleloop.orient] = nexttri;
      /* Push the current triangle onto the stack. */
      vertexarray[aroundpoint - firstnumber] = encode(triangleloop);
      decode(nexttri, checktri);
      if (checktri.tri != dummytri) {
        dest(triangleloop, tdest);
        apex(triangleloop, tapex);
        /* Look for other triangles that share an edge. */
        do {
          dest(checktri, checkdest);
          apex(checktri, checkapex);
          if (tapex == checkdest) {
            /* The two triangles share an edge; bond them together. */
            lprev(triangleloop, triangleleft);
            bond(triangleleft, checktri);
          }
          if (tdest == checkapex) {
            /* The two triangles share an edge; bond them together. */
            lprev(checktri, checkleft);
            bond(triangleloop, checkleft);
          }
          /* Find the next triangle in the stack. */
          nexttri = checktri.tri[6 + checktri.orient];
          decode(nexttri, checktri);
        } while (checktri.tri != dummytri);
      }
    }
    triangleloop.tri = triangletraverse();
    elementnumber++;
  }

#ifdef TRILIBRARY
  pointindex = 0;
#else /* not TRILIBRARY */
  fclose(elefile);
  if (vararea) {
    fclose(areafile);
  }
#endif /* not TRILIBRARY */

  hullsize = 0;                      /* Prepare to count the boundary edges. */
  if (poly) {
    if (verbose) {
      printf("  Marking segments in triangulation.\n");
    }
    /* Read the segments from the .poly file, and link them */
    /*   to their neighboring triangles.                    */
    boundmarker = 0;
    traversalinit(&shelles);
    shelleloop.sh = shelletraverse();
    segmentnumber = firstnumber;
    while (shelleloop.sh != (shelle *) NULL) {
#ifdef TRILIBRARY
      end[0] = segmentlist[pointindex++];
      end[1] = segmentlist[pointindex++];
      if (segmentmarkers) {
        boundmarker = segmentmarkerlist[segmentnumber - firstnumber];
      }
#else /* not TRILIBRARY */
      /* Read the endpoints of each segment, and possibly a boundary marker. */
      stringptr = readline(inputline, polyfile, inpolyfilename);
      /* Skip the first (segment number) field. */
      stringptr = findfield(stringptr);
      if (*stringptr == '\0') {
        printf("Error:  Segment %d has no endpoints in %s.\n", segmentnumber,
               polyfilename);
        exit(1);
      }
      else {
        end[0] = (int) strtol (stringptr, &stringptr, 0);
      }
      stringptr = findfield(stringptr);
      if (*stringptr == '\0') {
        printf("Error:  Segment %d is missing its second endpoint in %s.\n",
               segmentnumber, polyfilename);
        exit(1);
      }
      else {
        end[1] = (int) strtol (stringptr, &stringptr, 0);
      }
      if (segmentmarkers) {
        stringptr = findfield(stringptr);
        if (*stringptr == '\0') {
          boundmarker = 0;
        }
        else {
          boundmarker = (int) strtol (stringptr, &stringptr, 0);
        }
      }
#endif /* not TRILIBRARY */
      for (j = 0; j < 2; j++) {
        if ((end[j] < firstnumber) || (end[j] >= firstnumber + inpoints)) {
          printf("Error:  Segment %d has an invalid vertex index.\n",
                 segmentnumber);
          exit(1);
        }
      }

      /* set the shell edge's vertices. */
      shelleloop.shorient = 0;
      setsorg(shelleloop, getpoint(end[0]));
      setsdest(shelleloop, getpoint(end[1]));
      setmark(shelleloop, boundmarker);
      /* Try linking the shell edge to triangles that share these vertices. */
      for (shelleloop.shorient = 0; shelleloop.shorient < 2;
           shelleloop.shorient++) {
        /* Take the number for the destination of shelleloop. */
        aroundpoint = end[1 - shelleloop.shorient];
        /* Look for triangles having this vertex. */
        prevlink = &vertexarray[aroundpoint - firstnumber];
        nexttri = vertexarray[aroundpoint - firstnumber];
        decode(nexttri, checktri);
        sorg(shelleloop, shorg);
        notfound = 1;
        /* Look for triangles having this edge.  Note that I'm only       */
        /*   comparing each triangle's destination with the shell edge;   */
        /*   each triangle's apex is handled through a different vertex.  */
        /*   Because each triangle appears on three vertices' lists, each */
        /*   occurrence of a triangle on a list can (and does) represent  */
        /*   an edge.  In this way, most edges are represented twice, and */
        /*   every triangle-segment bond is represented once.             */
        while (notfound && (checktri.tri != dummytri)) {
          dest(checktri, checkdest);
          if (shorg == checkdest) {
            /* We have a match.  Remove this triangle from the list. */
            *prevlink = checktri.tri[6 + checktri.orient];
            /* Bond the shell edge to the triangle. */
            tsbond(checktri, shelleloop);
            /* Check if this is a boundary edge. */
            sym(checktri, checkneighbor);
            if (checkneighbor.tri == dummytri) {
              /* The next line doesn't insert a shell edge (because there's */
              /*   already one there), but it sets the boundary markers of  */
              /*   the existing shell edge and its vertices.                */
              insertshelle(&checktri, 1);
              hullsize++;
            }
            notfound = 0;
          }
          /* Find the next triangle in the stack. */
          prevlink = &checktri.tri[6 + checktri.orient];
          nexttri = checktri.tri[6 + checktri.orient];
          decode(nexttri, checktri);
        }
      }
      shelleloop.sh = shelletraverse();
      segmentnumber++;
    }
  }

  /* Mark the remaining edges as not being attached to any shell edge. */
  /* Also, count the (yet uncounted) boundary edges.                   */
  for (i = 0; i < points.items; i++) {
    /* Search the stack of triangles adjacent to a point. */
    nexttri = vertexarray[i];
    decode(nexttri, checktri);
    while (checktri.tri != dummytri) {
      /* Find the next triangle in the stack before this */
      /*   information gets overwritten.                 */
      nexttri = checktri.tri[6 + checktri.orient];
      /* No adjacent shell edge.  (This overwrites the stack info.) */
      tsdissolve(checktri);
      sym(checktri, checkneighbor);
      if (checkneighbor.tri == dummytri) {
        insertshelle(&checktri, 1);
        hullsize++;
      }
      decode(nexttri, checktri);
    }
  }

  free(vertexarray);
  return hullsize;
}

#endif /* not CDT_ONLY */

/**                                                                         **/
/**                                                                         **/
/********* General mesh construction routines end here               *********/

/********* Segment (shell edge) insertion begins here                *********/
/**                                                                         **/
/**                                                                         **/

/*****************************************************************************/
/*                                                                           */
/*  finddirection()   Find the first triangle on the path from one point     */
/*                    to another.                                            */
/*                                                                           */
/*  Finds the triangle that intersects a line segment drawn from the         */
/*  origin of `searchtri' to the point `endpoint', and returns the result    */
/*  in `searchtri'.  The origin of `searchtri' does not change, even though  */
/*  the triangle returned may differ from the one passed in.  This routine   */
/*  is used to find the direction to move in to get from one point to        */
/*  another.                                                                 */
/*                                                                           */
/*  The return value notes whether the destination or apex of the found      */
/*  triangle is collinear with the two points in question.                   */
/*                                                                           */
/*****************************************************************************/

enum finddirectionresult finddirection(struct triedge *searchtri,
                                       point endpoint)
{
  struct triedge checktri;
  point startpoint;
  point leftpoint, rightpoint;
  REAL leftccw, rightccw;
  int leftflag, rightflag;
  triangle ptr;           /* Temporary variable used by onext() and oprev(). */

  org(*searchtri, startpoint);
  dest(*searchtri, rightpoint);
  apex(*searchtri, leftpoint);
  /* Is `endpoint' to the left? */
  leftccw = counterclockwise(endpoint, startpoint, leftpoint);
  leftflag = leftccw > 0.0;
  /* Is `endpoint' to the right? */
  rightccw = counterclockwise(startpoint, endpoint, rightpoint);
  rightflag = rightccw > 0.0;
  if (leftflag && rightflag) {
    /* `searchtri' faces directly away from `endpoint'.  We could go */
    /*   left or right.  Ask whether it's a triangle or a boundary   */
    /*   on the left.                                                */
    onext(*searchtri, checktri);
    if (checktri.tri == dummytri) {
      leftflag = 0;
    }
    else {
      rightflag = 0;
    }
  }
  while (leftflag) {
    /* Turn left until satisfied. */
    onextself(*searchtri);
    if (searchtri->tri == dummytri) {
      printf("Internal error in finddirection():  Unable to find a\n");
      printf("  triangle leading from (%.12g, %.12g) to", startpoint[0],
             startpoint[1]);
      printf("  (%.12g, %.12g).\n", endpoint[0], endpoint[1]);
      internalerror();
    }
    apex(*searchtri, leftpoint);
    rightccw = leftccw;
    leftccw = counterclockwise(endpoint, startpoint, leftpoint);
    leftflag = leftccw > 0.0;
  }
  while (rightflag) {
    /* Turn right until satisfied. */
    oprevself(*searchtri);
    if (searchtri->tri == dummytri) {
      printf("Internal error in finddirection():  Unable to find a\n");
      printf("  triangle leading from (%.12g, %.12g) to", startpoint[0],
             startpoint[1]);
      printf("  (%.12g, %.12g).\n", endpoint[0], endpoint[1]);
      internalerror();
    }
    dest(*searchtri, rightpoint);
    leftccw = rightccw;
    rightccw = counterclockwise(startpoint, endpoint, rightpoint);
    rightflag = rightccw > 0.0;
  }
  if (leftccw == 0.0) {
    return LEFTCOLLINEAR;
  }
  else if (rightccw == 0.0) {
    return RIGHTCOLLINEAR;
  }
  else {
    return WITHIN;
  }
}

/*****************************************************************************/
/*                                                                           */
/*  segmentintersection()   Find the intersection of an existing segment     */
/*                          and a segment that is being inserted.  Insert    */
/*                          a point at the intersection, splitting an        */
/*                          existing shell edge.                             */
/*                                                                           */
/*  The segment being inserted connects the apex of splittri to endpoint2.   */
/*  splitshelle is the shell edge being split, and MUST be opposite          */
/*  splittri.  Hence, the edge being split connects the origin and           */
/*  destination of splittri.                                                 */
/*                                                                           */
/*  On completion, splittri is a handle having the newly inserted            */
/*  intersection point as its origin, and endpoint1 as its destination.      */
/*                                                                           */
/*****************************************************************************/

void segmentintersection(struct triedge *splittri,
                         struct edge *splitshelle,
                         point endpoint2)
{
  point endpoint1;
  point torg, tdest;
  point leftpoint, rightpoint;
  point newpoint;
  enum insertsiteresult success;
  /*enum finddirectionresult collinear;*/
  REAL ex, ey;
  REAL tx, ty;
  REAL etx, ety;
  REAL split, denom;
  int i;
  triangle ptr;                       /* Temporary variable used by onext(). */

  /* Find the other three segment endpoints. */
  apex(*splittri, endpoint1);
  org(*splittri, torg);
  dest(*splittri, tdest);
  /* Segment intersection formulae; see the Antonio reference. */
  tx = tdest[0] - torg[0];
  ty = tdest[1] - torg[1];
  ex = endpoint2[0] - endpoint1[0];
  ey = endpoint2[1] - endpoint1[1];
  etx = torg[0] - endpoint2[0];
  ety = torg[1] - endpoint2[1];
  denom = ty * ex - tx * ey;
  if (denom == 0.0) {
    printf("Internal error in segmentintersection():");
    printf("  Attempt to find intersection of parallel segments.\n");
    internalerror();
  }
  split = (ey * etx - ex * ety) / denom;
  /* Create the new point. */
  newpoint = (point) poolalloc(&points);
  /* Interpolate its coordinate and attributes. */
  for (i = 0; i < 2 + nextras; i++) {
    newpoint[i] = torg[i] + split * (tdest[i] - torg[i]);
  }
  setpointmark(newpoint, mark(*splitshelle));
  if (verbose > 1) {
    printf("  Splitting edge (%.12g, %.12g) (%.12g, %.12g) at (%.12g, %.12g).\n",
           torg[0], torg[1], tdest[0], tdest[1], newpoint[0], newpoint[1]);
  }
  /* Insert the intersection point.  This should always succeed. */
  success = insertsite(newpoint, splittri, splitshelle, 0, 0);
  if (success != SUCCESSFULPOINT) {
    printf("Internal error in segmentintersection():\n");
    printf("  Failure to split a segment.\n");
    internalerror();
  }
  if (steinerleft > 0) {
    steinerleft--;
  }
  /* Inserting the point may have caused edge flips.  We wish to rediscover */
  /*   the edge connecting endpoint1 to the new intersection point.         */
  /*collinear =*/ finddirection(splittri, endpoint1);
  dest(*splittri, rightpoint);
  apex(*splittri, leftpoint);
  if ((leftpoint[0] == endpoint1[0]) && (leftpoint[1] == endpoint1[1])) {
    onextself(*splittri);
  }
  else if ((rightpoint[0] != endpoint1[0]) ||
             (rightpoint[1] != endpoint1[1])) {
    printf("Internal error in segmentintersection():\n");
    printf("  Topological inconsistency after splitting a segment.\n");
    internalerror();
  }
  /* `splittri' should have destination endpoint1. */
}

/*****************************************************************************/
/*                                                                           */
/*  scoutsegment()   Scout the first triangle on the path from one endpoint  */
/*                   to another, and check for completion (reaching the      */
/*                   second endpoint), a collinear point, and the            */
/*                   intersection of two segments.                           */
/*                                                                           */
/*  Returns one if the entire segment is successfully inserted, and zero if  */
/*  the job must be finished by conformingedge() or constrainededge().       */
/*                                                                           */
/*  If the first triangle on the path has the second endpoint as its         */
/*  destination or apex, a shell edge is inserted and the job is done.       */
/*                                                                           */
/*  If the first triangle on the path has a destination or apex that lies on */
/*  the segment, a shell edge is inserted connecting the first endpoint to   */
/*  the collinear point, and the search is continued from the collinear      */
/*  point.                                                                   */
/*                                                                           */
/*  If the first triangle on the path has a shell edge opposite its origin,  */
/*  then there is a segment that intersects the segment being inserted.      */
/*  Their intersection point is inserted, splitting the shell edge.          */
/*                                                                           */
/*  Otherwise, return zero.                                                  */
/*                                                                           */
/*****************************************************************************/

int scoutsegment(struct triedge *searchtri,
                 point endpoint2,
                 int newmark)
{
  struct triedge crosstri;
  struct edge crossedge;
  point leftpoint, rightpoint;
  /*point endpoint1;*/
  enum finddirectionresult collinear;
  shelle sptr;                      /* Temporary variable used by tspivot(). */

  collinear = finddirection(searchtri, endpoint2);
  dest(*searchtri, rightpoint);
  apex(*searchtri, leftpoint);
  if (((leftpoint[0] == endpoint2[0]) && (leftpoint[1] == endpoint2[1])) ||
      ((rightpoint[0] == endpoint2[0]) && (rightpoint[1] == endpoint2[1]))) {
    /* The segment is already an edge in the mesh. */
    if ((leftpoint[0] == endpoint2[0]) && (leftpoint[1] == endpoint2[1])) {
      lprevself(*searchtri);
    }
    /* Insert a shell edge, if there isn't already one there. */
    insertshelle(searchtri, newmark);
    return 1;
  }
  else if (collinear == LEFTCOLLINEAR) {
    /* We've collided with a point between the segment's endpoints. */
    /* Make the collinear point be the triangle's origin. */
    lprevself(*searchtri);
    insertshelle(searchtri, newmark);
    /* Insert the remainder of the segment. */
    return scoutsegment(searchtri, endpoint2, newmark);
  }
  else if (collinear == RIGHTCOLLINEAR) {
    /* We've collided with a point between the segment's endpoints. */
    insertshelle(searchtri, newmark);
    /* Make the collinear point be the triangle's origin. */
    lnextself(*searchtri);
    /* Insert the remainder of the segment. */
    return scoutsegment(searchtri, endpoint2, newmark);
  }
  else {
    lnext(*searchtri, crosstri);
    tspivot(crosstri, crossedge);
    /* Check for a crossing segment. */
    if (crossedge.sh == dummysh) {
      return 0;
    }
    else {
      /*org(*searchtri, endpoint1);*/
      /* Insert a point at the intersection. */
      segmentintersection(&crosstri, &crossedge, endpoint2);
      triedgecopy(crosstri, *searchtri);
      insertshelle(searchtri, newmark);
      /* Insert the remainder of the segment. */
      return scoutsegment(searchtri, endpoint2, newmark);
    }
  }
}

/*****************************************************************************/
/*                                                                           */
/*  conformingedge()   Force a segment into a conforming Delaunay            */
/*                     triangulation by inserting a point at its midpoint,   */
/*                     and recursively forcing in the two half-segments if   */
/*                     necessary.                                            */
/*                                                                           */
/*  Generates a sequence of edges connecting `endpoint1' to `endpoint2'.     */
/*  `newmark' is the boundary marker of the segment, assigned to each new    */
/*  splitting point and shell edge.                                          */
/*                                                                           */
/*  Note that conformingedge() does not always maintain the conforming       */
/*  Delaunay property.  Once inserted, segments are locked into place;       */
/*  points inserted later (to force other segments in) may render these      */
/*  fixed segments non-Delaunay.  The conforming Delaunay property will be   */
/*  restored by enforcequality() by splitting encroached segments.           */
/*                                                                           */
/*****************************************************************************/

