1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401
|
<!DOCTYPE html
PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Presentation Markup</title><style type="text/css">
.egmeta {
color:#5555AA;font-style:italic;font-family:serif;font-weight:bold;
}
table.syntax {
font-size: 75%;
background-color: #DDDDDD;
border: thin solid;
}
table.syntax td {
border: solid thin;
}
table.syntax th {
text-align: left;
}
table.attributes td { padding-left:0.5em; padding-right:0.5em; }
table.attributes td.attname { white-space:nowrap; vertical-align:top;}
table.attributes td.attdesc { background-color:#F0F0FF; padding-left:2em; padding-right:2em}
th.uname {font-size: 50%; text-align:left;}
code { font-family: monospace; }
div.constraint,
div.issue,
div.note,
div.notice { margin-left: 2em; }
li p { margin-top: 0.3em;
margin-bottom: 0.3em; }
div.exampleInner pre { margin-left: 1em;
margin-top: 0em; margin-bottom: 0em}
div.exampleOuter {border: 4px double gray;
margin: 0em; padding: 0em}
div.exampleInner { background-color: #d5dee3;
border-top-width: 4px;
border-top-style: double;
border-top-color: #d3d3d3;
border-bottom-width: 4px;
border-bottom-style: double;
border-bottom-color: #d3d3d3;
padding: 4px; margin: 0em }
div.exampleWrapper { margin: 4px }
div.exampleHeader { font-weight: bold;
margin: 4px}
a.mainindex {font-weight: bold;}
li.sitem {list-style-type: none;}
.error { color: red }
div.mathml-example {border:solid thin black;
padding: 0.5em;
margin: 0.5em 0 0.5em 0;
}
div.strict-mathml-example {border:solid thin black;
padding: 0.5em;
margin: 0.5em 0 0.5em 0;
}
div.strict-mathml-example h5 {
margin-top: -0.3em;
margin-bottom: -0.5em;}
var.meta {background-color:green}
var.transmeta {background-color:red}
pre.mathml {padding: 0.5em;
background-color: #FFFFDD;}
pre.mathml-fragment {padding: 0.5em;
background-color: #FFFFDD;}
pre.strict-mathml {padding: 0.5em;
background-color: #FFFFDD;}
.minitoc { border-style: solid;
border-color: #0050B2;
border-width: 1px ;
padding: 0.3em;}
.attention { border-style: solid;
border-width: 1px ;
color: #5D0091;
background: #F9F5DE;
border-color: red;
margin-left: 1em;
margin-right: 1em;
margin-top: 0.25em;
margin-bottom: 0.25em; }
.attribute-Name { background: #F9F5C0; }
.method-Name { background: #C0C0F9; }
.IDL-definition { border-style: solid;
border-width: 1px ;
color: #001000;
background: #E0FFE0;
border-color: #206020;
margin-left: 1em;
margin-right: 1em;
margin-top: 0.25em;
margin-bottom: 0.25em; }
.baseline {vertical-align: baseline}
#eqnoc1 {width: 10%}
#eqnoc2 {width: 80%; text-align: center; }
#eqnoc3 {width: 10%; text-align: right; }
div.div1 {margin-bottom: 1em;}
.h3style {
text-align: left;
font-family: sans-serif;
font-weight: normal;
color: #0050B2;
font-size: 125%;
}
h4 { text-align: left;
font-family: sans-serif;
font-weight: normal;
color: #0050B2; }
h5 { text-align: left;
font-family: sans-serif;
font-weight: bold;
color: #0050B2; }
th {background: #E0FFE0;}
p, blockquote, h4 { font-family: sans-serif; }
dt, dd, dl, ul, li { font-family: sans-serif; }
pre, code { font-family: monospace }
a.termref {
text-decoration: none;
color: black;
}
sub.diff-link {background-color: black; color: white; font-family:
sans-serif; font-weight: bold;}
.diff-add { background-color: #FFFF99}
.diff-del { background-color: #FF9999; text-decoration: line-through }
.diff-chg { background-color: #99FF99 }
.diff-off { }
.mathml-render {
font-family: serif;
font-size: 130%;
border: solid 4px green;
padding-left: 1em;
padding-right: 1em;
}
</style><link rel="stylesheet" type="text/css" href="../../../StyleSheets/TR/W3C-REC.css">
</head>
<body>
<h1><a name="presm" id="presm"></a>3 Presentation Markup
</h1>
<!-- TOP NAVIGATION BAR -->
<div class="minitoc">
Overview: <a href="Overview-d.html">Mathematical Markup Language (MathML) Version 3.0</a><br>
Previous: 2 <a href="chapter2-d.html">MathML Fundamentals</a><br>
Next: 4 <a href="chapter4-d.html">Content Markup</a><br><br>3 <a href="chapter3-d.html">Presentation Markup</a><br> 3.1 <a href="chapter3-d.html#presm.intro">Introduction</a><br> 3.1.1 <a href="chapter3-d.html#id.3.1.1">What Presentation Elements Represent</a><br> 3.1.2 <a href="chapter3-d.html#id.3.1.2">Terminology Used In This Chapter</a><br> 3.1.2.1 <a href="chapter3-d.html#id.3.1.2.1">Types of presentation elements</a><br> 3.1.2.2 <a href="chapter3-d.html#id.3.1.2.2">Terminology for other classes of elements and their relationships</a><br> 3.1.3 <a href="chapter3-d.html#presm.reqarg">Required Arguments</a><br> 3.1.3.1 <a href="chapter3-d.html#presm.inferredmrow">Inferred <code><mrow></code>s</a><br> 3.1.3.2 <a href="chapter3-d.html#id.3.1.3.2">Table of argument requirements</a><br> 3.1.4 <a href="chapter3-d.html#id.3.1.4">Elements with Special Behaviors</a><br> 3.1.5 <a href="chapter3-d.html#presm.bidi">Directionality</a><br> 3.1.5.1 <a href="chapter3-d.html#presm.bidi.math">Overall Directionality of Mathematics Formulas</a><br> 3.1.5.2 <a href="chapter3-d.html#presm.bidi.token">Bidirectional Layout in Token Elements</a><br> 3.1.6 <a href="chapter3-d.html#presm.scriptlevel">Displaystyle and Scriptlevel</a><br> 3.1.7 <a href="chapter3-d.html#presm.linebreaking">Linebreaking of Expressions</a><br> 3.1.7.1 <a href="chapter3-d.html#id.3.1.7.1">Control of Linebreaks</a><br> 3.1.7.2 <a href="chapter3-d.html#presm.lbalgorithm">Automatic Linebreaking Algorithm (Informative)</a><br> 3.1.7.3 <a href="chapter3-d.html#presm.inline.lbalgorithm">Linebreaking Algorithm for Inline Expressions (Informative)</a><br> 3.1.8 <a href="chapter3-d.html#presm.warnfinetuning">Warning about fine-tuning of presentation</a><br> 3.1.8.1 <a href="chapter3-d.html#presm.warntweaking">Warning: non-portability of tweaking</a><br> 3.1.8.2 <a href="chapter3-d.html#presm.warnspacing">Warning: spacing should not be used to convey meaning</a><br> 3.1.9 <a href="chapter3-d.html#presm.summary">Summary of Presentation Elements</a><br> 3.1.9.1 <a href="chapter3-d.html#id.3.1.9.1">Token Elements</a><br> 3.1.9.2 <a href="chapter3-d.html#id.3.1.9.2">General Layout Schemata</a><br> 3.1.9.3 <a href="chapter3-d.html#id.3.1.9.3">Script and Limit Schemata</a><br> 3.1.9.4 <a href="chapter3-d.html#id.3.1.9.4">Tables and Matrices</a><br> 3.1.9.5 <a href="chapter3-d.html#id.3.1.9.5">Elementary Math Layout</a><br> 3.1.9.6 <a href="chapter3-d.html#id.3.1.9.6">Enlivening Expressions</a><br> 