#ifndef REDUCED
#ifndef CDT_ONLY

void conformingedge(point endpoint1,
                    point endpoint2,
                    int newmark)
{
  struct triedge searchtri1, searchtri2;
  struct edge brokenshelle;
  point newpoint;
  point midpoint1, midpoint2;
  enum insertsiteresult success;
  int result1, result2;
  int i;
  shelle sptr;                      /* Temporary variable used by tspivot(). */

  if (verbose > 2) {
    printf("Forcing segment into triangulation by recursive splitting:\n");
    printf("  (%.12g, %.12g) (%.12g, %.12g)\n", endpoint1[0], endpoint1[1],
           endpoint2[0], endpoint2[1]);
  }
  /* Create a new point to insert in the middle of the segment. */
  newpoint = (point) poolalloc(&points);
  /* Interpolate coordinates and attributes. */
  for (i = 0; i < 2 + nextras; i++) {
    newpoint[i] = 0.5 * (endpoint1[i] + endpoint2[i]);
  }
  setpointmark(newpoint, newmark);
  /* Find a boundary triangle to search from. */
  searchtri1.tri = (triangle *) NULL;
  /* Attempt to insert the new point. */
  success = insertsite(newpoint, &searchtri1, (struct edge *) NULL, 0, 0);
  if (success == DUPLICATEPOINT) {
    if (verbose > 2) {
      printf("  Segment intersects existing point (%.12g, %.12g).\n",
             newpoint[0], newpoint[1]);
    }
    /* Use the point that's already there. */
    pointdealloc(newpoint);
    /*org(searchtri1, newpoint);*/
  }
  else {
    if (success == VIOLATINGPOINT) {
      if (verbose > 2) {
        printf("  Two segments intersect at (%.12g, %.12g).\n",
               newpoint[0], newpoint[1]);
      }
      /* By fluke, we've landed right on another segment.  Split it. */
      tspivot(searchtri1, brokenshelle);
      success = insertsite(newpoint, &searchtri1, &brokenshelle, 0, 0);
      if (success != SUCCESSFULPOINT) {
        printf("Internal error in conformingedge():\n");
        printf("  Failure to split a segment.\n");
        internalerror();
      }
    }
    /* The point has been inserted successfully. */
    if (steinerleft > 0) {
      steinerleft--;
    }
  }
  triedgecopy(searchtri1, searchtri2);
  result1 = scoutsegment(&searchtri1, endpoint1, newmark);
  result2 = scoutsegment(&searchtri2, endpoint2, newmark);
  if (!result1) {
    /* The origin of searchtri1 may have changed if a collision with an */
    /*   intervening vertex on the segment occurred.                    */
    org(searchtri1, midpoint1);
    conformingedge(midpoint1, endpoint1, newmark);
  }
  if (!result2) {
    /* The origin of searchtri2 may have changed if a collision with an */
    /*   intervening vertex on the segment occurred.                    */
    org(searchtri2, midpoint2);
    conformingedge(midpoint2, endpoint2, newmark);
  }
}

#endif /* not CDT_ONLY */
#endif /* not REDUCED */

/*****************************************************************************/
/*                                                                           */
/*  delaunayfixup()   Enforce the Delaunay condition at an edge, fanning out */
/*                    recursively from an existing point.  Pay special       */
/*                    attention to stacking inverted triangles.              */
/*                                                                           */
/*  This is a support routine for inserting segments into a constrained      */
/*  Delaunay triangulation.                                                  */
/*                                                                           */
/*  The origin of fixuptri is treated as if it has just been inserted, and   */
/*  the local Delaunay condition needs to be enforced.  It is only enforced  */
/*  in one sector, however, that being the angular range defined by          */
/*  fixuptri.                                                                */
/*                                                                           */
/*  This routine also needs to make decisions regarding the "stacking" of    */
/*  triangles.  (Read the description of constrainededge() below before      */
/*  reading on here, so you understand the algorithm.)  If the position of   */
/*  the new point (the origin of fixuptri) indicates that the vertex before  */
/*  it on the polygon is a reflex vertex, then "stack" the triangle by       */
/*  doing nothing.  (fixuptri is an inverted triangle, which is how stacked  */
/*  triangles are identified.)                                               */
/*                                                                           */
/*  Otherwise, check whether the vertex before that was a reflex vertex.     */
/*  If so, perform an edge flip, thereby eliminating an inverted triangle    */
/*  (popping it off the stack).  The edge flip may result in the creation    */
/*  of a new inverted triangle, depending on whether or not the new vertex   */
/*  is visible to the vertex three edges behind on the polygon.              */
/*                                                                           */
/*  If neither of the two vertices behind the new vertex are reflex          */
/*  vertices, fixuptri and fartri, the triangle opposite it, are not         */
/*  inverted; hence, ensure that the edge between them is locally Delaunay.  */
/*                                                                           */
/*  `leftside' indicates whether or not fixuptri is to the left of the       */
/*  segment being inserted.  (Imagine that the segment is pointing up from   */
/*  endpoint1 to endpoint2.)                                                 */
/*                                                                           */
/*****************************************************************************/

void delaunayfixup(struct triedge *fixuptri,
                   int leftside)
{
  struct triedge neartri;
  struct triedge fartri;
  struct edge faredge;
  point nearpoint, leftpoint, rightpoint, farpoint;
  triangle ptr;                         /* Temporary variable used by sym(). */
  shelle sptr;                      /* Temporary variable used by tspivot(). */

  lnext(*fixuptri, neartri);
  sym(neartri, fartri);
  /* Check if the edge opposite the origin of fixuptri can be flipped. */
  if (fartri.tri == dummytri) {
    return;
  }
  tspivot(neartri, faredge);
  if (faredge.sh != dummysh) {
    return;
  }
  /* Find all the relevant vertices. */
  apex(neartri, nearpoint);
  org(neartri, leftpoint);
  dest(neartri, rightpoint);
  apex(fartri, farpoint);
  /* Check whether the previous polygon vertex is a reflex vertex. */
  if (leftside) {
    if (counterclockwise(nearpoint, leftpoint, farpoint) <= 0.0) {
      /* leftpoint is a reflex vertex too.  Nothing can */
      /*   be done until a convex section is found.     */
      return;
    }
  }
  else {
    if (counterclockwise(farpoint, rightpoint, nearpoint) <= 0.0) {
      /* rightpoint is a reflex vertex too.  Nothing can */
      /*   be done until a convex section is found.      */
      return;
    }
  }
  if (counterclockwise(rightpoint, leftpoint, farpoint) > 0.0) {
    /* fartri is not an inverted triangle, and farpoint is not a reflex */
    /*   vertex.  As there are no reflex vertices, fixuptri isn't an    */
    /*   inverted triangle, either.  Hence, test the edge between the   */
    /*   triangles to ensure it is locally Delaunay.                    */
    if (incircle(leftpoint, farpoint, rightpoint, nearpoint) <= 0.0) {
      return;
    }
    /* Not locally Delaunay; go on to an edge flip. */
  }        /* else fartri is inverted; remove it from the stack by flipping. */
  flip(&neartri);
  lprevself(*fixuptri);    /* Restore the origin of fixuptri after the flip. */
  /* Recursively process the two triangles that result from the flip. */
  delaunayfixup(fixuptri, leftside);
  delaunayfixup(&fartri, leftside);
}

/*****************************************************************************/
/*                                                                           */
/*  constrainededge()   Force a segment into a constrained Delaunay          */
/*                      triangulation by deleting the triangles it           */
/*                      intersects, and triangulating the polygons that      */
/*                      form on each side of it.                             */
/*                                                                           */
/*  Generates a single edge connecting `endpoint1' to `endpoint2'.  The      */
/*  triangle `starttri' has `endpoint1' as its origin.  `newmark' is the     */
/*  boundary marker of the segment.                                          */
/*                                                                           */
/*  To insert a segment, every triangle whose interior intersects the        */
/*  segment is deleted.  The union of these deleted triangles is a polygon   */
/*  (which is not necessarily monotone, but is close enough), which is       */
/*  divided into two polygons by the new segment.  This routine's task is    */
/*  to generate the Delaunay triangulation of these two polygons.            */
/*                                                                           */
/*  You might think of this routine's behavior as a two-step process.  The   */
/*  first step is to walk from endpoint1 to endpoint2, flipping each edge    */
/*  encountered.  This step creates a fan of edges connected to endpoint1,   */
/*  including the desired edge to endpoint2.  The second step enforces the   */
/*  Delaunay condition on each side of the segment in an incremental manner: */
/*  proceeding along the polygon from endpoint1 to endpoint2 (this is done   */
/*  independently on each side of the segment), each vertex is "enforced"    */
/*  as if it had just been inserted, but affecting only the previous         */
/*  vertices.  The result is the same as if the vertices had been inserted   */
/*  in the order they appear on the polygon, so the result is Delaunay.      */
/*                                                                           */
/*  In truth, constrainededge() interleaves these two steps.  The procedure  */
/*  walks from endpoint1 to endpoint2, and each time an edge is encountered  */
/*  and flipped, the newly exposed vertex (at the far end of the flipped     */
/*  edge) is "enforced" upon the previously flipped edges, usually affecting */
/*  only one side of the polygon (depending upon which side of the segment   */
/*  the vertex falls on).                                                    */
/*                                                                           */
/*  The algorithm is complicated by the need to handle polygons that are not */
/*  convex.  Although the polygon is not necessarily monotone, it can be     */
/*  triangulated in a manner similar to the stack-based algorithms for       */
/*  monotone polygons.  For each reflex vertex (local concavity) of the      */
/*  polygon, there will be an inverted triangle formed by one of the edge    */
/*  flips.  (An inverted triangle is one with negative area - that is, its   */
/*  vertices are arranged in clockwise order - and is best thought of as a   */
/*  wrinkle in the fabric of the mesh.)  Each inverted triangle can be       */
/*  thought of as a reflex vertex pushed on the stack, waiting to be fixed   */
/*  later.                                                                   */
/*                                                                           */
/*  A reflex vertex is popped from the stack when a vertex is inserted that  */
/*  is visible to the reflex vertex.  (However, if the vertex behind the     */
/*  reflex vertex is not visible to the reflex vertex, a new inverted        */
/*  triangle will take its place on the stack.)  These details are handled   */
/*  by the delaunayfixup() routine above.                                    */
/*                                                                           */
/*****************************************************************************/

void constrainededge(struct triedge *starttri,
                     point endpoint2,
                     int newmark)
{
  struct triedge fixuptri, fixuptri2;
  struct edge fixupedge;
  point endpoint1;
  point farpoint;
  REAL area;
  int collision;
  int done;
  triangle ptr;             /* Temporary variable used by sym() and oprev(). */
  shelle sptr;                      /* Temporary variable used by tspivot(). */

  org(*starttri, endpoint1);
  lnext(*starttri, fixuptri);
  flip(&fixuptri);
  /* `collision' indicates whether we have found a point directly */
  /*   between endpoint1 and endpoint2.                           */
  collision = 0;
  done = 0;
  do {
    org(fixuptri, farpoint);
    /* `farpoint' is the extreme point of the polygon we are "digging" */
    /*   to get from endpoint1 to endpoint2.                           */
    if ((farpoint[0] == endpoint2[0]) && (farpoint[1] == endpoint2[1])) {
      oprev(fixuptri, fixuptri2);
      /* Enforce the Delaunay condition around endpoint2. */
      delaunayfixup(&fixuptri, 0);
      delaunayfixup(&fixuptri2, 1);
      done = 1;
    }
    else {
      /* Check whether farpoint is to the left or right of the segment */
      /*   being inserted, to decide which edge of fixuptri to dig     */
      /*   through next.                                               */
      area = counterclockwise(endpoint1, endpoint2, farpoint);
      if (area == 0.0) {
        /* We've collided with a point between endpoint1 and endpoint2. */
        collision = 1;
        oprev(fixuptri, fixuptri2);
        /* Enforce the Delaunay condition around farpoint. */
        delaunayfixup(&fixuptri, 0);
        delaunayfixup(&fixuptri2, 1);
        done = 1;
      }
      else {
        if (area > 0.0) {         /* farpoint is to the left of the segment. */
          oprev(fixuptri, fixuptri2);
          /* Enforce the Delaunay condition around farpoint, on the */
          /*   left side of the segment only.                       */
          delaunayfixup(&fixuptri2, 1);
          /* Flip the edge that crosses the segment.  After the edge is */
          /*   flipped, one of its endpoints is the fan vertex, and the */
          /*   destination of fixuptri is the fan vertex.               */
          lprevself(fixuptri);
        }
        else {                 /* farpoint is to the right of the segment. */
          delaunayfixup(&fixuptri, 0);
          /* Flip the edge that crosses the segment.  After the edge is */
          /*   flipped, one of its endpoints is the fan vertex, and the */
          /*   destination of fixuptri is the fan vertex.               */
          oprevself(fixuptri);
        }
        /* Check for two intersecting segments. */
        tspivot(fixuptri, fixupedge);
        if (fixupedge.sh == dummysh) {
          flip(&fixuptri);   /* May create an inverted triangle on the left. */
        }
        else {
          /* We've collided with a segment between endpoint1 and endpoint2. */
          collision = 1;
          /* Insert a point at the intersection. */
          segmentintersection(&fixuptri, &fixupedge, endpoint2);
          done = 1;
        }
      }
    }
  } while (!done);
  /* Insert a shell edge to make the segment permanent. */
  insertshelle(&fixuptri, newmark);
  /* If there was a collision with an interceding vertex, install another */
  /*   segment connecting that vertex with endpoint2.                     */
  if (collision) {
    /* Insert the remainder of the segment. */
    if (!scoutsegment(&fixuptri, endpoint2, newmark)) {
      constrainededge(&fixuptri, endpoint2, newmark);
    }
  }
}

/*****************************************************************************/
/*                                                                           */
/*  insertsegment()   Insert a PSLG segment into a triangulation.            */
/*                                                                           */
/*****************************************************************************/

void insertsegment(point endpoint1,
                   point endpoint2,
                   int newmark)
{
  struct triedge searchtri1, searchtri2;
  triangle encodedtri;
  point checkpoint;
  triangle ptr;                         /* Temporary variable used by sym(). */

  if (verbose > 1) {
    printf("  Connecting (%.12g, %.12g) to (%.12g, %.12g).\n",
           endpoint1[0], endpoint1[1], endpoint2[0], endpoint2[1]);
  }

  /* Find a triangle whose origin is the segment's first endpoint. */
  checkpoint = (point) NULL;
  encodedtri = point2tri(endpoint1);
  if (encodedtri != (triangle) NULL) {
    decode(encodedtri, searchtri1);
    org(searchtri1, checkpoint);
  }
  if (checkpoint != endpoint1) {
    /* Find a boundary triangle to search from. */
    searchtri1.tri = dummytri;
    searchtri1.orient = 0;
    symself(searchtri1);
    /* Search for the segment's first endpoint by point location. */
    if (locate(endpoint1, &searchtri1) != ONVERTEX) {
      printf("Internal error in insertsegment():  Unable to locate PSLG point\n");
      printf("  (%.12g, %.12g) in triangulation.\n",
             endpoint1[0], endpoint1[1]);
      internalerror();
    }
  }
  /* Remember this triangle to improve subsequent point location. */
  triedgecopy(searchtri1, recenttri);
  /* Scout the beginnings of a path from the first endpoint */
  /*   toward the second.                                   */
  if (scoutsegment(&searchtri1, endpoint2, newmark)) {
    /* The segment was easily inserted. */
    return;
  }
  /* The first endpoint may have changed if a collision with an intervening */
  /*   vertex on the segment occurred.                                      */
  org(searchtri1, endpoint1);

  /* Find a triangle whose origin is the segment's second endpoint. */
  checkpoint = (point) NULL;
  encodedtri = point2tri(endpoint2);
  if (encodedtri != (triangle) NULL) {
    decode(encodedtri, searchtri2);
    org(searchtri2, checkpoint);
  }
  if (checkpoint != endpoint2) {
    /* Find a boundary triangle to search from. */
    searchtri2.tri = dummytri;
    searchtri2.orient = 0;
    symself(searchtri2);
    /* Search for the segment's second endpoint by point location. */
    if (locate(endpoint2, &searchtri2) != ONVERTEX) {
      printf("Internal error in insertsegment():  Unable to locate PSLG point\n");
      printf("  (%.12g, %.12g) in triangulation.\n",
             endpoint2[0], endpoint2[1]);
      internalerror();
    }
  }
  /* Remember this triangle to improve subsequent point location. */
  triedgecopy(searchtri2, recenttri);
  /* Scout the beginnings of a path from the second endpoint */
  /*   toward the first.                                     */
  if (scoutsegment(&searchtri2, endpoint1, newmark)) {
    /* The segment was easily inserted. */
    return;
  }
  /* The second endpoint may have changed if a collision with an intervening */
  /*   vertex on the segment occurred.                                       */
  org(searchtri2, endpoint2);

#ifndef REDUCED
#ifndef CDT_ONLY
  if (splitseg) {
    /* Insert vertices to force the segment into the triangulation. */
    conformingedge(endpoint1, endpoint2, newmark);
  }
  else {
#endif /* not CDT_ONLY */
#endif /* not REDUCED */
    /* Insert the segment directly into the triangulation. */
    constrainededge(&searchtri1, endpoint2, newmark);
#ifndef REDUCED
#ifndef CDT_ONLY
  }
#endif /* not CDT_ONLY */
#endif /* not REDUCED */
}

/*****************************************************************************/
/*                                                                           */
/*  markhull()   Cover the convex hull of a triangulation with shell edges.  */
/*                                                                           */
/*****************************************************************************/

void markhull(void)
{
  struct triedge hulltri;
  struct triedge nexttri;
  struct triedge starttri;
  triangle ptr;             /* Temporary variable used by sym() and oprev(). */

  /* Find a triangle handle on the hull. */
  hulltri.tri = dummytri;
  hulltri.orient = 0;
  symself(hulltri);
  /* Remember where we started so we know when to stop. */
  triedgecopy(hulltri, starttri);
  /* Go once counterclockwise around the convex hull. */
  do {
    /* Create a shell edge if there isn't already one here. */
    insertshelle(&hulltri, 1);
    /* To find the next hull edge, go clockwise around the next vertex. */
    lnextself(hulltri);
    oprev(hulltri, nexttri);
    while (nexttri.tri != dummytri) {
      triedgecopy(nexttri, hulltri);
      oprev(hulltri, nexttri);
    }
  } while (!triedgeequal(hulltri, starttri));
}

/*****************************************************************************/
/*                                                                           */
/*  formskeleton()   Create the shell edges of a triangulation, including    */
/*                   PSLG edges and edges on the convex hull.                */
/*                                                                           */
/*  The PSLG edges are read from a .poly file.  The return value is the      */
/*  number of segments in the file.                                          */
/*                                                                           */
/*****************************************************************************/

#ifdef TRILIBRARY

int formskeleton(int *segmentlist,
                 int *segmentmarkerlist,
                 int numberofsegments)

#else /* not TRILIBRARY */

int formskeleton(FILE *polyfile
                 char *polyfilename)

#endif /* not TRILIBRARY */
{
#ifdef TRILIBRARY
  char polyfilename[6];
  int index;
#else /* not TRILIBRARY */
  char inputline[INPUTLINESIZE];
  char *stringptr;
#endif /* not TRILIBRARY */
  point endpoint1, endpoint2;
  int segments;
  int segmentmarkers;
  int end1, end2;
  int boundmarker;
  int i;

  if (poly) {
    if (!quiet) {
      printf("Inserting segments into Delaunay triangulation.\n");
    }
#ifdef TRILIBRARY
    strcpy(polyfilename, "input");
    segments = numberofsegments;
    segmentmarkers = segmentmarkerlist != (int *) NULL;
    index = 0;
#else /* not TRILIBRARY */
    /* Read the segments from a .poly file. */
    /* Read number of segments and number of boundary markers. */
    stringptr = readline(inputline, polyfile, polyfilename);
    segments = (int) strtol (stringptr, &stringptr, 0);
    stringptr = findfield(stringptr);
    if (*stringptr == '\0') {
      segmentmarkers = 0;
    }
    else {
      segmentmarkers = (int) strtol (stringptr, &stringptr, 0);
    }
#endif /* not TRILIBRARY */
    /* If segments are to be inserted, compute a mapping */
    /*   from points to triangles.                       */
    if (segments > 0) {
      if (verbose) {
        printf("  Inserting PSLG segments.\n");
      }
      makepointmap();
    }

    boundmarker = 0;
    /* Read and insert the segments. */
    for (i = 1; i <= segments; i++) {
#ifdef TRILIBRARY
      end1 = segmentlist[index++];
      end2 = segmentlist[index++];
      if (segmentmarkers) {
        boundmarker = segmentmarkerlist[i - 1];
      }
#else /* not TRILIBRARY */
      stringptr = readline(inputline, polyfile, inpolyfilename);
      stringptr = findfield(stringptr);
      if (*stringptr == '\0') {
        printf("Error:  Segment %d has no endpoints in %s.\n", i,
               polyfilename);
        exit(1);
      }
      else {
        end1 = (int) strtol (stringptr, &stringptr, 0);
      }
      stringptr = findfield(stringptr);
      if (*stringptr == '\0') {
        printf("Error:  Segment %d is missing its second endpoint in %s.\n", i,
               polyfilename);
        exit(1);
      }
      else {
        end2 = (int) strtol (stringptr, &stringptr, 0);
      }
      if (segmentmarkers) {
        stringptr = findfield(stringptr);
        if (*stringptr == '\0') {
          boundmarker = 0;
        }
        else {
          boundmarker = (int) strtol (stringptr, &stringptr, 0);
        }
      }
#endif /* not TRILIBRARY */
      if ((end1 < firstnumber) || (end1 >= firstnumber + inpoints)) {
        if (!quiet) {
          printf("Warning:  Invalid first endpoint of segment %d in %s.\n", i,
                 polyfilename);
        }
      }
      else if ((end2 < firstnumber) || (end2 >= firstnumber + inpoints)) {
        if (!quiet) {
          printf("Warning:  Invalid second endpoint of segment %d in %s.\n", i,
                 polyfilename);
        }
      }
      else {
        endpoint1 = getpoint(end1);
        endpoint2 = getpoint(end2);
        if ((endpoint1[0] == endpoint2[0]) && (endpoint1[1] == endpoint2[1])) {
          if (!quiet) {
            printf("Warning:  Endpoints of segment %d are coincident in %s.\n",
                   i, polyfilename);
          }
        }
        else {
          insertsegment(endpoint1, endpoint2, boundmarker);
        }
      }
    }
  }
  else {
    segments = 0;
  }
  if (convex || !poly) {
    /* Enclose the convex hull with shell edges. */
    if (verbose) {
      printf("  Enclosing convex hull with segments.\n");
    }
    markhull();
  }
  return segments;
}

/**                                                                         **/
/**                                                                         **/
/********* Segment (shell edge) insertion ends here                  *********/

/********* Carving out holes and concavities begins here             *********/
/**                                                                         **/
/**                                                                         **/

/*****************************************************************************/
/*                                                                           */
/*  infecthull()   Virally infect all of the triangles of the convex hull    */
/*                 that are not protected by shell edges.  Where there are   */
/*                 shell edges, set boundary markers as appropriate.         */
/*                                                                           */
/*****************************************************************************/

void infecthull(void)
{
  struct triedge hulltri;
  struct triedge nexttri;
  struct triedge starttri;
  struct edge hulledge;
  triangle **deadtri;
  point horg, hdest;
  triangle ptr;                         /* Temporary variable used by sym(). */
  shelle sptr;                      /* Temporary variable used by tspivot(). */

  if (verbose) {
    printf("  Marking concavities (external triangles) for elimination.\n");
  }
  /* Find a triangle handle on the hull. */
  hulltri.tri = dummytri;
  hulltri.orient = 0;
  symself(hulltri);
  /* Remember where we started so we know when to stop. */
  triedgecopy(hulltri, starttri);
  /* Go once counterclockwise around the convex hull. */
  do {
    /* Ignore triangles that are already infected. */
    if (!infected(hulltri)) {
      /* Is the triangle protected by a shell edge? */
      tspivot(hulltri, hulledge);
      if (hulledge.sh == dummysh) {
        /* The triangle is not protected; infect it. */
        infect(hulltri);
        deadtri = (triangle **) poolalloc(&viri);
        *deadtri = hulltri.tri;
      }
      else {
        /* The triangle is protected; set boundary markers if appropriate. */
        if (mark(hulledge) == 0) {
          setmark(hulledge, 1);
          org(hulltri, horg);
          dest(hulltri, hdest);
          if (pointmark(horg) == 0) {
            setpointmark(horg, 1);
          }
          if (pointmark(hdest) == 0) {
            setpointmark(hdest, 1);
          }
        }
      }
    }
    /* To find the next hull edge, go clockwise around the next vertex. */
    lnextself(hulltri);
    oprev(hulltri, nexttri);
    while (nexttri.tri != dummytri) {
      triedgecopy(nexttri, hulltri);
      oprev(hulltri, nexttri);
    }
  } while (!triedgeequal(hulltri, starttri));
}

/*****************************************************************************/
/*                                                                           */
/*  plague()   Spread the virus from all infected triangles to any neighbors */
/*             not protected by shell edges.  Delete all infected triangles. */
/*                                                                           */
/*  This is the procedure that actually creates holes and concavities.       */
/*                                                                           */
/*  This procedure operates in two phases.  The first phase identifies all   */
/*  the triangles that will die, and marks them as infected.  They are       */
/*  marked to ensure that each triangle is added to the virus pool only      */
/*  once, so the procedure will terminate.                                   */
/*                                                                           */
/*  The second phase actually eliminates the infected triangles.  It also    */
/*  eliminates orphaned points.                                              */
/*                                                                           */
/*****************************************************************************/

void plague(void)
{
  struct triedge testtri;
  struct triedge neighbor;
  triangle **virusloop;
  triangle **deadtri;
  struct edge neighborshelle;
  point testpoint;
  point norg, ndest;
  point deadorg, deaddest, deadapex;
  int killorg;
  triangle ptr;             /* Temporary variable used by sym() and onext(). */
  shelle sptr;                      /* Temporary variable used by tspivot(). */

  if (verbose) {
    printf("  Marking neighbors of marked triangles.\n");
  }
  /* Loop through all the infected triangles, spreading the virus to */
  /*   their neighbors, then to their neighbors' neighbors.          */
  traversalinit(&viri);
  virusloop = (triangle **) traverse(&viri);
  while (virusloop != (triangle **) NULL) {
    testtri.tri = *virusloop;
    /* A triangle is marked as infected by messing with one of its shell */
    /*   edges, setting it to an illegal value.  Hence, we have to       */
    /*   temporarily uninfect this triangle so that we can examine its   */
    /*   adjacent shell edges.                                           */
    uninfect(testtri);
    if (verbose > 2) {
      /* Assign the triangle an orientation for convenience in */
      /*   checking its points.                                */
      testtri.orient = 0;
      org(testtri, deadorg);
      dest(testtri, deaddest);
      apex(testtri, deadapex);
      printf("    Checking (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
             deadorg[0], deadorg[1], deaddest[0], deaddest[1],
             deadapex[0], deadapex[1]);
    }
    /* Check each of the triangle's three neighbors. */
    for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) {
      /* Find the neighbor. */
      sym(testtri, neighbor);
      /* Check for a shell between the triangle and its neighbor. */
      tspivot(testtri, neighborshelle);
      /* Check if the neighbor is nonexistent or already infected. */
      if ((neighbor.tri == dummytri) || infected(neighbor)) {
        if (neighborshelle.sh != dummysh) {
          /* There is a shell edge separating the triangle from its */
          /*   neighbor, but both triangles are dying, so the shell */
          /*   edge dies too.                                       */
          shelledealloc(neighborshelle.sh);
          if (neighbor.tri != dummytri) {
            /* Make sure the shell edge doesn't get deallocated again */
            /*   later when the infected neighbor is visited.         */
            uninfect(neighbor);
            tsdissolve(neighbor);
            infect(neighbor);
          }
        }
      }
      else {                   /* The neighbor exists and is not infected. */
        if (neighborshelle.sh == dummysh) {
          /* There is no shell edge protecting the neighbor, so */
          /*   the neighbor becomes infected.                   */
          if (verbose > 2) {
            org(neighbor, deadorg);
            dest(neighbor, deaddest);
            apex(neighbor, deadapex);
            printf("    Marking (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
                   deadorg[0], deadorg[1], deaddest[0], deaddest[1],
                   deadapex[0], deadapex[1]);
          }
          infect(neighbor);
          /* Ensure that the neighbor's neighbors will be infected. */
          deadtri = (triangle **) poolalloc(&viri);
          *deadtri = neighbor.tri;
        }
        else {               /* The neighbor is protected by a shell edge. */
          /* Remove this triangle from the shell edge. */
          stdissolve(neighborshelle);
          /* The shell edge becomes a boundary.  Set markers accordingly. */
          if (mark(neighborshelle) == 0) {
            setmark(neighborshelle, 1);
          }
          org(neighbor, norg);
          dest(neighbor, ndest);
          if (pointmark(norg) == 0) {
            setpointmark(norg, 1);
          }
          if (pointmark(ndest) == 0) {
            setpointmark(ndest, 1);
          }
        }
      }
    }
    /* Remark the triangle as infected, so it doesn't get added to the */
    /*   virus pool again.                                             */
    infect(testtri);
    virusloop = (triangle **) traverse(&viri);
  }

  if (verbose) {
    printf("  Deleting marked triangles.\n");
  }
  traversalinit(&viri);
  virusloop = (triangle **) traverse(&viri);
  while (virusloop != (triangle **) NULL) {
    testtri.tri = *virusloop;

    /* Check each of the three corners of the triangle for elimination. */
    /*   This is done by walking around each point, checking if it is   */
    /*   still connected to at least one live triangle.                 */
    for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) {
      org(testtri, testpoint);
      /* Check if the point has already been tested. */
      if (testpoint != (point) NULL) {
        killorg = 1;
        /* Mark the corner of the triangle as having been tested. */
        setorg(testtri, NULL);
        /* Walk counterclockwise about the point. */
        onext(testtri, neighbor);
        /* Stop upon reaching a boundary or the starting triangle. */
        while ((neighbor.tri != dummytri)
               && (!triedgeequal(neighbor, testtri))) {
          if (infected(neighbor)) {
            /* Mark the corner of this triangle as having been tested. */
            setorg(neighbor, NULL);
          }
          else {
            /* A live triangle.  The point survives. */
            killorg = 0;
          }
          /* Walk counterclockwise about the point. */
          onextself(neighbor);
        }
        /* If we reached a boundary, we must walk clockwise as well. */
        if (neighbor.tri == dummytri) {
          /* Walk clockwise about the point. */
          oprev(testtri, neighbor);
          /* Stop upon reaching a boundary. */
          while (neighbor.tri != dummytri) {
            if (infected(neighbor)) {
            /* Mark the corner of this triangle as having been tested. */
              setorg(neighbor, NULL);
            }
            else {
              /* A live triangle.  The point survives. */
              killorg = 0;
            }
            /* Walk clockwise about the point. */
            oprevself(neighbor);
          }
        }
        if (killorg) {
          if (verbose > 1) {
            printf("    Deleting point (%.12g, %.12g)\n",
                   testpoint[0], testpoint[1]);
          }
          pointdealloc(testpoint);
        }
      }
    }

    /* Record changes in the number of boundary edges, and disconnect */
    /*   dead triangles from their neighbors.                         */
    for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) {
      sym(testtri, neighbor);
      if (neighbor.tri == dummytri) {
        /* There is no neighboring triangle on this edge, so this edge    */
        /*   is a boundary edge.  This triangle is being deleted, so this */
        /*   boundary edge is deleted.                                    */
        hullsize--;
      }
      else {
        /* Disconnect the triangle from its neighbor. */
        dissolve(neighbor);
        /* There is a neighboring triangle on this edge, so this edge */
        /*   becomes a boundary edge when this triangle is deleted.   */
        hullsize++;
      }
    }
    /* Return the dead triangle to the pool of triangles. */
    triangledealloc(testtri.tri);
    virusloop = (triangle **) traverse(&viri);
  }
  /* Empty the virus pool. */
  poolrestart(&viri);
}

/*****************************************************************************/
/*                                                                           */
/*  regionplague()   Spread regional attributes and/or area constraints      */
/*                   (from a .poly file) throughout the mesh.                */
/*                                                                           */
/*  This procedure operates in two phases.  The first phase spreads an       */
/*  attribute and/or an area constraint through a (segment-bounded) region.  */
/*  The triangles are marked to ensure that each triangle is added to the    */
/*  virus pool only once, so the procedure will terminate.                   */
/*                                                                           */
/*  The second phase uninfects all infected triangles, returning them to     */
/*  normal.                                                                  */
/*                                                                           */
/*****************************************************************************/

void regionplague(REAL attribute,
                  REAL area)
{
  struct triedge testtri;
  struct triedge neighbor;
  triangle **virusloop;
  triangle **regiontri;
  struct edge neighborshelle;
  point regionorg, regiondest, regionapex;
  triangle ptr;             /* Temporary variable used by sym() and onext(). */
  shelle sptr;                      /* Temporary variable used by tspivot(). */

  if (verbose > 1) {
    printf("  Marking neighbors of marked triangles.\n");
  }
  /* Loop through all the infected triangles, spreading the attribute      */
  /*   and/or area constraint to their neighbors, then to their neighbors' */
  /*   neighbors.                                                          */
  traversalinit(&viri);
  virusloop = (triangle **) traverse(&viri);
  while (virusloop != (triangle **) NULL) {
    testtri.tri = *virusloop;
    /* A triangle is marked as infected by messing with one of its shell */
    /*   edges, setting it to an illegal value.  Hence, we have to       */
    /*   temporarily uninfect this triangle so that we can examine its   */
    /*   adjacent shell edges.                                           */
    uninfect(testtri);
    if (regionattrib) {
      /* Set an attribute. */
      setelemattribute(testtri, eextras, attribute);
    }
    if (vararea) {
      /* Set an area constraint. */
      setareabound(testtri, area);
    }
    if (verbose > 2) {
      /* Assign the triangle an orientation for convenience in */
      /*   checking its points.                                */
      testtri.orient = 0;
      org(testtri, regionorg);
      dest(testtri, regiondest);
      apex(testtri, regionapex);
      printf("    Checking (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
             regionorg[0], regionorg[1], regiondest[0], regiondest[1],
             regionapex[0], regionapex[1]);
    }
    /* Check each of the triangle's three neighbors. */
    for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) {
      /* Find the neighbor. */
      sym(testtri, neighbor);
      /* Check for a shell between the triangle and its neighbor. */
      tspivot(testtri, neighborshelle);
      /* Make sure the neighbor exists, is not already infected, and */
      /*   isn't protected by a shell edge.                          */
      if ((neighbor.tri != dummytri) && !infected(neighbor)
          && (neighborshelle.sh == dummysh)) {
        if (verbose > 2) {
          org(neighbor, regionorg);
          dest(neighbor, regiondest);
          apex(neighbor, regionapex);
          printf("    Marking (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
                 regionorg[0], regionorg[1], regiondest[0], regiondest[1],
                 regionapex[0], regionapex[1]);
        }
        /* Infect the neighbor. */
        infect(neighbor);
        /* Ensure that the neighbor's neighbors will be infected. */
        regiontri = (triangle **) poolalloc(&viri);
        *regiontri = neighbor.tri;
      }
    }
    /* Remark the triangle as infected, so it doesn't get added to the */
    /*   virus pool again.                                             */
    infect(testtri);
    virusloop = (triangle **) traverse(&viri);
  }

  /* Uninfect all triangles. */
  if (verbose > 1) {
    printf("  Unmarking marked triangles.\n");
  }
  traversalinit(&viri);
  virusloop = (triangle **) traverse(&viri);
  while (virusloop != (triangle **) NULL) {
    testtri.tri = *virusloop;
    uninfect(testtri);
    virusloop = (triangle **) traverse(&viri);
  }
  /* Empty the virus pool. */
  poolrestart(&viri);
}

/*****************************************************************************/
/*                                                                           */
/*  carveholes()   Find the holes and infect them.  Find the area            */
/*                 constraints and infect them.  Infect the convex hull.     */
/*                 Spread the infection and kill triangles.  Spread the      */
/*                 area constraints.                                         */
/*                                                                           */
/*  This routine mainly calls other routines to carry out all these          */
/*  functions.                                                               */
/*                                                                           */
/*****************************************************************************/

void carveholes(REAL *holelist,
                int holes,
                REAL *regionlist,
                int regions)
{
  struct triedge searchtri;
  struct triedge triangleloop;
  struct triedge *regiontris=0;
  triangle **holetri;
  triangle **regiontri;
  point searchorg, searchdest;
  enum locateresult intersect;
  int i;
  triangle ptr;                         /* Temporary variable used by sym(). */

  if (!(quiet || (noholes && convex))) {
    printf("Removing unwanted triangles.\n");
    if (verbose && (holes > 0)) {
      printf("  Marking holes for elimination.\n");
    }
  }

  if (regions > 0) {
    /* Allocate storage for the triangles in which region points fall. */
    regiontris = (struct triedge *) malloc(regions * sizeof(struct triedge));
    if (regiontris == (struct triedge *) NULL) {
      printf("Error:  Out of memory.\n");
      exit(1);
    }
  }

  if (((holes > 0) && !noholes) || !convex || (regions > 0)) {
    /* Initialize a pool of viri to be used for holes, concavities, */
    /*   regional attributes, and/or regional area constraints.     */
    poolinit(&viri, (int)sizeof(triangle *), VIRUSPERBLOCK, POINTER, 0);
  }

  if (!convex) {
    /* Mark as infected any unprotected triangles on the boundary. */
    /*   This is one way by which concavities are created.         */
    infecthull();
  }

  if ((holes > 0) && !noholes) {
    /* Infect each triangle in which a hole lies. */
    for (i = 0; i < 2 * holes; i += 2) {
      /* Ignore holes that aren't within the bounds of the mesh. */
      if ((holelist[i] >= xmin) && (holelist[i] <= xmax)
          && (holelist[i + 1] >= ymin) && (holelist[i + 1] <= ymax)) {
        /* Start searching from some triangle on the outer boundary. */
        searchtri.tri = dummytri;
        searchtri.orient = 0;
        symself(searchtri);
        /* Ensure that the hole is to the left of this boundary edge; */
        /*   otherwise, locate() will falsely report that the hole    */
        /*   falls within the starting triangle.                      */
        org(searchtri, searchorg);
        dest(searchtri, searchdest);
        if (counterclockwise(searchorg, searchdest, &holelist[i]) > 0.0) {
          /* Find a triangle that contains the hole. */
          intersect = locate(&holelist[i], &searchtri);
          if ((intersect != OUTSIDE) && (!infected(searchtri))) {
            /* Infect the triangle.  This is done by marking the triangle */
            /*   as infect and including the triangle in the virus pool.  */
            infect(searchtri);
            holetri = (triangle **) poolalloc(&viri);
            *holetri = searchtri.tri;
          }
        }
      }
    }
  }