3.1.10 <a href="chapter3-d.html#presm.presatt">Mathematics style attributes common to presentation elements</a><br> 3.2 <a href="chapter3-d.html#presm.tokel">Token Elements</a><br> 3.2.1 <a href="chapter3-d.html#presm.tokenchars">MathML characters in token elements</a><br> 3.2.1.1 <a href="chapter3-d.html#presm.symbolchars">Alphanumeric symbol characters</a><br> 3.2.1.2 <a href="chapter3-d.html#presm.mglyph"> <code><mglyph/></code></a><br> 3.2.2 <a href="chapter3-d.html#presm.commatt">Mathematics style attributes common to token elements</a><br> 3.2.2.1 <a href="chapter3-d.html#presm.deprecatt">Deprecated style attributes on token elements</a><br> 3.2.3 <a href="chapter3-d.html#presm.mi">Identifier <code><mi></code></a><br> 3.2.3.1 <a href="chapter3-d.html#id.3.2.3.1">Description</a><br> 3.2.3.2 <a href="chapter3-d.html#id.3.2.3.2">Attributes</a><br> 3.2.3.3 <a href="chapter3-d.html#id.3.2.3.3">Examples</a><br> 3.2.4 <a href="chapter3-d.html#presm.mn">Number <code><mn></code></a><br> 3.2.4.1 <a href="chapter3-d.html#id.3.2.4.1">Description</a><br> 3.2.4.2 <a href="chapter3-d.html#id.3.2.4.2">Attributes</a><br> 3.2.4.3 <a href="chapter3-d.html#id.3.2.4.3">Examples</a><br> 3.2.4.4 <a href="chapter3-d.html#id.3.2.4.4">Numbers that should not be written
using <code><mn></code> alone</a><br> 3.2.5 <a href="chapter3-d.html#presm.mo">Operator, Fence, Separator or Accent
<code><mo></code></a><br> 3.2.5.1 <a href="chapter3-d.html#id.3.2.5.1">Description</a><br> 3.2.5.2 <a href="chapter3-d.html#id.3.2.5.2">Attributes</a><br> 3.2.5.3 <a href="chapter3-d.html#id.3.2.5.3">Examples with ordinary operators</a><br> 3.2.5.4 <a href="chapter3-d.html#id.3.2.5.4">Examples with fences and separators</a><br> 3.2.5.5 <a href="chapter3-d.html#presm.invisibleops">Invisible operators</a><br> 3.2.5.6 <a href="chapter3-d.html#id.3.2.5.6">Names for other special operators</a><br> 3.2.5.7 <a href="chapter3-d.html#id.3.2.5.7">Detailed rendering rules for <code><mo></code> elements</a><br> 3.2.5.8 <a href="chapter3-d.html#presm.op.stretch">Stretching of operators, fences and accents</a><br> 3.2.5.9 <a href="chapter3-d.html#presm.mo.linebreaks">Examples of Linebreaking</a><br> 3.2.6 <a href="chapter3-d.html#presm.mtext">Text <code><mtext></code></a><br> 3.2.6.1 <a href="chapter3-d.html#id.3.2.6.1">Description</a><br> 3.2.6.2 <a href="chapter3-d.html#id.3.2.6.2">Attributes</a><br> 3.2.6.3 <a href="chapter3-d.html#id.3.2.6.3">Examples</a><br> 3.2.6.4 <a href="chapter3-d.html#presm.mixtextmath">Mixing text and mathematics</a><br> 3.2.7 <a href="chapter3-d.html#presm.mspace">Space <code><mspace/></code></a><br> 3.2.7.1 <a href="chapter3-d.html#id.3.2.7.1">Description</a><br> 3.2.7.2 <a href="chapter3-d.html#id.3.2.7.2">Attributes</a><br> 3.2.7.3 <a href="chapter3-d.html#id.3.2.7.3">Examples</a><br> 3.2.7.4 <a href="chapter3-d.html#id.3.2.7.4">Definition of space-like elements</a><br> 3.2.7.5 <a href="chapter3-d.html#id.3.2.7.5">Legal grouping of space-like elements</a><br> 3.2.8 <a href="chapter3-d.html#presm.ms">String Literal <code><ms></code></a><br> 3.2.8.1 <a href="chapter3-d.html#id.3.2.8.1">Description</a><br> 3.2.8.2 <a href="chapter3-d.html#id.3.2.8.2">Attributes</a><br> 3.3 <a href="chapter3-d.html#presm.genlayout">General Layout Schemata</a><br> 3.3.1 <a href="chapter3-d.html#presm.mrow">Horizontally Group Sub-Expressions