  /* Now, we have to find all the regions BEFORE we carve the holes, because */
  /*   locate() won't work when the triangulation is no longer convex.       */
  /*   (Incidentally, this is the reason why regional attributes and area    */
  /*   constraints can't be used when refining a preexisting mesh, which     */
  /*   might not be convex; they can only be used with a freshly             */
  /*   triangulated PSLG.)                                                   */
  if (regions > 0) {
    /* Find the starting triangle for each region. */
    for (i = 0; i < regions; i++) {
      regiontris[i].tri = dummytri;
      /* Ignore region points that aren't within the bounds of the mesh. */
      if ((regionlist[4 * i] >= xmin) && (regionlist[4 * i] <= xmax) &&
          (regionlist[4 * i + 1] >= ymin) && (regionlist[4 * i + 1] <= ymax)) {
        /* Start searching from some triangle on the outer boundary. */
        searchtri.tri = dummytri;
        searchtri.orient = 0;
        symself(searchtri);
        /* Ensure that the region point is to the left of this boundary */
        /*   edge; otherwise, locate() will falsely report that the     */
        /*   region point falls within the starting triangle.           */
        org(searchtri, searchorg);
        dest(searchtri, searchdest);
        if (counterclockwise(searchorg, searchdest, &regionlist[4 * i]) >
            0.0) {
          /* Find a triangle that contains the region point. */
          intersect = locate(&regionlist[4 * i], &searchtri);
          if ((intersect != OUTSIDE) && (!infected(searchtri))) {
            /* Record the triangle for processing after the */
            /*   holes have been carved.                    */
            triedgecopy(searchtri, regiontris[i]);
          }
        }
      }
    }
  }

  if (viri.items > 0) {
    /* Carve the holes and concavities. */
    plague();
  }
  /* The virus pool should be empty now. */

  if (regions > 0) {
    if (!quiet) {
      if (regionattrib) {
        if (vararea) {
          printf("Spreading regional attributes and area constraints.\n");
        }
        else {
          printf("Spreading regional attributes.\n");
        }
      }
      else {
        printf("Spreading regional area constraints.\n");
      }
    }
    if (regionattrib && !refine) {
      /* Assign every triangle a regional attribute of zero. */
      traversalinit(&triangles);
      triangleloop.orient = 0;
      triangleloop.tri = triangletraverse();
      while (triangleloop.tri != (triangle *) NULL) {
        setelemattribute(triangleloop, eextras, 0.0);
        triangleloop.tri = triangletraverse();
      }
    }
    for (i = 0; i < regions; i++) {
      if (regiontris[i].tri != dummytri) {
        /* Make sure the triangle under consideration still exists. */
        /*   It may have been eaten by the virus.                   */
        if (regiontris[i].tri[3] != (triangle) NULL) {
          /* Put one triangle in the virus pool. */
          infect(regiontris[i]);
          regiontri = (triangle **) poolalloc(&viri);
          *regiontri = regiontris[i].tri;
          /* Apply one region's attribute and/or area constraint. */
          regionplague(regionlist[4 * i + 2], regionlist[4 * i + 3]);
          /* The virus pool should be empty now. */
        }
      }
    }
    if (regionattrib && !refine) {
      /* Note the fact that each triangle has an additional attribute. */
      eextras++;
    }
  }

  /* Free up memory. */
  if (((holes > 0) && !noholes) || !convex || (regions > 0)) {
    pooldeinit(&viri);
  }
  if (regions > 0) {
    free(regiontris);
  }
}

/**                                                                         **/
/**                                                                         **/
/********* Carving out holes and concavities ends here               *********/

/********* Mesh quality maintenance begins here                      *********/
/**                                                                         **/
/**                                                                         **/

/*****************************************************************************/
/*                                                                           */
/*  tallyencs()   Traverse the entire list of shell edges, check each edge   */
/*                to see if it is encroached.  If so, add it to the list.    */
/*                                                                           */
/*****************************************************************************/

#ifndef CDT_ONLY

void tallyencs(void)
{
  struct edge edgeloop;

  traversalinit(&shelles);
  edgeloop.shorient = 0;
  edgeloop.sh = shelletraverse();
  while (edgeloop.sh != (shelle *) NULL) {
    /* If the segment is encroached, add it to the list. */
    /* dummy = */ checkedge4encroach(&edgeloop);
    edgeloop.sh = shelletraverse();
  }
}

#endif /* not CDT_ONLY */

/*****************************************************************************/
/*                                                                           */
/*  precisionerror()  Print an error message for precision problems.         */
/*                                                                           */
/*****************************************************************************/

#ifndef CDT_ONLY

void precisionerror(void)
{
  printf("Try increasing the area criterion and/or reducing the minimum\n");
  printf("  allowable angle so that tiny triangles are not created.\n");
#ifdef SINGLE
  printf("Alternatively, try recompiling me with double precision\n");
  printf("  arithmetic (by removing \"#define SINGLE\" from the\n");
  printf("  source file or \"-DSINGLE\" from the makefile).\n");
#endif /* SINGLE */
}

#endif /* not CDT_ONLY */

/*****************************************************************************/
/*                                                                           */
/*  repairencs()   Find and repair all the encroached segments.              */
/*                                                                           */
/*  Encroached segments are repaired by splitting them by inserting a point  */
/*  at or near their centers.                                                */
/*                                                                           */
/*  `flaws' is a flag that specifies whether one should take note of new     */
/*  encroached segments and bad triangles that result from inserting points  */
/*  to repair existing encroached segments.                                  */
/*                                                                           */
/*  When a segment is split, the two resulting subsegments are always        */
/*  tested to see if they are encroached upon, regardless of the value       */
/*  of `flaws'.                                                              */
/*                                                                           */
/*****************************************************************************/

#ifndef CDT_ONLY

void repairencs(int flaws)
{
  struct triedge enctri;
  struct triedge testtri;
  struct edge *encloop;
  struct edge testsh;
  point eorg, edest;
  point newpoint;
  enum insertsiteresult success;
  REAL segmentlength, nearestpoweroftwo;
  REAL split;
  int acuteorg, acutedest;
  int i;
  triangle ptr;                     /* Temporary variable used by stpivot(). */
  shelle sptr;                        /* Temporary variable used by snext(). */

  while ((badsegments.items > 0) && (steinerleft != 0)) {
    traversalinit(&badsegments);
    encloop = badsegmenttraverse();
    while ((encloop != (struct edge *) NULL) && (steinerleft != 0)) {
      /* To decide where to split a segment, we need to know if the  */
      /*   segment shares an endpoint with an adjacent segment.      */
      /*   The concern is that, if we simply split every encroached  */
      /*   segment in its center, two adjacent segments with a small */
      /*   angle between them might lead to an infinite loop; each   */
      /*   point added to split one segment will encroach upon the   */
      /*   other segment, which must then be split with a point that */
      /*   will encroach upon the first segment, and so on forever.  */
      /* To avoid this, imagine a set of concentric circles, whose   */
      /*   radii are powers of two, about each segment endpoint.     */
      /*   These concentric circles determine where the segment is   */
      /*   split.  (If both endpoints are shared with adjacent       */
      /*   segments, split the segment in the middle, and apply the  */
      /*   concentric shells for later splittings.)                  */

      /* Is the origin shared with another segment? */
      stpivot(*encloop, enctri);
      lnext(enctri, testtri);
      tspivot(testtri, testsh);
      acuteorg = testsh.sh != dummysh;
      /* Is the destination shared with another segment? */
      lnextself(testtri);
      tspivot(testtri, testsh);
      acutedest = testsh.sh != dummysh;
      /* Now, check the other side of the segment, if there's a triangle */
      /*   there.                                                        */
      sym(enctri, testtri);
      if (testtri.tri != dummytri) {
        /* Is the destination shared with another segment? */
        lnextself(testtri);
        tspivot(testtri, testsh);
        acutedest = acutedest || (testsh.sh != dummysh);
        /* Is the origin shared with another segment? */
        lnextself(testtri);
        tspivot(testtri, testsh);
        acuteorg = acuteorg || (testsh.sh != dummysh);
      }

      sorg(*encloop, eorg);
      sdest(*encloop, edest);
      /* Use the concentric circles if exactly one endpoint is shared */
      /*   with another adjacent segment.                             */
      if (acuteorg ^ acutedest) {
        segmentlength = sqrt((edest[0] - eorg[0]) * (edest[0] - eorg[0])
                             + (edest[1] - eorg[1]) * (edest[1] - eorg[1]));
        /* Find the power of two nearest the segment's length. */
        nearestpoweroftwo = 1.0;
        while (segmentlength > SQUAREROOTTWO * nearestpoweroftwo) {
          nearestpoweroftwo *= 2.0;
        }
        while (segmentlength < (0.5 * SQUAREROOTTWO) * nearestpoweroftwo) {
          nearestpoweroftwo *= 0.5;
        }
        /* Where do we split the segment? */
        split = 0.5 * nearestpoweroftwo / segmentlength;
        if (acutedest) {
          split = 1.0 - split;
        }
      }
      else {
        /* If we're not worried about adjacent segments, split */
        /*   this segment in the middle.                       */
        split = 0.5;
      }

      /* Create the new point. */
      newpoint = (point) poolalloc(&points);
      /* Interpolate its coordinate and attributes. */
      for (i = 0; i < 2 + nextras; i++) {
        newpoint[i] = (1.0 - split) * eorg[i] + split * edest[i];
      }
      setpointmark(newpoint, mark(*encloop));
      if (verbose > 1) {
        printf("  Splitting edge (%.12g, %.12g) (%.12g, %.12g) at (%.12g, %.12g).\n",
               eorg[0], eorg[1], edest[0], edest[1], newpoint[0], newpoint[1]);
      }
      /* Check whether the new point lies on an endpoint. */
      if (((newpoint[0] == eorg[0]) && (newpoint[1] == eorg[1]))
        || ((newpoint[0] == edest[0]) && (newpoint[1] == edest[1]))) {
        printf("Error:  Ran out of precision at (%.12g, %.12g).\n",
               newpoint[0], newpoint[1]);
        printf("I attempted to split a segment to a smaller size than can\n");
        printf("  be accommodated by the finite precision of floating point\n");
        printf("  arithmetic.\n");
        precisionerror();
        exit(1);
      }
      /* Insert the splitting point.  This should always succeed. */
      success = insertsite(newpoint, &enctri, encloop, flaws, flaws);
      if ((success != SUCCESSFULPOINT) && (success != ENCROACHINGPOINT)) {
        printf("Internal error in repairencs():\n");
        printf("  Failure to split a segment.\n");
        internalerror();
      }
      if (steinerleft > 0) {
        steinerleft--;
      }
      /* Check the two new subsegments to see if they're encroached. */
      /* dummy = */ checkedge4encroach(encloop);
      snextself(*encloop);
      /* dummy = */ checkedge4encroach(encloop);

      badsegmentdealloc(encloop);
      encloop = badsegmenttraverse();
    }
  }
}

#endif /* not CDT_ONLY */

/*****************************************************************************/
/*                                                                           */
/*  tallyfaces()   Test every triangle in the mesh for quality measures.     */
/*                                                                           */
/*****************************************************************************/

#ifndef CDT_ONLY

void tallyfaces(void)
{
  struct triedge triangleloop;

  if (verbose) {
    printf("  Making a list of bad triangles.\n");
  }
  traversalinit(&triangles);
  triangleloop.orient = 0;
  triangleloop.tri = triangletraverse();
  while (triangleloop.tri != (triangle *) NULL) {
    /* If the triangle is bad, enqueue it. */
    testtriangle(&triangleloop);
    triangleloop.tri = triangletraverse();
  }
}

#endif /* not CDT_ONLY */

/*****************************************************************************/
/*                                                                           */
/*  findcircumcenter()   Find the circumcenter of a triangle.                */
/*                                                                           */
/*  The result is returned both in terms of x-y coordinates and xi-eta       */
/*  coordinates.  The xi-eta coordinate system is defined in terms of the    */
/*  triangle:  the origin of the triangle is the origin of the coordinate    */
/*  system; the destination of the triangle is one unit along the xi axis;   */
/*  and the apex of the triangle is one unit along the eta axis.             */
/*                                                                           */
/*  The return value indicates which edge of the triangle is shortest.       */
/*                                                                           */
/*****************************************************************************/

enum circumcenterresult findcircumcenter(point torg,
                                         point tdest,
                                         point tapex,
                                         point circumcenter,
                                         REAL *xi,
                                         REAL *eta)
{
  REAL xdo, ydo, xao, yao, xad, yad;
  REAL dodist, aodist, addist;
  REAL denominator;
  REAL dx, dy;

  circumcentercount++;

  /* Compute the circumcenter of the triangle. */
  xdo = tdest[0] - torg[0];
  ydo = tdest[1] - torg[1];
  xao = tapex[0] - torg[0];
  yao = tapex[1] - torg[1];
  dodist = xdo * xdo + ydo * ydo;
  aodist = xao * xao + yao * yao;
  if (noexact) {
    denominator = 0.5 / (xdo * yao - xao * ydo);
  }
  else {
    /* Use the counterclockwise() routine to ensure a positive (and */
    /*   reasonably accurate) result, avoiding any possibility of   */
    /*   division by zero.                                          */
    denominator = 0.5 / counterclockwise(tdest, tapex, torg);
    /* Don't count the above as an orientation test. */
    counterclockcount--;
  }
  circumcenter[0] = torg[0] - (ydo * aodist - yao * dodist) * denominator;
  circumcenter[1] = torg[1] + (xdo * aodist - xao * dodist) * denominator;

  /* To interpolate point attributes for the new point inserted at  */
  /*   the circumcenter, define a coordinate system with a xi-axis, */
  /*   directed from the triangle's origin to its destination, and  */
  /*   an eta-axis, directed from its origin to its apex.           */
  /*   Calculate the xi and eta coordinates of the circumcenter.    */
  dx = circumcenter[0] - torg[0];
  dy = circumcenter[1] - torg[1];
  *xi = (dx * yao - xao * dy) * (2.0 * denominator);
  *eta = (xdo * dy - dx * ydo) * (2.0 * denominator);

  xad = tapex[0] - tdest[0];
  yad = tapex[1] - tdest[1];
  addist = xad * xad + yad * yad;
  if ((addist < dodist) && (addist < aodist)) {
    return OPPOSITEORG;
  }
  else if (dodist < aodist) {
    return OPPOSITEAPEX;
  }
  else {
    return OPPOSITEDEST;
  }
}

/*****************************************************************************/
/*                                                                           */
/*  splittriangle()   Inserts a point at the circumcenter of a triangle.     */
/*                    Deletes the newly inserted point if it encroaches upon */
/*                    a segment.                                             */
/*                                                                           */
/*****************************************************************************/

#ifndef CDT_ONLY

void splittriangle(struct badface *badtri)
{
  point borg, bdest, bapex;
  point newpoint;
  REAL xi, eta;
  enum insertsiteresult success;
  enum circumcenterresult shortedge;
  int errorflag;
  int i;

  org(badtri->badfacetri, borg);
  dest(badtri->badfacetri, bdest);
  apex(badtri->badfacetri, bapex);
  /* Make sure that this triangle is still the same triangle it was      */
  /*   when it was tested and determined to be of bad quality.           */
  /*   Subsequent transformations may have made it a different triangle. */
  if ((borg == badtri->faceorg) && (bdest == badtri->facedest) &&
      (bapex == badtri->faceapex)) {
    if (verbose > 1) {
      printf("  Splitting this triangle at its circumcenter:\n");
      printf("    (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n", borg[0],
             borg[1], bdest[0], bdest[1], bapex[0], bapex[1]);
    }
    errorflag = 0;
    /* Create a new point at the triangle's circumcenter. */
    newpoint = (point) poolalloc(&points);
    shortedge = findcircumcenter(borg, bdest, bapex, newpoint, &xi, &eta);
    /* Check whether the new point lies on a triangle vertex. */
    if (((newpoint[0] == borg[0]) && (newpoint[1] == borg[1]))
        || ((newpoint[0] == bdest[0]) && (newpoint[1] == bdest[1]))
        || ((newpoint[0] == bapex[0]) && (newpoint[1] == bapex[1]))) {
      if (!quiet) {
        printf("Warning:  New point (%.12g, %.12g) falls on existing vertex.\n"
               , newpoint[0], newpoint[1]);
        errorflag = 1;
      }
      pointdealloc(newpoint);
    }
    else {
      for (i = 2; i < 2 + nextras; i++) {
        /* Interpolate the point attributes at the circumcenter. */
        newpoint[i] = borg[i] + xi * (bdest[i] - borg[i])
                             + eta * (bapex[i] - borg[i]);
      }
      /* The new point must be in the interior, and have a marker of zero. */
      setpointmark(newpoint, 0);
      /* Ensure that the handle `badtri->badfacetri' represents the shortest */
      /*   edge of the triangle.  This ensures that the circumcenter must    */
      /*   fall to the left of this edge, so point location will work.       */
      if (shortedge == OPPOSITEORG) {
        lnextself(badtri->badfacetri);
      }
      else if (shortedge == OPPOSITEDEST) {
        lprevself(badtri->badfacetri);
      }
      /* Insert the circumcenter, searching from the edge of the triangle, */
      /*   and maintain the Delaunay property of the triangulation.        */
      success = insertsite(newpoint, &(badtri->badfacetri),
                           (struct edge *) NULL, 1, 1);
      if (success == SUCCESSFULPOINT) {
        if (steinerleft > 0) {
          steinerleft--;
        }
      }
      else if (success == ENCROACHINGPOINT) {
        /* If the newly inserted point encroaches upon a segment, delete it. */
        deletesite(&(badtri->badfacetri));
      }
      else if (success == VIOLATINGPOINT) {
        /* Failed to insert the new point, but some segment was */
        /*   marked as being encroached.                        */
        pointdealloc(newpoint);
      }
      else {                                  /* success == DUPLICATEPOINT */
        /* Failed to insert the new point because a vertex is already there. */
        if (!quiet) {
          printf("Warning:  New point (%.12g, %.12g) falls on existing vertex.\n",
                 newpoint[0], newpoint[1]);
          errorflag = 1;
        }
        pointdealloc(newpoint);
      }
    }
    if (errorflag) {
      if (verbose) {
        printf("  The new point is at the circumcenter of triangle\n");
        printf("    (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
               borg[0], borg[1], bdest[0], bdest[1], bapex[0], bapex[1]);
      }
      printf("This probably means that I am trying to refine triangles\n");
      printf("  to a smaller size than can be accommodated by the finite\n");
      printf("  precision of floating point arithmetic.  (You can be\n");
      printf("  sure of this if I fail to terminate.)\n");
      precisionerror();
    }
  }
  /* Return the bad triangle to the pool. */
  pooldealloc(&badtriangles, (VOID *) badtri);
}