<code><mrow></code></a><br> 3.3.1.1 <a href="chapter3-d.html#id.3.3.1.1">Description</a><br> 3.3.1.2 <a href="chapter3-d.html#id.3.3.1.2">Attributes</a><br> 3.3.1.3 <a href="chapter3-d.html#id.3.3.1.3">Proper grouping of sub-expressions using <code><mrow></code></a><br> 3.3.1.4 <a href="chapter3-d.html#id.3.3.1.4">Examples</a><br> 3.3.2 <a href="chapter3-d.html#presm.mfrac">Fractions <code><mfrac></code></a><br> 3.3.2.1 <a href="chapter3-d.html#id.3.3.2.1">Description</a><br> 3.3.2.2 <a href="chapter3-d.html#id.3.3.2.2">Attributes</a><br> 3.3.2.3 <a href="chapter3-d.html#id.3.3.2.3">Examples</a><br> 3.3.3 <a href="chapter3-d.html#presm.mroot">Radicals <code><msqrt></code>, <code><mroot></code></a><br> 3.3.3.1 <a href="chapter3-d.html#id.3.3.3.1">Description</a><br> 3.3.3.2 <a href="chapter3-d.html#id.3.3.3.2">Attributes</a><br> 3.3.4 <a href="chapter3-d.html#presm.mstyle">Style Change <code><mstyle></code></a><br> 3.3.4.1 <a href="chapter3-d.html#id.3.3.4.1">Description</a><br> 3.3.4.2 <a href="chapter3-d.html#presm.mstyle.attrs">Attributes</a><br> 3.3.4.3 <a href="chapter3-d.html#id.3.3.4.3">Examples</a><br> 3.3.5 <a href="chapter3-d.html#presm.merror">Error Message <code><merror></code></a><br> 3.3.5.1 <a href="chapter3-d.html#id.3.3.5.1">Description</a><br> 3.3.5.2 <a href="chapter3-d.html#id.3.3.5.2">Attributes</a><br> 3.3.5.3 <a href="chapter3-d.html#id.3.3.5.3">Example</a><br> 3.3.6 <a href="chapter3-d.html#presm.mpadded">Adjust Space Around Content
<code><mpadded></code></a><br> 3.3.6.1 <a href="chapter3-d.html#id.3.3.6.1">Description</a><br> 3.3.6.2 <a href="chapter3-d.html#id.3.3.6.2">Attributes</a><br> 3.3.6.3 <a href="chapter3-d.html#id.3.3.6.3">Meanings of attributes</a><br> 3.3.7 <a href="chapter3-d.html#presm.mphantom">Making Sub-Expressions Invisible <code><mphantom></code></a><br> 3.3.7.1 <a href="chapter3-d.html#id.3.3.7.1">Description</a><br> 3.3.7.2 <a href="chapter3-d.html#id.3.3.7.2">Attributes</a><br> 3.3.7.3 <a href="chapter3-d.html#id.3.3.7.3">Examples</a><br> 3.3.8 <a href="chapter3-d.html#presm.mfenced">Expression Inside Pair of Fences
<code><mfenced></code></a><br> 3.3.8.1 <a href="chapter3-d.html#id.3.3.8.1">Description</a><br> 3.3.8.2 <a href="chapter3-d.html#id.3.3.8.2">Attributes</a><br> 3.3.8.3 <a href="chapter3-d.html#id.3.3.8.3">Examples</a><br> 3.3.9 <a href="chapter3-d.html#presm.menclose">Enclose Expression Inside Notation
<code><menclose></code></a><br> 3.3.9.1 <a href="chapter3-d.html#id.3.3.9.1">Description</a><br> 3.3.9.2 <a href="chapter3-d.html#id.3.3.9.2">Attributes</a><br> 3.3.9.3 <a href="chapter3-d.html#id.3.3.9.3">Examples</a><br> 3.4 <a href="chapter3-d.html#presm.scrlim">Script and Limit Schemata</a><br> 3.4.1 <a href="chapter3-d.html#presm.msub">Subscript <code><msub></code></a><br> 3.4.1.1 <a href="chapter3-d.html#id.3.4.1.1">Description</a><br> 3.4.1.2 <a href="chapter3-d.html#id.3.4.1.2">Attributes</a><br> 3.4.2 <a href="chapter3-d.html#presm.msup">Superscript <code><msup></code></a><br> 3.4.2.1 <a href="chapter3-d.html#id.3.4.2.1">Description</a><br> 3.4.2.2 <a href="chapter3-d.html#id.3.4.2.2">Attributes</a><br> 3.4.3 <a href="chapter3-d.html#presm.msubsup">Subscript-superscript Pair <code><msubsup></code></a><br> 3.4.3.1 <a href="chapter3-d.html#id.3.4.3.1">Description</a><br> 3.4.3.2 <a href="chapter3-d.html#presm.subsupatt">Attributes</a><br> 3.4.3.3 <a href="chapter3-d.html#id.3.4.3.3">Examples</a><br> 3.4.4 <a href="chapter3-d.html#presm.munder">Underscript <code><munder></code></a><br> 3.4.4.1 <a href="chapter3-d.html#id.3.4.4.1">Description</a><br> 3.4.4.2 <a href="chapter3-d.html#id.3.4.4.2">Attributes</a><br> 3.4.4.3 <a href="chapter3-d.html#id.3.4.4.3">Examples</a><br> 3.4.5 <a href="chapter3-d.html#presm.mover">Overscript <code><mover></code></a><br> 3.4.5.1 <a href="chapter3-d.html#id.3.4.5.1">Description</a><br> 3.4.5.2 <a href="chapter3-d.html#id.3.4.5.2">Attributes</a><br> 3.4.5.3 <a href="chapter3-d.html#id.3.4.5.3">Examples</a><br> 3.4.6 <a href="chapter3-d.html#presm.munderover">Underscript-overscript Pair
<code><munderover></code></a><br> 3.4.6.1 <a href="chapter3-d.html#id.3.4.6.1">Description</a><br> 3.4.6.2 <a href="chapter3-d.html#id.3.4.6.2">Attributes</a><br> 3.4.6.3 <a href="chapter3-d.html#id.3.4.6.3">Examples</a><br> 3.4.7 <a href="chapter3-d.html#presm.mmultiscripts">Prescripts and Tensor Indices
<code><mmultiscripts></code></a><br> 3.4.7.1 <a href="chapter3-d.html#id.3.4.7.1">Description</a><br> 3.4.7.2 <a href="chapter3-d.html#id.3.4.7.2">Attributes</a><br> 3.4.7.3 <a href="chapter3-d.html#id.3.4.7.3">Examples</a><br> 3.5 <a href="chapter3-d.html#presm.tabmat">Tabular Math</a><br> 3.5.1 <a href="chapter3-d.html#presm.mtable">Table or Matrix
<code><mtable></code></a><br> 3.5.1.1 <a href="chapter3-d.html#id.3.5.1.1">Description</a><br> 3.5.1.2 <a href="chapter3-d.html#presm.mtable.attrs">Attributes</a><br> 3.5.1.3 <a href="chapter3-d.html#id.3.5.1.3">Examples</a><br> 3.5.2 <a href="chapter3-d.html#presm.mtr">Row in Table or Matrix <code><mtr></code></a><br> 3.5.2.1 <a href="chapter3-d.html#id.3.5.2.1">Description</a><br> 3.5.2.2 <a href="chapter3-d.html#id.3.5.2.2">Attributes</a><br> 3.5.3 <a href="chapter3-d.html#presm.mlabeledtr">Labeled Row in Table or Matrix
<code><mlabeledtr></code></a><br> 3.5.3.1 <a href="chapter3-d.html#id.3.5.3.1">Description</a><br> 3.5.3.2 <a href="chapter3-d.html#id.3.5.3.2">Attributes</a><br> 3.5.3.3 <a href="chapter3-d.html#id.3.5.3.3">Equation Numbering</a><br> 3.5.4 <a href="chapter3-d.html#presm.mtd">Entry in Table or Matrix <code><mtd></code></a><br> 3.5.4.1 <a href="chapter3-d.html#id.3.5.4.1">Description</a><br> 3.5.4.2 <a href="chapter3-d.html#presm.mtdatts">Attributes</a><br> 3.5.5 <a href="chapter3-d.html#presm.malign">Alignment Markers