#endif /* not CDT_ONLY */

/*****************************************************************************/
/*                                                                           */
/*  enforcequality()   Remove all the encroached edges and bad triangles     */
/*                     from the triangulation.                               */
/*                                                                           */
/*****************************************************************************/

#ifndef CDT_ONLY

void enforcequality(void)
{
  int i;

  if (!quiet) {
    printf("Adding Steiner points to enforce quality.\n");
  }
  /* Initialize the pool of encroached segments. */
  poolinit(&badsegments, (int)sizeof(struct edge),
           BADSEGMENTPERBLOCK, POINTER, 0);
  if (verbose) {
    printf("  Looking for encroached segments.\n");
  }
  /* Test all segments to see if they're encroached. */
  tallyencs();
  if (verbose && (badsegments.items > 0)) {
    printf("  Splitting encroached segments.\n");
  }
  /* Note that steinerleft == -1 if an unlimited number */
  /*   of Steiner points is allowed.                    */
  while ((badsegments.items > 0) && (steinerleft != 0)) {
    /* Fix the segments without noting newly encroached segments or   */
    /*   bad triangles.  The reason we don't want to note newly       */
    /*   encroached segments is because some encroached segments are  */
    /*   likely to be noted multiple times, and would then be blindly */
    /*   split multiple times.  I should fix that some time.          */
    repairencs(0);
    /* Now, find all the segments that became encroached while adding */
    /*   points to split encroached segments.                         */
    tallyencs();
  }
  /* At this point, if we haven't run out of Steiner points, the */
  /*   triangulation should be (conforming) Delaunay.            */

  /* Next, we worry about enforcing triangle quality. */
  if ((minangle > 0.0) || vararea || fixedarea) {
    /* Initialize the pool of bad triangles. */
    poolinit(&badtriangles, (int)sizeof(struct badface),
             BADTRIPERBLOCK, POINTER, 0);
    /* Initialize the queues of bad triangles. */
    for (i = 0; i < 64; i++) {
      queuefront[i] = (struct badface *) NULL;
      queuetail[i] = &queuefront[i];
    }
    /* Test all triangles to see if they're bad. */
    tallyfaces();
    if (verbose) {
      printf("  Splitting bad triangles.\n");
    }
    while ((badtriangles.items > 0) && (steinerleft != 0)) {
      /* Fix one bad triangle by inserting a point at its circumcenter. */
      splittriangle(dequeuebadtri());
      /* Fix any encroached segments that may have resulted.  Record */
      /*   any new bad triangles or encroached segments that result. */
      if (badsegments.items > 0) {
        repairencs(1);
      }
    }
  }
  /* At this point, if we haven't run out of Steiner points, the */
  /*   triangulation should be (conforming) Delaunay and have no */
  /*   low-quality triangles.                                    */

  /* Might we have run out of Steiner points too soon? */
  if (!quiet && (badsegments.items > 0) && (steinerleft == 0)) {
    printf("\nWarning:  I ran out of Steiner points, but the mesh has\n");
    if (badsegments.items == 1) {
      printf("  an encroached segment, and therefore might not be truly\n");
    }
    else {
      printf("  %ld encroached segments, and therefore might not be truly\n",
             badsegments.items);
    }
    printf("  Delaunay.  If the Delaunay property is important to you,\n");
    printf("  try increasing the number of Steiner points (controlled by\n");
    printf("  the -S switch) slightly and try again.\n\n");
  }
}

#endif /* not CDT_ONLY */

/**                                                                         **/
/**                                                                         **/
/********* Mesh quality maintenance ends here                        *********/

/*****************************************************************************/
/*                                                                           */
/*  highorder()   Create extra nodes for quadratic subparametric elements.   */
/*                                                                           */
/*****************************************************************************/

void highorder(void)
{
  struct triedge triangleloop, trisym;
  struct edge checkmark;
  point newpoint;
  point torg, tdest;
  int i;
  triangle ptr;                         /* Temporary variable used by sym(). */
  shelle sptr;                      /* Temporary variable used by tspivot(). */

  if (!quiet) {
    printf("Adding vertices for second-order triangles.\n");
  }
  /* The following line ensures that dead items in the pool of nodes    */
  /*   cannot be allocated for the extra nodes associated with high     */
  /*   order elements.  This ensures that the primary nodes (at the     */
  /*   corners of elements) will occur earlier in the output files, and */
  /*   have lower indices, than the extra nodes.                        */
  points.deaditemstack = (VOID *) NULL;

  traversalinit(&triangles);
  triangleloop.tri = triangletraverse();
  /* To loop over the set of edges, loop over all triangles, and look at   */
  /*   the three edges of each triangle.  If there isn't another triangle  */
  /*   adjacent to the edge, operate on the edge.  If there is another     */
  /*   adjacent triangle, operate on the edge only if the current triangle */
  /*   has a smaller pointer than its neighbor.  This way, each edge is    */
  /*   considered only once.                                               */
  while (triangleloop.tri != (triangle *) NULL) {
    for (triangleloop.orient = 0; triangleloop.orient < 3; triangleloop.orient++) {
      sym(triangleloop, trisym);
      if ((triangleloop.tri < trisym.tri) || (trisym.tri == dummytri)) {
        org(triangleloop, torg);
        dest(triangleloop, tdest);
        /* Create a new node in the middle of the edge.  Interpolate */
        /*   its attributes.                                         */
        newpoint = (point) poolalloc(&points);
        for (i = 0; i < 2 + nextras; i++) {
          newpoint[i] = 0.5 * (torg[i] + tdest[i]);
        }
        /* Set the new node's marker to zero or one, depending on */
        /*   whether it lies on a boundary.                       */
        setpointmark(newpoint, trisym.tri == dummytri);
        if (useshelles) {
          tspivot(triangleloop, checkmark);
          /* If this edge is a segment, transfer the marker to the new node. */
          if (checkmark.sh != dummysh) {
            setpointmark(newpoint, mark(checkmark));
          }
        }
        if (verbose > 1) {
          printf("  Creating (%.12g, %.12g).\n", newpoint[0], newpoint[1]);
        }
        /* Record the new node in the (one or two) adjacent elements. */
        triangleloop.tri[highorderindex + triangleloop.orient] =
                (triangle) newpoint;
        if (trisym.tri != dummytri) {
          trisym.tri[highorderindex + trisym.orient] = (triangle) newpoint;
        }
      }
    }
    triangleloop.tri = triangletraverse();
  }
}

/********* File I/O routines begin here                              *********/
/**                                                                         **/
/**                                                                         **/

/*****************************************************************************/
/*                                                                           */
/*  readline()   Read a nonempty line from a file.                           */
/*                                                                           */
/*  A line is considered "nonempty" if it contains something that looks like */
/*  a number.                                                                */
/*                                                                           */
/*****************************************************************************/

#ifndef TRILIBRARY

char *readline(char *string,
               FILE *infile,
               char *infilename)
{
  char *result;

  /* Search for something that looks like a number. */
  do {
    result = fgets(string, INPUTLINESIZE, infile);
    if (result == (char *) NULL) {
      printf("  Error:  Unexpected end of file in %s.\n", infilename);
      exit(1);
    }
    /* Skip anything that doesn't look like a number, a comment, */
    /*   or the end of a line.                                   */
    while ((*result != '\0') && (*result != '#')
           && (*result != '.') && (*result != '+') && (*result != '-')
           && ((*result < '0') || (*result > '9'))) {
      result++;
    }
  /* If it's a comment or end of line, read another line and try again. */
  } while ((*result == '#') || (*result == '\0'));
  return result;
}

#endif /* not TRILIBRARY */

/*****************************************************************************/
/*                                                                           */
/*  findfield()   Find the next field of a string.                           */
/*                                                                           */
/*  Jumps past the current field by searching for whitespace, then jumps     */
/*  past the whitespace to find the next field.                              */
/*                                                                           */
/*****************************************************************************/

#ifndef TRILIBRARY

char *findfield(char *string)
{
  char *result;

  result = string;
  /* Skip the current field.  Stop upon reaching whitespace. */
  while ((*result != '\0') && (*result != '#')
         && (*result != ' ') && (*result != '\t')) {
    result++;
  }
  /* Now skip the whitespace and anything else that doesn't look like a */
  /*   number, a comment, or the end of a line.                         */
  while ((*result != '\0') && (*result != '#')
         && (*result != '.') && (*result != '+') && (*result != '-')
         && ((*result < '0') || (*result > '9'))) {
    result++;
  }
  /* Check for a comment (prefixed with `#'). */
  if (*result == '#') {
    *result = '\0';
  }
  return result;
}

#endif /* not TRILIBRARY */

/*****************************************************************************/
/*                                                                           */
/*  readnodes()   Read the points from a file, which may be a .node or .poly */
/*                file.                                                      */
/*                                                                           */
/*****************************************************************************/

#ifndef TRILIBRARY

void readnodes(char *nodefilenamem,
               char *polyfilename,
               FILE **polyfile)
{
  FILE *infile;
  point pointloop;
  char inputline[INPUTLINESIZE];
  char *stringptr;
  char *infilename;
  REAL x, y;
  int firstnode;
  int nodemarkers;
  int currentmarker;
  int i, j;

  if (poly) {
    /* Read the points from a .poly file. */
    if (!quiet) {
      printf("Opening %s.\n", polyfilename);
    }
    *polyfile = fopen(polyfilename, "r");
    if (*polyfile == (FILE *) NULL) {
      printf("  Error:  Cannot access file %s.\n", polyfilename);
      exit(1);
    }
    /* Read number of points, number of dimensions, number of point */
    /*   attributes, and number of boundary markers.                */
    stringptr = readline(inputline, *polyfile, polyfilename);
    inpoints = (int) strtol (stringptr, &stringptr, 0);
    stringptr = findfield(stringptr);
    if (*stringptr == '\0') {
      mesh_dim = 2;
    }
    else {
      mesh_dim = (int) strtol (stringptr, &stringptr, 0);
    }
    stringptr = findfield(stringptr);
    if (*stringptr == '\0') {
      nextras = 0;
    }
    else {
      nextras = (int) strtol (stringptr, &stringptr, 0);
    }
    stringptr = findfield(stringptr);
    if (*stringptr == '\0') {
      nodemarkers = 0;
    }
    else {
      nodemarkers = (int) strtol (stringptr, &stringptr, 0);
    }
    if (inpoints > 0) {
      infile = *polyfile;
      infilename = polyfilename;
      readnodefile = 0;
    }
    else {
      /* If the .poly file claims there are zero points, that means that */
      /*   the points should be read from a separate .node file.         */
      readnodefile = 1;
      infilename = innodefilename;
    }
  }
  else {
    readnodefile = 1;
    infilename = innodefilename;
    *polyfile = (FILE *) NULL;
  }

  if (readnodefile) {
    /* Read the points from a .node file. */
    if (!quiet) {
      printf("Opening %s.\n", innodefilename);
    }
    infile = fopen(innodefilename, "r");
    if (infile == (FILE *) NULL) {
      printf("  Error:  Cannot access file %s.\n", innodefilename);
      exit(1);
    }
    /* Read number of points, number of dimensions, number of point */
    /*   attributes, and number of boundary markers.                */
    stringptr = readline(inputline, infile, innodefilename);
    inpoints = (int) strtol (stringptr, &stringptr, 0);
    stringptr = findfield(stringptr);
    if (*stringptr == '\0') {
      mesh_dim = 2;
    }
    else {
      mesh_dim = (int) strtol (stringptr, &stringptr, 0);
    }
    stringptr = findfield(stringptr);
    if (*stringptr == '\0') {
      nextras = 0;
    }
    else {
      nextras = (int) strtol (stringptr, &stringptr, 0);
    }
    stringptr = findfield(stringptr);
    if (*stringptr == '\0') {
      nodemarkers = 0;
    }
    else {
      nodemarkers = (int) strtol (stringptr, &stringptr, 0);
    }
  }

  if (inpoints < 3) {
    printf("Error:  Input must have at least three input points.\n");
    exit(1);
  }
  if (mesh_dim != 2) {
    printf("Error:  Triangle only works with two-dimensional meshes.\n");
    exit(1);
  }

  initializepointpool();

  /* Read the points. */
  for (i = 0; i < inpoints; i++) {
    pointloop = (point) poolalloc(&points);
    stringptr = readline(inputline, infile, infilename);
    if (i == 0) {
      firstnode = (int) strtol (stringptr, &stringptr, 0);
      if ((firstnode == 0) || (firstnode == 1)) {
        firstnumber = firstnode;
      }
    }
    stringptr = findfield(stringptr);
    if (*stringptr == '\0') {
      printf("Error:  Point %d has no x coordinate.\n", firstnumber + i);
      exit(1);
    }
    x = (REAL) strtod(stringptr, &stringptr);
    stringptr = findfield(stringptr);
    if (*stringptr == '\0') {
      printf("Error:  Point %d has no y coordinate.\n", firstnumber + i);
      exit(1);
    }
    y = (REAL) strtod(stringptr, &stringptr);
    pointloop[0] = x;
    pointloop[1] = y;
    /* Read the point attributes. */
    for (j = 2; j < 2 + nextras; j++) {
      stringptr = findfield(stringptr);
      if (*stringptr == '\0') {
        pointloop[j] = 0.0;
      }
      else {
        pointloop[j] = (REAL) strtod(stringptr, &stringptr);
      }
    }
    if (nodemarkers) {
      /* Read a point marker. */
      stringptr = findfield(stringptr);
      if (*stringptr == '\0') {
        setpointmark(pointloop, 0);
      }
      else {
        currentmarker = (int) strtol (stringptr, &stringptr, 0);
        setpointmark(pointloop, currentmarker);
      }
    }
    else {
      /* If no markers are specified in the file, they default to zero. */
      setpointmark(pointloop, 0);
    }
    /* Determine the smallest and largest x and y coordinates. */
    if (i == 0) {
      xmin = xmax = x;
      ymin = ymax = y;
    }
    else {
      xmin = (x < xmin) ? x : xmin;
      xmax = (x > xmax) ? x : xmax;
      ymin = (y < ymin) ? y : ymin;
      ymax = (y > ymax) ? y : ymax;
    }
  }
  if (readnodefile) {
    fclose(infile);
  }

  /* Nonexistent x value used as a flag to mark circle events in sweepline */
  /*   Delaunay algorithm.                                                 */
  xminextreme = 10 * xmin - 9 * xmax;
}

#endif /* not TRILIBRARY */

/*****************************************************************************/
/*                                                                           */
/*  transfernodes()   Read the points from memory.                           */
/*                                                                           */
/*****************************************************************************/

#ifdef TRILIBRARY

void transfernodes(REAL *pointlist,
                   REAL *pointattriblist,
                   int *pointmarkerlist,
                   int numberofpoints,
                   int numberofpointattribs)
{
  point pointloop;
  REAL x, y;
  int i, j;
  int coordindex;
  int attribindex;

  inpoints = numberofpoints;
  mesh_dim = 2;
  nextras = numberofpointattribs;
  readnodefile = 0;
  if (inpoints < 3) {
    printf("Error:  Input must have at least three input points.\n");
    exit(1);
  }

  initializepointpool();

  /* Read the points. */
  coordindex = 0;
  attribindex = 0;
  for (i = 0; i < inpoints; i++) {
    pointloop = (point) poolalloc(&points);
    /* Read the point coordinates. */
    pointloop[0] = pointlist[coordindex++];
    pointloop[1] = pointlist[coordindex++];
    /* Read the point attributes. */
    for (j = 0; j < numberofpointattribs; j++) {
      pointloop[2 + j] = pointattriblist[attribindex++];
    }
    if (pointmarkerlist != (int *) NULL) {
      /* Read a point marker. */
      setpointmark(pointloop, pointmarkerlist[i]);
    }
    else {
      /* If no markers are specified, they default to zero. */
      setpointmark(pointloop, 0);
    }
    x = pointloop[0];
    y = pointloop[1];
    /* Determine the smallest and largest x and y coordinates. */
    if (i == 0) {
      xmin = xmax = x;
      ymin = ymax = y;
    }
    else {
      xmin = (x < xmin) ? x : xmin;
      xmax = (x > xmax) ? x : xmax;
      ymin = (y < ymin) ? y : ymin;
      ymax = (y > ymax) ? y : ymax;
    }
  }

  /* Nonexistent x value used as a flag to mark circle events in sweepline */
  /*   Delaunay algorithm.                                                 */
  xminextreme = 10 * xmin - 9 * xmax;
}

#endif /* TRILIBRARY */

/*****************************************************************************/
/*                                                                           */
/*  readholes()   Read the holes, and possibly regional attributes and area  */
/*                constraints, from a .poly file.                            */
/*                                                                           */
/*****************************************************************************/

#ifndef TRILIBRARY

void readholes(FILE *polyfile,
               char *polyfilename,
               REAL **hlist,
               int *holes,
               REAL **rlist,
               int *regions)
{
  REAL *holelist;
  REAL *regionlist;
  char inputline[INPUTLINESIZE];
  char *stringptr;
  int index;
  int i;

  /* Read the holes. */
  stringptr = readline(inputline, polyfile, polyfilename);
  *holes = (int) strtol (stringptr, &stringptr, 0);
  if (*holes > 0) {
    holelist = (REAL *) malloc(2 * *holes * sizeof(REAL));
    *hlist = holelist;
    if (holelist == (REAL *) NULL) {
      printf("Error:  Out of memory.\n");
      exit(1);
    }
    for (i = 0; i < 2 * *holes; i += 2) {
      stringptr = readline(inputline, polyfile, polyfilename);
      stringptr = findfield(stringptr);
      if (*stringptr == '\0') {
        printf("Error:  Hole %d has no x coordinate.\n", firstnumber + (i >> 1));
        exit(1);
      }
      else {
        holelist[i] = (REAL) strtod(stringptr, &stringptr);
      }
      stringptr = findfield(stringptr);
      if (*stringptr == '\0') {
        printf("Error:  Hole %d has no y coordinate.\n", firstnumber + (i >> 1));
        exit(1);
      }
      else {
        holelist[i + 1] = (REAL) strtod(stringptr, &stringptr);
      }
    }
  }
  else {
    *hlist = (REAL *) NULL;
  }