<code><maligngroup/></code>, <code><malignmark/></code></a><br> 3.5.5.1 <a href="chapter3-d.html#id.3.5.5.1">Description</a><br> 3.5.5.2 <a href="chapter3-d.html#id.3.5.5.2">Specifying alignment groups</a><br> 3.5.5.3 <a href="chapter3-d.html#id.3.5.5.3">Table cells that are not divided into alignment groups</a><br> 3.5.5.4 <a href="chapter3-d.html#id.3.5.5.4">Specifying alignment points using <code><malignmark/></code></a><br> 3.5.5.5 <a href="chapter3-d.html#id.3.5.5.5"><code><malignmark/></code> Attributes</a><br> 3.5.5.6 <a href="chapter3-d.html#id.3.5.5.6"><code><maligngroup/></code> Attributes</a><br> 3.5.5.7 <a href="chapter3-d.html#id.3.5.5.7">Inheritance of groupalign values</a><br> 3.5.5.8 <a href="chapter3-d.html#id.3.5.5.8">MathML representation of an alignment example</a><br> 3.5.5.9 <a href="chapter3-d.html#id.3.5.5.9">Further details of alignment elements</a><br> 3.5.5.10 <a href="chapter3-d.html#id.3.5.5.10">A simple alignment algorithm</a><br> 3.6 <a href="chapter3-d.html#presm.elementary">Elementary Math</a><br> 3.6.1 <a href="chapter3-d.html#presm.mstack">Stacks of Characters <code><mstack></code></a><br> 3.6.1.1 <a href="chapter3-d.html#id.3.6.1.1">Description</a><br> 3.6.1.2 <a href="chapter3-d.html#id.3.6.1.2">Attributes</a><br> 3.6.2 <a href="chapter3-d.html#presm.mlongdiv">Long Division <code><mlongdiv></code></a><br> 3.6.2.1 <a href="chapter3-d.html#id.3.6.2.1">Description</a><br> 3.6.2.2 <a href="chapter3-d.html#presm.mlongdiv.attrs">Attributes</a><br> 3.6.3 <a href="chapter3-d.html#presm.msgroup">Group Rows with Similiar Positions <code><msgroup></code></a><br> 3.6.3.1 <a href="chapter3-d.html#id.3.6.3.1">Description</a><br> 3.6.3.2 <a href="chapter3-d.html#id.3.6.3.2">Attributes</a><br> 3.6.4 <a href="chapter3-d.html#presm.msrow">Rows in Elementary Math <code><msrow></code></a><br> 3.6.4.1 <a href="chapter3-d.html#id.3.6.4.1">Description</a><br> 3.6.4.2 <a href="chapter3-d.html#id.3.6.4.2">Attributes</a><br> 3.6.5 <a href="chapter3-d.html#presm.mscarries">Carries, Borrows, and Crossouts <code><mscarries></code></a><br> 3.6.5.1 <a href="chapter3-d.html#id.3.6.5.1">Description</a><br> 3.6.5.2 <a href="chapter3-d.html#id.3.6.5.2">Attributes</a><br> 3.6.6 <a href="chapter3-d.html#presm.mscarry">A Single Carry <code><mscarry></code></a><br> 3.6.6.1 <a href="chapter3-d.html#id.3.6.6.1">Description</a><br> 3.6.6.2 <a href="chapter3-d.html#id.3.6.6.2">Attributes</a><br> 3.6.7 <a href="chapter3-d.html#presm.msline">Horizontal Line <code><msline/></code></a><br> 3.6.7.1 <a href="chapter3-d.html#id.3.6.7.1">Description</a><br> 3.6.7.2 <a href="chapter3-d.html#id.3.6.7.2">Attributes</a><br> 3.6.8 <a href="chapter3-d.html#presm.elemmath.examples">Elementary Math Examples</a><br> 3.6.8.1 <a href="chapter3-d.html#presm.addsub">Addition and Subtraction</a><br> 3.6.8.2 <a href="chapter3-d.html#presm.mult">Multiplication</a><br> 3.6.8.3 <a href="chapter3-d.html#presm.mlongdiv.ex">Long Division</a><br> 3.6.8.4 <a href="chapter3-d.html#presm.repeatdec">Repeating decimal</a><br> 3.7 <a href="chapter3-d.html#presm.enliven">Enlivening Expressions</a><br> 3.7.1 <a href="chapter3-d.html#presm.maction">Bind Action to Sub-Expression
<code><maction></code></a><br> 3.7.1.1 <a href="chapter3-d.html#id.3.7.1.1">Attributes</a><br> 3.8 <a href="chapter3-d.html#presm.semantics">Semantics and Presentation</a><br></div>
<div class="div1">
<div class="div2">
<h2><a name="presm.intro" id="presm.intro"></a>3.1 Introduction
</h2>
<p>This chapter specifies the "presentation" elements of
MathML, which can be used to describe the layout structure of mathematical
notation.
</p>
<div class="div3">
<h3><a name="id.3.1.1" id="id.3.1.1"></a>3.1.1 What Presentation Elements Represent
</h3>
<p>Presentation elements correspond to the "constructors"
of traditional mathematical notation — that is, to the basic
kinds of symbols and expression-building structures out of which any
particular piece of traditional mathematical notation is built.
Because of the importance of traditional visual notation, the
descriptions of the notational constructs the elements represent are
usually given here in visual terms. However, the elements are
medium-independent in the sense that they have been designed to
contain enough information for good spoken renderings as well. Some
attributes of these elements may make sense only for visual media, but
most attributes can be treated in an analogous way in audio as well
(for example, by a correspondence between time duration and horizontal
extent).
</p>
<p>MathML presentation elements only suggest (i.e. do not require)
specific ways of rendering in order to allow for medium-dependent
rendering and for individual preferences of style. This specification
describes suggested visual rendering rules in some detail, but a
particular MathML renderer is free to use its own rules as long as its
renderings are intelligible.
</p>
<p>The presentation elements are meant to express the syntactic
structure of mathematical notation in much the same way as titles, sections,
and paragraphs capture the higher-level syntactic structure of a
textual document. Because of this, a single row of identifiers and operators
will often be represented by multiple nested <code>mrow</code> elements rather than
a single <code>mrow</code>. For example, "<var>x</var> + <var>a</var> /
<var>b</var>" typically is represented as:
</p><pre class="mathml">
<mrow>
<mi> x </mi>
<mo> + </mo>
<mrow>
<mi> a </mi>
<mo> / </mo>
<mi> b </mi>
</mrow>
</mrow>
</pre><p>Similarly, superscripts are attached to the full expression constituting
their base rather than to the just preceding character. This
structure permits better-quality rendering of mathematics, especially when
details of the rendering environment, such as display widths, are not
known ahead of time to the document author. It also greatly eases automatic
interpretation of the represented mathematical structures.
</p>
<p>Certain MathML characters are used
to name identifiers or operators that in traditional notation render the
same as other symbols or usually rendered invisibly. For example, the entities
<code>&DifferentialD;</code>, <code>&ExponentialE;</code>, and
<code>&ImaginaryI;</code> denote notational symbols semantically distinct from visually
identical letters used as simple variables. Likewise, the entities <code>&InvisibleTimes;</code>,
<code>&ApplyFunction;</code>,
<code>&InvisibleComma;</code> and the character U+2064
(INVISIBLE PLUS) usually render invisibly but represent significant information.
These entities have distinct spoken renderings, may influence visual linebreaking and spacing, and may
effect the evaluation or meaning of particular expressions. Accordingly, authors should use these entities wherever they are
applicable.
For instance, the expression represented visually as
"<var>f</var>(<var>x</var>)" would usually be spoken in English as
"<var>f</var> of <var>x</var>" rather than just
"<var>f</var> <var>x</var>". MathML conveys this meaning by using
the <code>&ApplyFunction;</code> operator after the
"<var>f</var>", which, in this case, can be aurally rendered as
"of".