#ifndef CDT_ONLY
  if ((regionattrib || vararea) && !refine) {
    /* Read the area constraints. */
    stringptr = readline(inputline, polyfile, polyfilename);
    *regions = (int) strtol (stringptr, &stringptr, 0);
    if (*regions > 0) {
      regionlist = (REAL *) malloc(4 * *regions * sizeof(REAL));
      *rlist = regionlist;
      if (regionlist == (REAL *) NULL) {
        printf("Error:  Out of memory.\n");
        exit(1);
      }
      index = 0;
      for (i = 0; i < *regions; i++) {
        stringptr = readline(inputline, polyfile, polyfilename);
        stringptr = findfield(stringptr);
        if (*stringptr == '\0') {
          printf("Error:  Region %d has no x coordinate.\n", firstnumber + i);
          exit(1);
        }
        else {
          regionlist[index++] = (REAL) strtod(stringptr, &stringptr);
        }
        stringptr = findfield(stringptr);
        if (*stringptr == '\0') {
          printf("Error:  Region %d has no y coordinate.\n", firstnumber + i);
          exit(1);
        }
        else {
          regionlist[index++] = (REAL) strtod(stringptr, &stringptr);
        }
        stringptr = findfield(stringptr);
        if (*stringptr == '\0') {
          printf("Error:  Region %d has no region attribute or area constraint.\n",
                 firstnumber + i);
          exit(1);
        }
        else {
          regionlist[index++] = (REAL) strtod(stringptr, &stringptr);
        }
        stringptr = findfield(stringptr);
        if (*stringptr == '\0') {
          regionlist[index] = regionlist[index - 1];
        }
        else {
          regionlist[index] = (REAL) strtod(stringptr, &stringptr);
        }
        index++;
      }
    }
  }
  else {
    /* Set `*regions' to zero to avoid an accidental free() later. */
    *regions = 0;
    *rlist = (REAL *) NULL;
  }
#endif /* not CDT_ONLY */

  fclose(polyfile);
}

#endif /* not TRILIBRARY */

/*****************************************************************************/
/*                                                                           */
/*  finishfile()   Write the command line to the output file so the user     */
/*                 can remember how the file was generated.  Close the file. */
/*                                                                           */
/*****************************************************************************/

#ifndef TRILIBRARY

void finishfile(FILE *outfile,
                int argc,
                char **argv)
{
  int i;

  fprintf(outfile, "# Generated by");
  for (i = 0; i < argc; i++) {
    fprintf(outfile, " ");
    fputs(argv[i], outfile);
  }
  fprintf(outfile, "\n");
  fclose(outfile);
}

#endif /* not TRILIBRARY */

/*****************************************************************************/
/*                                                                           */
/*  writenodes()   Number the points and write them to a .node file.         */
/*                                                                           */
/*  To save memory, the point numbers are written over the shell markers     */
/*  after the points are written to a file.                                  */
/*                                                                           */
/*****************************************************************************/

#ifdef TRILIBRARY

void writenodes(REAL **pointlist,
                REAL **pointattriblist,
                int **pointmarkerlist)

#else /* not TRILIBRARY */

void writenodes(char *nodefilename,
                int argc,
                char **argv)

#endif /* not TRILIBRARY */
{
#ifdef TRILIBRARY
  REAL *plist;
  REAL *palist;
  int *pmlist;
  int coordindex;
  int attribindex;
#else /* not TRILIBRARY */
  FILE *outfile;
#endif /* not TRILIBRARY */
  point pointloop;
  int pointnumber;
  int i;

#ifdef TRILIBRARY
  if (!quiet) {
    printf("Writing points.\n");
  }
  /* Allocate memory for output points if necessary. */
  if (*pointlist == (REAL *) NULL) {
    *pointlist = (REAL *) malloc(points.items * 2 * sizeof(REAL));
    if (*pointlist == (REAL *) NULL) {
      printf("Error:  Out of memory.\n");
      exit(1);
    }
  }
  /* Allocate memory for output point attributes if necessary. */
  if ((nextras > 0) && (*pointattriblist == (REAL *) NULL)) {
    *pointattriblist = (REAL *) malloc(points.items * nextras * sizeof(REAL));
    if (*pointattriblist == (REAL *) NULL) {
      printf("Error:  Out of memory.\n");
      exit(1);
    }
  }
  /* Allocate memory for output point markers if necessary. */
  if (!nobound && (*pointmarkerlist == (int *) NULL)) {
    *pointmarkerlist = (int *) malloc(points.items * sizeof(int));
    if (*pointmarkerlist == (int *) NULL) {
      printf("Error:  Out of memory.\n");
      exit(1);
    }
  }
  plist = *pointlist;
  palist = *pointattriblist;
  pmlist = *pointmarkerlist;
  coordindex = 0;
  attribindex = 0;
#else /* not TRILIBRARY */
  if (!quiet) {
    printf("Writing %s.\n", nodefilename);
  }
  outfile = fopen(nodefilename, "w");
  if (outfile == (FILE *) NULL) {
    printf("  Error:  Cannot create file %s.\n", nodefilename);
    exit(1);
  }
  /* Number of points, number of dimensions, number of point attributes, */
  /*   and number of boundary markers (zero or one).                     */
  fprintf(outfile, "%ld  %d  %d  %d\n", points.items, mesh_dim, nextras,
          1 - nobound);
#endif /* not TRILIBRARY */

  traversalinit(&points);
  pointloop = pointtraverse();
  pointnumber = firstnumber;
  while (pointloop != (point) NULL) {
#ifdef TRILIBRARY
    /* X and y coordinates. */
    plist[coordindex++] = pointloop[0];
    plist[coordindex++] = pointloop[1];
    /* Point attributes. */
    for (i = 0; i < nextras; i++) {
      palist[attribindex++] = pointloop[2 + i];
    }
    if (!nobound) {
      /* Copy the boundary marker. */
      pmlist[pointnumber - firstnumber] = pointmark(pointloop);
    }
#else /* not TRILIBRARY */
    /* Point number, x and y coordinates. */
    fprintf(outfile, "%4d    %.17g  %.17g", pointnumber, pointloop[0],
            pointloop[1]);
    for (i = 0; i < nextras; i++) {
      /* Write an attribute. */
      fprintf(outfile, "  %.17g", pointloop[i + 2]);
    }
    if (nobound) {
      fprintf(outfile, "\n");
    }
    else {
      /* Write the boundary marker. */
      fprintf(outfile, "    %d\n", pointmark(pointloop));
    }
#endif /* not TRILIBRARY */

    setpointmark(pointloop, pointnumber);
    pointloop = pointtraverse();
    pointnumber++;
  }

#ifndef TRILIBRARY
  finishfile(outfile, argc, argv);
#endif /* not TRILIBRARY */
}

/*****************************************************************************/
/*                                                                           */
/*  numbernodes()   Number the points.                                       */
/*                                                                           */
/*  Each point is assigned a marker equal to its number.                     */
/*                                                                           */
/*  Used when writenodes() is not called because no .node file is written.   */
/*                                                                           */
/*****************************************************************************/

void numbernodes(void)
{
  point pointloop;
  int pointnumber;

  traversalinit(&points);
  pointloop = pointtraverse();
  pointnumber = firstnumber;
  while (pointloop != (point) NULL) {
    setpointmark(pointloop, pointnumber);
    pointloop = pointtraverse();
    pointnumber++;
  }
}

/*****************************************************************************/
/*                                                                           */
/*  writeelements()   Write the triangles to an .ele file.                   */
/*                                                                           */
/*****************************************************************************/

#ifdef TRILIBRARY

void writeelements(int **trianglelist,
                   REAL **triangleattriblist)

#else /* not TRILIBRARY */

void writeelements(char *elefilename,
                   int argc,
                   char **argv)

#endif /* not TRILIBRARY */
{
#ifdef TRILIBRARY
  int *tlist;
  REAL *talist;
  int pointindex;
  int attribindex;
#else /* not TRILIBRARY */
  FILE *outfile;
#endif /* not TRILIBRARY */
  struct triedge triangleloop;
  point p1, p2, p3;
  point mid1, mid2, mid3;
  int elementnumber;
  int i;

#ifdef TRILIBRARY
  if (!quiet) {
    printf("Writing triangles.\n");
  }
  /* Allocate memory for output triangles if necessary. */
  if (*trianglelist == (int *) NULL) {
    *trianglelist = (int *) malloc(triangles.items *
                               ((order + 1) * (order + 2) / 2) * sizeof(int));
    if (*trianglelist == (int *) NULL) {
      printf("Error:  Out of memory.\n");
      exit(1);
    }
  }
  /* Allocate memory for output triangle attributes if necessary. */
  if ((eextras > 0) && (*triangleattriblist == (REAL *) NULL)) {
    *triangleattriblist = (REAL *) malloc(triangles.items * eextras *
                                          sizeof(REAL));
    if (*triangleattriblist == (REAL *) NULL) {
      printf("Error:  Out of memory.\n");
      exit(1);
    }
  }
  tlist = *trianglelist;
  talist = *triangleattriblist;
  pointindex = 0;
  attribindex = 0;
#else /* not TRILIBRARY */
  if (!quiet) {
    printf("Writing %s.\n", elefilename);
  }
  outfile = fopen(elefilename, "w");
  if (outfile == (FILE *) NULL) {
    printf("  Error:  Cannot create file %s.\n", elefilename);
    exit(1);
  }
  /* Number of triangles, points per triangle, attributes per triangle. */
  fprintf(outfile, "%ld  %d  %d\n", triangles.items,
          (order + 1) * (order + 2) / 2, eextras);
#endif /* not TRILIBRARY */

  traversalinit(&triangles);
  triangleloop.tri = triangletraverse();
  triangleloop.orient = 0;
  elementnumber = firstnumber;
  while (triangleloop.tri != (triangle *) NULL) {
    org(triangleloop, p1);
    dest(triangleloop, p2);
    apex(triangleloop, p3);
    if (order == 1) {
#ifdef TRILIBRARY
      tlist[pointindex++] = pointmark(p1);
      tlist[pointindex++] = pointmark(p2);
      tlist[pointindex++] = pointmark(p3);
#else /* not TRILIBRARY */
      /* Triangle number, indices for three points. */
      fprintf(outfile, "%4d    %4d  %4d  %4d", elementnumber,
              pointmark(p1), pointmark(p2), pointmark(p3));
#endif /* not TRILIBRARY */
    }
    else {
      mid1 = (point) triangleloop.tri[highorderindex + 1];
      mid2 = (point) triangleloop.tri[highorderindex + 2];
      mid3 = (point) triangleloop.tri[highorderindex];
#ifdef TRILIBRARY
      tlist[pointindex++] = pointmark(p1);
      tlist[pointindex++] = pointmark(p2);
      tlist[pointindex++] = pointmark(p3);
      tlist[pointindex++] = pointmark(mid1);
      tlist[pointindex++] = pointmark(mid2);
      tlist[pointindex++] = pointmark(mid3);
#else /* not TRILIBRARY */
      /* Triangle number, indices for six points. */
      fprintf(outfile, "%4d    %4d  %4d  %4d  %4d  %4d  %4d", elementnumber,
              pointmark(p1), pointmark(p2), pointmark(p3), pointmark(mid1),
              pointmark(mid2), pointmark(mid3));
#endif /* not TRILIBRARY */
    }

#ifdef TRILIBRARY
    for (i = 0; i < eextras; i++) {
      talist[attribindex++] = elemattribute(triangleloop, i);
    }
#else /* not TRILIBRARY */
    for (i = 0; i < eextras; i++) {
      fprintf(outfile, "  %.17g", elemattribute(triangleloop, i));
    }
    fprintf(outfile, "\n");
#endif /* not TRILIBRARY */

    triangleloop.tri = triangletraverse();
#ifndef TRILIBRARY
    elementnumber++;
#endif /* not TRILIBRARY */
  }

#ifndef TRILIBRARY
  finishfile(outfile, argc, argv);
#endif /* not TRILIBRARY */
}

/*****************************************************************************/
/*                                                                           */
/*  writepoly()   Write the segments and holes to a .poly file.              */
/*                                                                           */
/*****************************************************************************/

#ifdef TRILIBRARY

void writepoly(int **segmentlist,
               int **segmentmarkerlist)

#else /* not TRILIBRARY */

void writepoly(char *polyfilename,
               REAL *holelist,
               int holes,
               REAL *regionlist,
               int regions,
               int argc,
               char **argv)

#endif /* not TRILIBRARY */
{
#ifdef TRILIBRARY
  int *slist;
  int *smlist;
  int index;
#else /* not TRILIBRARY */
  FILE *outfile;
  int i;
#endif /* not TRILIBRARY */
  struct edge shelleloop;
  point endpoint1, endpoint2;
  int shellenumber;

#ifdef TRILIBRARY
  if (!quiet) {
    printf("Writing segments.\n");
  }
  /* Allocate memory for output segments if necessary. */
  if (*segmentlist == (int *) NULL) {
    *segmentlist = (int *) malloc(shelles.items * 2 * sizeof(int));
    if (*segmentlist == (int *) NULL) {
      printf("Error:  Out of memory.\n");
      exit(1);
    }
  }
  /* Allocate memory for output segment markers if necessary. */
  if (!nobound && (*segmentmarkerlist == (int *) NULL)) {
    *segmentmarkerlist = (int *) malloc(shelles.items * sizeof(int));
    if (*segmentmarkerlist == (int *) NULL) {
      printf("Error:  Out of memory.\n");
      exit(1);
    }
  }
  slist = *segmentlist;
  smlist = *segmentmarkerlist;
  index = 0;
#else /* not TRILIBRARY */
  if (!quiet) {
    printf("Writing %s.\n", polyfilename);
  }
  outfile = fopen(polyfilename, "w");
  if (outfile == (FILE *) NULL) {
    printf("  Error:  Cannot create file %s.\n", polyfilename);
    exit(1);
  }
  /* The zero indicates that the points are in a separate .node file. */
  /*   Followed by number of dimensions, number of point attributes,  */
  /*   and number of boundary markers (zero or one).                  */
  fprintf(outfile, "%d  %d  %d  %d\n", 0, mesh_dim, nextras, 1 - nobound);
  /* Number of segments, number of boundary markers (zero or one). */
  fprintf(outfile, "%ld  %d\n", shelles.items, 1 - nobound);
#endif /* not TRILIBRARY */

  traversalinit(&shelles);
  shelleloop.sh = shelletraverse();
  shelleloop.shorient = 0;
  shellenumber = firstnumber;
  while (shelleloop.sh != (shelle *) NULL) {
    sorg(shelleloop, endpoint1);
    sdest(shelleloop, endpoint2);
#ifdef TRILIBRARY
    /* Copy indices of the segment's two endpoints. */
    slist[index++] = pointmark(endpoint1);
    slist[index++] = pointmark(endpoint2);
    if (!nobound) {
      /* Copy the boundary marker. */
      smlist[shellenumber - firstnumber] = mark(shelleloop);
    }
#else /* not TRILIBRARY */
    /* Segment number, indices of its two endpoints, and possibly a marker. */
    if (nobound) {
      fprintf(outfile, "%4d    %4d  %4d\n", shellenumber,
              pointmark(endpoint1), pointmark(endpoint2));
    }
    else {
      fprintf(outfile, "%4d    %4d  %4d    %4d\n", shellenumber,
              pointmark(endpoint1), pointmark(endpoint2), mark(shelleloop));
    }
#endif /* not TRILIBRARY */

    shelleloop.sh = shelletraverse();
    shellenumber++;
  }

#ifndef TRILIBRARY
#ifndef CDT_ONLY
  fprintf(outfile, "%d\n", holes);
  if (holes > 0) {
    for (i = 0; i < holes; i++) {
      /* Hole number, x and y coordinates. */
      fprintf(outfile, "%4d   %.17g  %.17g\n", firstnumber + i,
              holelist[2 * i], holelist[2 * i + 1]);
    }
  }
  if (regions > 0) {
    fprintf(outfile, "%d\n", regions);
    for (i = 0; i < regions; i++) {
      /* Region number, x and y coordinates, attribute, maximum area. */
      fprintf(outfile, "%4d   %.17g  %.17g  %.17g  %.17g\n", firstnumber + i,
              regionlist[4 * i], regionlist[4 * i + 1],
              regionlist[4 * i + 2], regionlist[4 * i + 3]);
    }
  }
#endif /* not CDT_ONLY */

  finishfile(outfile, argc, argv);
#endif /* not TRILIBRARY */
}

/*****************************************************************************/
/*                                                                           */
/*  writeedges()   Write the edges to a .edge file.                          */
/*                                                                           */
/*****************************************************************************/

#ifdef TRILIBRARY

void writeedges(int **edgelist,
                int **edgemarkerlist)

#else /* not TRILIBRARY */

void writeedges(char *edgefilename,
                int argc,
                char **argv)

#endif /* not TRILIBRARY */
{
#ifdef TRILIBRARY
  int *elist;
  int *emlist;
  int index;
#else /* not TRILIBRARY */
  FILE *outfile;
#endif /* not TRILIBRARY */
  struct triedge triangleloop, trisym;
  struct edge checkmark;
  point p1, p2;
  int edgenumber;
  triangle ptr;                         /* Temporary variable used by sym(). */
  shelle sptr;                      /* Temporary variable used by tspivot(). */

#ifdef TRILIBRARY
  if (!quiet) {
    printf("Writing edges.\n");
  }
  /* Allocate memory for edges if necessary. */
  if (*edgelist == (int *) NULL) {
    *edgelist = (int *) malloc(edges * 2 * sizeof(int));
    if (*edgelist == (int *) NULL) {
      printf("Error:  Out of memory.\n");
      exit(1);
    }
  }
  /* Allocate memory for edge markers if necessary. */
  if (!nobound && (*edgemarkerlist == (int *) NULL)) {
    *edgemarkerlist = (int *) malloc(edges * sizeof(int));
    if (*edgemarkerlist == (int *) NULL) {
      printf("Error:  Out of memory.\n");
      exit(1);
    }
  }
  elist = *edgelist;
  emlist = *edgemarkerlist;
  index = 0;
#else /* not TRILIBRARY */
  if (!quiet) {
    printf("Writing %s.\n", edgefilename);
  }
  outfile = fopen(edgefilename, "w");
  if (outfile == (FILE *) NULL) {
    printf("  Error:  Cannot create file %s.\n", edgefilename);
    exit(1);
  }
  /* Number of edges, number of boundary markers (zero or one). */
  fprintf(outfile, "%ld  %d\n", edges, 1 - nobound);
#endif /* not TRILIBRARY */

  traversalinit(&triangles);
  triangleloop.tri = triangletraverse();
  edgenumber = firstnumber;
  /* To loop over the set of edges, loop over all triangles, and look at   */
  /*   the three edges of each triangle.  If there isn't another triangle  */
  /*   adjacent to the edge, operate on the edge.  If there is another     */
  /*   adjacent triangle, operate on the edge only if the current triangle */
  /*   has a smaller pointer than its neighbor.  This way, each edge is    */
  /*   considered only once.                                               */
  while (triangleloop.tri != (triangle *) NULL) {
    for (triangleloop.orient = 0; triangleloop.orient < 3; triangleloop.orient++) {
      sym(triangleloop, trisym);
      if ((triangleloop.tri < trisym.tri) || (trisym.tri == dummytri)) {
        org(triangleloop, p1);
        dest(triangleloop, p2);
#ifdef TRILIBRARY
        elist[index++] = pointmark(p1);
        elist[index++] = pointmark(p2);
#endif /* TRILIBRARY */
        if (nobound) {
#ifndef TRILIBRARY
          /* Edge number, indices of two endpoints. */
          fprintf(outfile, "%4d   %d  %d\n", edgenumber,
                  pointmark(p1), pointmark(p2));
#endif /* not TRILIBRARY */
        }
        else {
          /* Edge number, indices of two endpoints, and a boundary marker. */
          /*   If there's no shell edge, the boundary marker is zero.      */
          if (useshelles) {
            tspivot(triangleloop, checkmark);
            if (checkmark.sh == dummysh) {
#ifdef TRILIBRARY
              emlist[edgenumber - firstnumber] = 0;
#else /* not TRILIBRARY */
              fprintf(outfile, "%4d   %d  %d  %d\n", edgenumber,
                      pointmark(p1), pointmark(p2), 0);
#endif /* not TRILIBRARY */
            }
            else {
#ifdef TRILIBRARY
              emlist[edgenumber - firstnumber] = mark(checkmark);
#else /* not TRILIBRARY */
              fprintf(outfile, "%4d   %d  %d  %d\n", edgenumber,
                      pointmark(p1), pointmark(p2), mark(checkmark));
#endif /* not TRILIBRARY */
            }
          }
          else {
#ifdef TRILIBRARY
            emlist[edgenumber - firstnumber] = trisym.tri == dummytri;
#else /* not TRILIBRARY */
            fprintf(outfile, "%4d   %d  %d  %d\n", edgenumber,
                    pointmark(p1), pointmark(p2), trisym.tri == dummytri);
#endif /* not TRILIBRARY */
          }
        }
        edgenumber++;
      }
    }
    triangleloop.tri = triangletraverse();
  }

#ifndef TRILIBRARY
  finishfile(outfile, argc, argv);
#endif /* not TRILIBRARY */
}

/*****************************************************************************/
/*                                                                           */
/*  writevoronoi()   Write the Voronoi diagram to a .v.node and .v.edge      */
/*                   file.                                                   */
/*                                                                           */
/*  The Voronoi diagram is the geometric dual of the Delaunay triangulation. */
/*  Hence, the Voronoi vertices are listed by traversing the Delaunay        */
/*  triangles, and the Voronoi edges are listed by traversing the Delaunay   */
/*  edges.                                                                   */
/*                                                                           */
/*  WARNING:  In order to assign numbers to the Voronoi vertices, this       */
/*  procedure messes up the shell edges or the extra nodes of every          */
/*  element.  Hence, you should call this procedure last.                    */
/*                                                                           */
/*****************************************************************************/

#ifdef TRILIBRARY

void writevoronoi(REAL **vpointlist,
                  REAL **vpointattriblist,
                  int **vpointmarkerlist,
                  int **vedgelist,
                  int **vedgemarkerlist,
                  REAL **vnormlist)

#else /* not TRILIBRARY */

void writevoronoi(char *vnodefilename,
                  char *vedgefilename,
                  int argc,
                  char **argv)

#endif /* not TRILIBRARY */
{
#ifdef TRILIBRARY
  REAL *plist;
  REAL *palist;
  int *elist;
  REAL *normlist;
  int coordindex;
  int attribindex;
#else /* not TRILIBRARY */
  FILE *outfile;
#endif /* not TRILIBRARY */
  struct triedge triangleloop, trisym;
  point torg, tdest, tapex;
  REAL circumcenter[2];
  REAL xi, eta;
  int vnodenumber, vedgenumber;
  int p1, p2;
  int i;
  triangle ptr;                         /* Temporary variable used by sym(). */

#ifdef TRILIBRARY
  if (!quiet) {
    printf("Writing Voronoi vertices.\n");
  }
  /* Allocate memory for Voronoi vertices if necessary. */
  if (*vpointlist == (REAL *) NULL) {
    *vpointlist = (REAL *) malloc(triangles.items * 2 * sizeof(REAL));
    if (*vpointlist == (REAL *) NULL) {
      printf("Error:  Out of memory.\n");
      exit(1);
    }
  }
  /* Allocate memory for Voronoi vertex attributes if necessary. */
  if (*vpointattriblist == (REAL *) NULL) {
    *vpointattriblist = (REAL *) malloc(triangles.items * nextras *
                                        sizeof(REAL));
    if (*vpointattriblist == (REAL *) NULL) {
      printf("Error:  Out of memory.\n");
      exit(1);
    }
  }
  *vpointmarkerlist = (int *) NULL;
  plist = *vpointlist;
  palist = *vpointattriblist;
  coordindex = 0;
  attribindex = 0;
#else /* not TRILIBRARY */
  if (!quiet) {
    printf("Writing %s.\n", vnodefilename);
  }
  outfile = fopen(vnodefilename, "w");
  if (outfile == (FILE *) NULL) {
    printf("  Error:  Cannot create file %s.\n", vnodefilename);
    exit(1);
  }
  /* Number of triangles, two dimensions, number of point attributes, */
  /*   zero markers.                                                  */
  fprintf(outfile, "%ld  %d  %d  %d\n", triangles.items, 2, nextras, 0);
#endif /* not TRILIBRARY */

  traversalinit(&triangles);
  triangleloop.tri = triangletraverse();
  triangleloop.orient = 0;
  vnodenumber = firstnumber;
  while (triangleloop.tri != (triangle *) NULL) {
    org(triangleloop, torg);
    dest(triangleloop, tdest);
    apex(triangleloop, tapex);
    findcircumcenter(torg, tdest, tapex, circumcenter, &xi, &eta);
#ifdef TRILIBRARY
    /* X and y coordinates. */
    plist[coordindex++] = circumcenter[0];
    plist[coordindex++] = circumcenter[1];
    for (i = 2; i < 2 + nextras; i++) {
      /* Interpolate the point attributes at the circumcenter. */
      palist[attribindex++] = torg[i] + xi * (tdest[i] - torg[i])
                                     + eta * (tapex[i] - torg[i]);
    }
#else /* not TRILIBRARY */
    /* Voronoi vertex number, x and y coordinates. */
    fprintf(outfile, "%4d    %.17g  %.17g",
            vnodenumber, circumcenter[0], circumcenter[1]);
    for (i = 2; i < 2 + nextras; i++) {
      /* Interpolate the point attributes at the circumcenter. */
      fprintf(outfile, "  %.17g", torg[i] + xi * (tdest[i] - torg[i])
                                         + eta * (tapex[i] - torg[i]));
    }
    fprintf(outfile, "\n");
#endif /* not TRILIBRARY */

    * (int *) (triangleloop.tri + 6) = vnodenumber;
    triangleloop.tri = triangletraverse();
    vnodenumber++;
  }

#ifndef TRILIBRARY
  finishfile(outfile, argc, argv);
#endif /* not TRILIBRARY */

#ifdef TRILIBRARY
  if (!quiet) {
    printf("Writing Voronoi edges.\n");
  }
  /* Allocate memory for output Voronoi edges if necessary. */
  if (*vedgelist == (int *) NULL) {
    *vedgelist = (int *) malloc(edges * 2 * sizeof(int));
    if (*vedgelist == (int *) NULL) {
      printf("Error:  Out of memory.\n");
      exit(1);
    }
  }
  *vedgemarkerlist = (int *) NULL;
  /* Allocate memory for output Voronoi norms if necessary. */
  if (*vnormlist == (REAL *) NULL) {
    *vnormlist = (REAL *) malloc(edges * 2 * sizeof(REAL));
    if (*vnormlist == (REAL *) NULL) {
      printf("Error:  Out of memory.\n");
      exit(1);
    }
  }
  elist = *vedgelist;
  normlist = *vnormlist;
  coordindex = 0;
#else /* not TRILIBRARY */
  if (!quiet) {
    printf("Writing %s.\n", vedgefilename);
  }
  outfile = fopen(vedgefilename, "w");
  if (outfile == (FILE *) NULL) {
    printf("  Error:  Cannot create file %s.\n", vedgefilename);
    exit(1);
  }
  /* Number of edges, zero boundary markers. */
  fprintf(outfile, "%ld  %d\n", edges, 0);
#endif /* not TRILIBRARY */

  traversalinit(&triangles);
  triangleloop.tri = triangletraverse();
  vedgenumber = firstnumber;
  /* To loop over the set of edges, loop over all triangles, and look at   */
  /*   the three edges of each triangle.  If there isn't another triangle  */
  /*   adjacent to the edge, operate on the edge.  If there is another     */
  /*   adjacent triangle, operate on the edge only if the current triangle */
  /*   has a smaller pointer than its neighbor.  This way, each edge is    */
  /*   considered only once.                                               */
  while (triangleloop.tri != (triangle *) NULL) {
    for (triangleloop.orient = 0; triangleloop.orient < 3; triangleloop.orient++) {
      sym(triangleloop, trisym);
      if ((triangleloop.tri < trisym.tri) || (trisym.tri == dummytri)) {
        /* Find the number of this triangle (and Voronoi vertex). */
        p1 = * (int *) (triangleloop.tri + 6);
        if (trisym.tri == dummytri) {
          org(triangleloop, torg);
          dest(triangleloop, tdest);
#ifdef TRILIBRARY
          /* Copy an infinite ray.  Index of one endpoint, and -1. */
          elist[coordindex] = p1;
          normlist[coordindex++] = tdest[1] - torg[1];
          elist[coordindex] = -1;
          normlist[coordindex++] = torg[0] - tdest[0];
#else /* not TRILIBRARY */
          /* Write an infinite ray.  Edge number, index of one endpoint, -1, */
          /*   and x and y coordinates of a vector representing the          */
          /*   direction of the ray.                                         */
          fprintf(outfile, "%4d   %d  %d   %.17g  %.17g\n", vedgenumber,
                  p1, -1, tdest[1] - torg[1], torg[0] - tdest[0]);
#endif /* not TRILIBRARY */
        }
        else {
          /* Find the number of the adjacent triangle (and Voronoi vertex). */
          p2 = * (int *) (trisym.tri + 6);
          /* Finite edge.  Write indices of two endpoints. */
#ifdef TRILIBRARY
          elist[coordindex] = p1;
          normlist[coordindex++] = 0.0;
          elist[coordindex] = p2;
          normlist[coordindex++] = 0.0;
#else /* not TRILIBRARY */
          fprintf(outfile, "%4d   %d  %d\n", vedgenumber, p1, p2);
#endif /* not TRILIBRARY */
        }
#ifndef TRILIBRARY
        vedgenumber++;
#endif /* not TRILIBRARY */
      }
    }
    triangleloop.tri = triangletraverse();
  }

#ifndef TRILIBRARY
  finishfile(outfile, argc, argv);
#endif /* not TRILIBRARY */
}

#ifdef TRILIBRARY

void writeneighbors(int **neighborlist)

#else /* not TRILIBRARY */

void writeneighbors(char *neighborfilename,
                    int argc,
                    char **argv)

#endif /* not TRILIBRARY */
{
#ifdef TRILIBRARY
  int *nlist;
  int index;
#else /* not TRILIBRARY */
  FILE *outfile;
#endif /* not TRILIBRARY */
  struct triedge triangleloop, trisym;
  int elementnumber;
  int neighbor1, neighbor2, neighbor3;
  triangle ptr;                         /* Temporary variable used by sym(). */

#ifdef TRILIBRARY
  if (!quiet) {
    printf("Writing neighbors.\n");
  }
  /* Allocate memory for neighbors if necessary. */
  if (*neighborlist == (int *) NULL) {
    *neighborlist = (int *) malloc(triangles.items * 3 * sizeof(int));
    if (*neighborlist == (int *) NULL) {
      printf("Error:  Out of memory.\n");
      exit(1);
    }
  }
  nlist = *neighborlist;
  index = 0;
#else /* not TRILIBRARY */
  if (!quiet) {
    printf("Writing %s.\n", neighborfilename);
  }
  outfile = fopen(neighborfilename, "w");
  if (outfile == (FILE *) NULL) {
    printf("  Error:  Cannot create file %s.\n", neighborfilename);
    exit(1);
  }
  /* Number of triangles, three edges per triangle. */
  fprintf(outfile, "%ld  %d\n", triangles.items, 3);
#endif /* not TRILIBRARY */

  traversalinit(&triangles);
  triangleloop.tri = triangletraverse();
  triangleloop.orient = 0;
  elementnumber = firstnumber;
  while (triangleloop.tri != (triangle *) NULL) {
    * (int *) (triangleloop.tri + 6) = elementnumber;
    triangleloop.tri = triangletraverse();
    elementnumber++;
  }
  * (int *) (dummytri + 6) = -1;

  traversalinit(&triangles);
  triangleloop.tri = triangletraverse();
  elementnumber = firstnumber;
  while (triangleloop.tri != (triangle *) NULL) {
    triangleloop.orient = 1;
    sym(triangleloop, trisym);
    neighbor1 = * (int *) (trisym.tri + 6);
    triangleloop.orient = 2;
    sym(triangleloop, trisym);
    neighbor2 = * (int *) (trisym.tri + 6);
    triangleloop.orient = 0;
    sym(triangleloop, trisym);
    neighbor3 = * (int *) (trisym.tri + 6);
#ifdef TRILIBRARY
    nlist[index++] = neighbor1;
    nlist[index++] = neighbor2;
    nlist[index++] = neighbor3;
#else /* not TRILIBRARY */
    /* Triangle number, neighboring triangle numbers. */
    fprintf(outfile, "%4d    %d  %d  %d\n", elementnumber,
            neighbor1, neighbor2, neighbor3);
#endif /* not TRILIBRARY */

    triangleloop.tri = triangletraverse();
#ifndef TRILIBRARY
    elementnumber++;
#endif /* not TRILIBRARY */
  }

#ifndef TRILIBRARY
  finishfile(outfile, argc, argv);
#endif /* TRILIBRARY */
}

/*****************************************************************************/
/*                                                                           */
/*  writeoff()   Write the triangulation to an .off file.                    */
/*                                                                           */
/*  OFF stands for the Object File Format, a format used by the Geometry     */
/*  Center's Geomview package.                                               */
/*                                                                           */
/*****************************************************************************/

#ifndef TRILIBRARY

void writeoff(char *offfilename,
              int argc,
              char **argv)
{
  FILE *outfile;
  struct triedge triangleloop;
  point pointloop;
  point p1, p2, p3;

  if (!quiet) {
    printf("Writing %s.\n", offfilename);
  }
  outfile = fopen(offfilename, "w");
  if (outfile == (FILE *) NULL) {
    printf("  Error:  Cannot create file %s.\n", offfilename);
    exit(1);
  }
  /* Number of points, triangles, and edges. */
  fprintf(outfile, "OFF\n%ld  %ld  %ld\n", points.items, triangles.items, edges);

  /* Write the points. */
  traversalinit(&points);
  pointloop = pointtraverse();
  while (pointloop != (point) NULL) {
    /* The "0.0" is here because the OFF format uses 3D coordinates. */
    fprintf(outfile, " %.17g  %.17g  %.17g\n", pointloop[0], pointloop[1], 0.0);
    pointloop = pointtraverse();
  }

  /* Write the triangles. */
  traversalinit(&triangles);
  triangleloop.tri = triangletraverse();
  triangleloop.orient = 0;
  while (triangleloop.tri != (triangle *) NULL) {
    org(triangleloop, p1);
    dest(triangleloop, p2);
    apex(triangleloop, p3);
    /* The "3" means a three-vertex polygon. */
    fprintf(outfile, " 3   %4d  %4d  %4d\n", pointmark(p1) - 1,
            pointmark(p2) - 1, pointmark(p3) - 1);
    triangleloop.tri = triangletraverse();
  }
  finishfile(outfile, argc, argv);
}

#endif /* not TRILIBRARY */

/**                                                                         **/
/**                                                                         **/
/********* File I/O routines end here                                *********/

/*****************************************************************************/
/*                                                                           */
/*  quality_statistics()   Print statistics about the quality of the mesh.   */
/*                                                                           */
/*****************************************************************************/

void quality_statistics(void)
{
  struct triedge triangleloop;
  point p[3];
  REAL cossquaretable[8];
  REAL ratiotable[16];
  REAL dx[3], dy[3];
  REAL edgelength[3];
  REAL dotproduct;
  REAL cossquare;
  REAL triarea;
  REAL shortest, longest;
  REAL trilongest2;
  REAL smallestarea, biggestarea;
  REAL triminaltitude2;
  REAL minaltitude;
  REAL triaspect2;
  REAL worstaspect;
  REAL smallestangle, biggestangle;
  REAL radconst, degconst;
  int angletable[18];
  int aspecttable[16];
  int aspectindex;
  int tendegree;
  int acutebiggest;
  int i, ii, j, k;

  printf("Mesh quality statistics:\n\n");
  radconst = PI / 18.0;
  degconst = 180.0 / PI;
  for (i = 0; i < 8; i++) {
    cossquaretable[i] = cos(radconst * (REAL) (i + 1));
    cossquaretable[i] = cossquaretable[i] * cossquaretable[i];
  }
  for (i = 0; i < 18; i++) {
    angletable[i] = 0;
  }

  ratiotable[0]  =      1.5;      ratiotable[1]  =     2.0;
  ratiotable[2]  =      2.5;      ratiotable[3]  =     3.0;
  ratiotable[4]  =      4.0;      ratiotable[5]  =     6.0;
  ratiotable[6]  =     10.0;      ratiotable[7]  =    15.0;
  ratiotable[8]  =     25.0;      ratiotable[9]  =    50.0;
  ratiotable[10] =    100.0;      ratiotable[11] =   300.0;
  ratiotable[12] =   1000.0;      ratiotable[13] = 10000.0;
  ratiotable[14] = 100000.0;      ratiotable[15] =     0.0;
  for (i = 0; i < 16; i++) {
    aspecttable[i] = 0;
  }

  worstaspect = 0.0;
  minaltitude = xmax - xmin + ymax - ymin;
  minaltitude = minaltitude * minaltitude;
  shortest = minaltitude;
  longest = 0.0;
  smallestarea = minaltitude;
  biggestarea = 0.0;
  smallestangle = 0.0;
  biggestangle = 2.0;
  acutebiggest = 1;

  traversalinit(&triangles);
  triangleloop.tri = triangletraverse();
  triangleloop.orient = 0;
  while (triangleloop.tri != (triangle *) NULL) {
    org(triangleloop, p[0]);
    dest(triangleloop, p[1]);
    apex(triangleloop, p[2]);
    trilongest2 = 0.0;

    for (i = 0; i < 3; i++) {
      j = plus1mod3[i];
      k = minus1mod3[i];
      dx[i] = p[j][0] - p[k][0];
      dy[i] = p[j][1] - p[k][1];
      edgelength[i] = dx[i] * dx[i] + dy[i] * dy[i];
      if (edgelength[i] > trilongest2) {
        trilongest2 = edgelength[i];
      }
      if (edgelength[i] > longest) {
        longest = edgelength[i];
      }
      if (edgelength[i] < shortest) {
        shortest = edgelength[i];
      }
    }

    triarea = counterclockwise(p[0], p[1], p[2]);
    if (triarea < smallestarea) {
      smallestarea = triarea;
    }
    if (triarea > biggestarea) {
      biggestarea = triarea;
    }
    triminaltitude2 = triarea * triarea / trilongest2;
    if (triminaltitude2 < minaltitude) {
      minaltitude = triminaltitude2;
    }
    triaspect2 = trilongest2 / triminaltitude2;
    if (triaspect2 > worstaspect) {
      worstaspect = triaspect2;
    }
    aspectindex = 0;
    while ((triaspect2 > ratiotable[aspectindex] * ratiotable[aspectindex])
           && (aspectindex < 15)) {
      aspectindex++;
    }
    aspecttable[aspectindex]++;

    for (i = 0; i < 3; i++) {
      j = plus1mod3[i];
      k = minus1mod3[i];
      dotproduct = dx[j] * dx[k] + dy[j] * dy[k];
      cossquare = dotproduct * dotproduct / (edgelength[j] * edgelength[k]);
      tendegree = 8;
      for (ii = 7; ii >= 0; ii--) {
        if (cossquare > cossquaretable[ii]) {
          tendegree = ii;
        }
      }
      if (dotproduct <= 0.0) {
        angletable[tendegree]++;
        if (cossquare > smallestangle) {
          smallestangle = cossquare;
        }
        if (acutebiggest && (cossquare < biggestangle)) {
          biggestangle = cossquare;
        }
      }
      else {
        angletable[17 - tendegree]++;
        if (acutebiggest || (cossquare > biggestangle)) {
          biggestangle = cossquare;
          acutebiggest = 0;
        }
      }
    }
    triangleloop.tri = triangletraverse();
  }

  shortest = sqrt(shortest);
  longest = sqrt(longest);
  minaltitude = sqrt(minaltitude);
  worstaspect = sqrt(worstaspect);
  smallestarea *= 2.0;
  biggestarea *= 2.0;
  if (smallestangle >= 1.0) {
    smallestangle = 0.0;
  }
  else {
    smallestangle = degconst * acos(sqrt(smallestangle));
  }
  if (biggestangle >= 1.0) {
    biggestangle = 180.0;
  }
  else {
    if (acutebiggest) {
      biggestangle = degconst * acos(sqrt(biggestangle));
    }
    else {
      biggestangle = 180.0 - degconst * acos(sqrt(biggestangle));
    }
  }

  printf("  Smallest area: %16.5g   |  Largest area: %16.5g\n", smallestarea, biggestarea);
  printf("  Shortest edge: %16.5g   |  Longest edge: %16.5g\n", shortest, longest);
  printf("  Shortest altitude: %12.5g   |  Largest aspect ratio: %8.5g\n\n", minaltitude, worstaspect);
  printf("  Aspect ratio histogram:\n");
  printf("  1.1547 - %-6.6g    :  %8d    | %6.6g - %-6.6g     :  %8d\n",
         ratiotable[0], aspecttable[0], ratiotable[7], ratiotable[8], aspecttable[8]);
  for (i = 1; i < 7; i++) {
    printf("  %6.6g - %-6.6g    :  %8d    | %6.6g - %-6.6g     :  %8d\n",
           ratiotable[i - 1], ratiotable[i], aspecttable[i], ratiotable[i + 7], ratiotable[i + 8], aspecttable[i + 8]);
  }
  printf("  %6.6g - %-6.6g    :  %8d    | %6.6g -            :  %8d\n",
         ratiotable[6], ratiotable[7], aspecttable[7], ratiotable[14], aspecttable[15]);
  printf("  (Triangle aspect ratio is longest edge divided by shortest altitude)\n\n");
  printf("  Smallest angle: %15.5g   |  Largest angle: %15.5g\n\n", smallestangle, biggestangle);
  printf("  Angle histogram:\n");
  for (i = 0; i < 9; i++) {
    printf("    %3d - %3d degrees:  %8d    |    %3d - %3d degrees:  %8d\n",
           i * 10, i * 10 + 10, angletable[i], i * 10 + 90, i * 10 + 100, angletable[i + 9]);
  }
  printf("\n");
}

/*****************************************************************************/
/*                                                                           */
/*  statistics()   Print all sorts of cool facts.                            */
/*                                                                           */
/*****************************************************************************/

void statistics(void)
{
  printf("\nStatistics:\n\n");
  printf("  Input points: %d\n", inpoints);
  if (refine) {
    printf("  Input triangles: %d\n", inelements);
  }
  if (poly) {
    printf("  Input segments: %d\n", insegments);
    if (!refine) {
      printf("  Input holes: %d\n", holes);
    }
  }

  printf("\n  Mesh points: %ld\n", points.items);
  printf("  Mesh triangles: %ld\n", triangles.items);
  printf("  Mesh edges: %ld\n", edges);
  if (poly || refine) {
    printf("  Mesh boundary edges: %ld\n", hullsize);
    printf("  Mesh segments: %ld\n\n", shelles.items);
  }
  else {
    printf("  Mesh convex hull edges: %ld\n\n", hullsize);
  }
  if (verbose) {
    quality_statistics();
    printf("Memory allocation statistics:\n\n");
    printf("  Maximum number of points: %ld\n", points.maxitems);
    printf("  Maximum number of triangles: %ld\n", triangles.maxitems);
    if (shelles.maxitems > 0) {
      printf("  Maximum number of segments: %ld\n", shelles.maxitems);
    }
    if (viri.maxitems > 0) {
      printf("  Maximum number of viri: %ld\n", viri.maxitems);
    }
    if (badsegments.maxitems > 0) {
      printf("  Maximum number of encroached segments: %ld\n",
             badsegments.maxitems);
    }
    if (badtriangles.maxitems > 0) {
      printf("  Maximum number of bad triangles: %ld\n",
             badtriangles.maxitems);
    }
    if (splaynodes.maxitems > 0) {
      printf("  Maximum number of splay tree nodes: %ld\n",
             splaynodes.maxitems);
    }
    printf("  Approximate heap memory use (bytes): %ld\n\n",
           points.maxitems * points.itembytes
           + triangles.maxitems * triangles.itembytes
           + shelles.maxitems * shelles.itembytes
           + viri.maxitems * viri.itembytes
           + badsegments.maxitems * badsegments.itembytes
           + badtriangles.maxitems * badtriangles.itembytes
           + splaynodes.maxitems * splaynodes.itembytes);

    printf("Algorithmic statistics:\n\n");
    printf("  Number of incircle tests: %ld\n", incirclecount);
    printf("  Number of orientation tests: %ld\n", counterclockcount);
    if (hyperbolacount > 0) {
      printf("  Number of right-of-hyperbola tests: %ld\n",
             hyperbolacount);
    }
    if (circumcentercount > 0) {
      printf("  Number of circumcenter computations: %ld\n",
             circumcentercount);
    }
    if (circletopcount > 0) {
      printf("  Number of circle top computations: %ld\n",
             circletopcount);
    }
    printf("\n");
  }
}

/*****************************************************************************/
/*                                                                           */
/*  main() or triangulate()   Gosh, do everything.                           */
/*                                                                           */
/*  The sequence is roughly as follows.  Many of these steps can be skipped, */
/*  depending on the command line switches.                                  */
/*                                                                           */
/*  - Initialize constants and parse the command line.                       */
/*  - Read the points from a file and either                                 */
/*    - triangulate them (no -r), or                                         */
/*    - read an old mesh from files and reconstruct it (-r).                 */
/*  - Insert the PSLG segments (-p), and possibly segments on the convex     */
/*      hull (-c).                                                           */
/*  - Read the holes (-p), regional attributes (-pA), and regional area      */
/*      constraints (-pa).  Carve the holes and concavities, and spread the  */
/*      regional attributes and area constraints.                            */
/*  - Enforce the constraints on minimum angle (-q) and maximum area (-a).   */
/*      Also enforce the conforming Delaunay property (-q and -a).           */
/*  - Compute the number of edges in the resulting mesh.                     */
/*  - Promote the mesh's linear triangles to higher order elements (-o).     */
/*  - Write the output files and print the statistics.                       */
/*  - Check the consistency and Delaunay property of the mesh (-C).          */
/*                                                                           */
/*****************************************************************************/

#ifdef TRILIBRARY

void triangulate(const char *triswitches,
                 struct triangulateio *in,
                 struct triangulateio *out,
                 struct triangulateio *vorout)

#else /* not TRILIBRARY */

int main(argc, argv)
int argc;
char **argv;

#endif /* not TRILIBRARY */
{
  REAL *holearray;                                        /* Array of holes. */
  REAL *regionarray;   /* Array of regional attributes and area constraints. */
#ifndef TRILIBRARY
  FILE *polyfile;
#endif /* not TRILIBRARY */
#ifndef NO_TIMER
  /* Variables for timing the performance of Triangle.  The types are */
  /*   defined in sys/time.h.                                         */
  struct timeval tv0, tv1, tv2, tv3, tv4, tv5, tv6;
  struct timezone tz;
#endif /* NO_TIMER */

#ifndef NO_TIMER
  gettimeofday(&tv0, &tz);
#endif /* NO_TIMER */

  triangleinit();
#ifdef TRILIBRARY
  parsecommandline(1, &triswitches);
#else /* not TRILIBRARY */
  parsecommandline(argc, argv);
#endif /* not TRILIBRARY */

#ifdef TRILIBRARY
  transfernodes(in->pointlist, in->pointattributelist, in->pointmarkerlist,
                in->numberofpoints, in->numberofpointattributes);
#else /* not TRILIBRARY */
  readnodes(innodefilename, inpolyfilename, &polyfile);
#endif /* not TRILIBRARY */

#ifndef NO_TIMER
  if (!quiet) {
    gettimeofday(&tv1, &tz);
  }
#endif /* NO_TIMER */

#ifdef CDT_ONLY
  hullsize = delaunay();                          /* Triangulate the points. */
#else /* not CDT_ONLY */
  if (refine) {
    /* Read and reconstruct a mesh. */
#ifdef TRILIBRARY
    hullsize = reconstruct(in->trianglelist, in->triangleattributelist,
                           in->trianglearealist, in->numberoftriangles,
                           in->numberofcorners, in->numberoftriangleattributes,
                           in->segmentlist, in->segmentmarkerlist,
                           in->numberofsegments);
#else /* not TRILIBRARY */
    hullsize = reconstruct(inelefilename, areafilename, inpolyfilename,
                           polyfile);
#endif /* not TRILIBRARY */
  }
  else {
    hullsize = delaunay();                        /* Triangulate the points. */
  }
#endif /* not CDT_ONLY */

#ifndef NO_TIMER
  if (!quiet) {
    gettimeofday(&tv2, &tz);
    if (refine) {
      printf("Mesh reconstruction");
    }
    else {
      printf("Delaunay");
    }
    printf(" milliseconds:  %ld\n", 1000l * (tv2.tv_sec - tv1.tv_sec)
           + (tv2.tv_usec - tv1.tv_usec) / 1000l);
  }
#endif /* NO_TIMER */

  /* Ensure that no point can be mistaken for a triangular bounding */
  /*   box point in insertsite().                                   */
  infpoint1 = (point) NULL;
  infpoint2 = (point) NULL;
  infpoint3 = (point) NULL;

  if (useshelles) {
    checksegments = 1;                  /* Segments will be introduced next. */
    if (!refine) {
      /* Insert PSLG segments and/or convex hull segments. */
#ifdef TRILIBRARY
      insegments = formskeleton(in->segmentlist, in->segmentmarkerlist,
                                in->numberofsegments);
#else /* not TRILIBRARY */
      insegments = formskeleton(polyfile, inpolyfilename);
#endif /* not TRILIBRARY */
    }
  }

#ifndef NO_TIMER
  if (!quiet) {
    gettimeofday(&tv3, &tz);
    if (useshelles && !refine) {
      printf("Segment milliseconds:  %ld\n",
             1000l * (tv3.tv_sec - tv2.tv_sec) + (tv3.tv_usec - tv2.tv_usec) / 1000l);
    }
  }
#endif /* NO_TIMER */

  if (poly) {
#ifdef TRILIBRARY
    holearray = in->holelist;
    holes = in->numberofholes;
    regionarray = in->regionlist;
    regions = in->numberofregions;
#else /* not TRILIBRARY */
    readholes(polyfile, inpolyfilename, &holearray, &holes,
              &regionarray, &regions);
#endif /* not TRILIBRARY */
    if (!refine) {
      /* Carve out holes and concavities. */
      carveholes(holearray, holes, regionarray, regions);
    }
  }
  else {
    /* Without a PSLG, there can be no holes or regional attributes   */
    /*   or area constraints.  The following are set to zero to avoid */
    /*   an accidental free() later.                                  */
    holes = 0;
    regions = 0;
  }

#ifndef NO_TIMER
  if (!quiet) {
    gettimeofday(&tv4, &tz);
    if (poly && !refine) {
      printf("Hole milliseconds:  %ld\n", 1000l * (tv4.tv_sec - tv3.tv_sec)
             + (tv4.tv_usec - tv3.tv_usec) / 1000l);
    }
  }
#endif /* NO_TIMER */

#ifndef CDT_ONLY
  if (quality) {
    enforcequality();                 /* Enforce angle and area constraints. */
  }
#endif /* not CDT_ONLY */

#ifndef NO_TIMER
  if (!quiet) {
    gettimeofday(&tv5, &tz);
#ifndef CDT_ONLY
    if (quality) {
      printf("Quality milliseconds:  %ld\n",
             1000l * (tv5.tv_sec - tv4.tv_sec) + (tv5.tv_usec - tv4.tv_usec) / 1000l);
    }
#endif /* not CDT_ONLY */
  }
#endif /* NO_TIMER */

  /* Compute the number of edges. */
  edges = (3l * triangles.items + hullsize) / 2l;

  if (order > 1) {
    highorder();             /* Promote elements to higher polynomial order. */
  }
  if (!quiet) {
    printf("\n");
  }

#ifdef TRILIBRARY
  out->numberofpoints = points.items;
  out->numberofpointattributes = nextras;
  out->numberoftriangles = triangles.items;
  out->numberofcorners = (order + 1) * (order + 2) / 2;
  out->numberoftriangleattributes = eextras;
  out->numberofedges = edges;
  if (useshelles) {
    out->numberofsegments = shelles.items;
  }
  else {
    out->numberofsegments = hullsize;
  }
  if (vorout != (struct triangulateio *) NULL) {
    vorout->numberofpoints = triangles.items;
    vorout->numberofpointattributes = nextras;
    vorout->numberofedges = edges;
  }
#endif /* TRILIBRARY */
  /* If not using iteration numbers, don't write a .node file if one was */
  /*   read, because the original one would be overwritten!              */
  if (nonodewritten || (noiterationnum && readnodefile)) {
    if (!quiet) {
#ifdef TRILIBRARY
      printf("NOT writing points.\n");
#else /* not TRILIBRARY */
      printf("NOT writing a .node file.\n");
#endif /* not TRILIBRARY */
    }
    numbernodes();                 /* We must remember to number the points. */
  }
  else {
#ifdef TRILIBRARY
    writenodes(&out->pointlist, &out->pointattributelist,
               &out->pointmarkerlist);
#else /* not TRILIBRARY */
    writenodes(outnodefilename, argc, argv);      /* Numbers the points too. */
#endif /* TRILIBRARY */
  }
  if (noelewritten) {
    if (!quiet) {
#ifdef TRILIBRARY
      printf("NOT writing triangles.\n");
#else /* not TRILIBRARY */
      printf("NOT writing an .ele file.\n");
#endif /* not TRILIBRARY */
    }
  }
  else {
#ifdef TRILIBRARY
    writeelements(&out->trianglelist, &out->triangleattributelist);
#else /* not TRILIBRARY */
    writeelements(outelefilename, argc, argv);
#endif /* not TRILIBRARY */
  }
  /* The -c switch (convex switch) causes a PSLG to be written */
  /*   even if none was read.                                  */
  if (poly || convex) {
    /* If not using iteration numbers, don't overwrite the .poly file. */
    if (nopolywritten || noiterationnum) {
      if (!quiet) {
#ifdef TRILIBRARY
        printf("NOT writing segments.\n");
#else /* not TRILIBRARY */
        printf("NOT writing a .poly file.\n");
#endif /* not TRILIBRARY */
      }
    }
    else {
#ifdef TRILIBRARY
      writepoly(&out->segmentlist, &out->segmentmarkerlist);
      out->numberofholes = holes;
      out->numberofregions = regions;
      if (poly) {
        out->holelist = in->holelist;
        out->regionlist = in->regionlist;
      }
      else {
        out->holelist = (REAL *) NULL;
        out->regionlist = (REAL *) NULL;
      }
#else /* not TRILIBRARY */
      writepoly(outpolyfilename, holearray, holes, regionarray, regions, argc, argv);
#endif /* not TRILIBRARY */
    }
  }
#ifndef TRILIBRARY
#ifndef CDT_ONLY
  if (regions > 0) {
    free(regionarray);
  }
#endif /* not CDT_ONLY */
  if (holes > 0) {
    free(holearray);
  }
  if (geomview) {
    writeoff(offfilename, argc, argv);
  }
#endif /* not TRILIBRARY */
  if (edgesout) {
#ifdef TRILIBRARY
    writeedges(&out->edgelist, &out->edgemarkerlist);
#else /* not TRILIBRARY */
    writeedges(edgefilename, argc, argv);
#endif /* not TRILIBRARY */
  }
  if (voronoi) {
#ifdef TRILIBRARY
    writevoronoi(&vorout->pointlist, &vorout->pointattributelist,
                 &vorout->pointmarkerlist, &vorout->edgelist,
                 &vorout->edgemarkerlist, &vorout->normlist);
#else /* not TRILIBRARY */
    writevoronoi(vnodefilename, vedgefilename, argc, argv);
#endif /* not TRILIBRARY */
  }
  if (neighbors) {
#ifdef TRILIBRARY
    writeneighbors(&out->neighborlist);
#else /* not TRILIBRARY */
    writeneighbors(neighborfilename, argc, argv);
#endif /* not TRILIBRARY */
  }

  if (!quiet) {
#ifndef NO_TIMER
    gettimeofday(&tv6, &tz);
    printf("\nOutput milliseconds:  %ld\n",
           1000l * (tv6.tv_sec - tv5.tv_sec) + (tv6.tv_usec - tv5.tv_usec) / 1000l);
    printf("Total running milliseconds:  %ld\n",
           1000l * (tv6.tv_sec - tv0.tv_sec) + (tv6.tv_usec - tv0.tv_usec) / 1000l);
#endif /* NO_TIMER */

    statistics();
  }

#ifndef REDUCED
  if (docheck) {
    checkmesh();
    checkdelaunay();
  }
#endif /* not REDUCED */

  triangledeinit();
#ifndef TRILIBRARY
  return 0;
#endif /* not TRILIBRARY */
}