</p>
<p>The complete list of MathML entities is described in <a href="appendixg-d.html#Entities">[Entities]</a>.
</p>
</div>
<div class="div3">
<h3><a name="id.3.1.2" id="id.3.1.2"></a>3.1.2 Terminology Used In This Chapter
</h3>
<p>It is strongly recommended that, before reading the present
chapter, one read <a href="chapter2-d.html#fund.syntax">Section 2.1 MathML Syntax and Grammar</a> on MathML syntax and
grammar, which contains important information on MathML notations and
conventions. In particular, in this chapter it is assumed that the
reader has an understanding of basic XML terminology described in
<a href="chapter2-d.html#fund.xmlsyntax">Section 2.1.3 Children versus Arguments</a>, and the attribute value notations and
conventions described in <a href="chapter2-d.html#fund.attval">Section 2.1.5 MathML Attribute Values</a>.
</p>
<p>The remainder of this section introduces MathML-specific
terminology and conventions used in this chapter.
</p>
<div class="div4">
<h4><a name="id.3.1.2.1" id="id.3.1.2.1"></a>3.1.2.1 Types of presentation elements
</h4>
<p>The presentation elements are divided into two classes.
<a href="chapter3-d.html#presm.tokel"><em>Token elements</em></a>
represent individual symbols, names, numbers, labels, etc.
<em>Layout schemata</em> build expressions out of parts and can have
only elements as content (except for whitespace, which they ignore).
These are subdivided into
<a href="chapter3-d.html#presm.genlayout">General Layout</a>,
<a href="chapter3-d.html#presm.scrlim">Script and Limit</a>,
<a href="chapter3-d.html#presm.tabmat">Tabular Math</a> and
<a href="chapter3-d.html#presm.elementary">Elementary Math</a> schemata.
There
are also a few empty elements used only in conjunction with certain layout
schemata.
</p>
<p>All individual "symbols" in a mathematical expression should be
represented by MathML token elements. The primary MathML token element
types are identifiers (e.g. variables or function names), numbers, and
operators (including fences, such as parentheses, and separators, such
as commas). There are also token elements used to represent text or
whitespace that has more aesthetic than mathematical significance
and other elements representing "string literals" for compatibility with
computer algebra systems. Note that although a token element
represents a single meaningful "symbol" (name, number, label,
mathematical symbol, etc.), such symbols may be comprised of more than
one character. For example <code>sin</code> and <code>24</code> are
represented by the single tokens <code><mi>sin</mi></code>
and <code><mn>24</mn></code> respectively.
</p>
<p>In traditional mathematical notation, expressions are recursively
constructed out of smaller expressions, and ultimately out of single
symbols, with the parts grouped and positioned using one of a small
set of notational structures, which can be thought of as "expression
constructors". In MathML, expressions are constructed in the same way,
with the layout schemata playing the role of the expression
constructors. The layout schemata specify the way in which
sub-expressions are built into larger expressions. The terminology
derives from the fact that each layout schema corresponds to a
different way of "laying out" its sub-expressions to form a larger
expression in traditional mathematical typesetting.
</p>
</div>
<div class="div4">
<h4><a name="id.3.1.2.2" id="id.3.1.2.2"></a>3.1.2.2 Terminology for other classes of elements and their relationships
</h4>
<p>The terminology used in this chapter for special classes of elements, and for
relationships between elements, is as follows: The <em>presentation elements</em> are
the MathML elements defined in this chapter. These elements are listed in <a href="chapter3-d.html#presm.summary">Section 3.1.9 Summary of Presentation Elements</a>. The <em>content elements</em> are the MathML elements defined
in <a href="chapter4-d.html">Chapter 4 Content Markup</a>.
</p>
<p>A MathML <em>expression</em> is a single instance of any of the
presentation elements with the exception of the empty elements <code>none</code> or <code>mprescripts</code>, or is
a single instance of any of the content elements which are allowed as
content of presentation elements (described in <a href="chapter5-d.html#mixing.cminpm">Section 5.3.2 Content Markup in Presentation Markup</a>). A <em>sub-expression</em> of an expression
<var>E</var> is any MathML expression that is part of the content of
<var>E</var>, whether <em>directly</em> or <em>indirectly</em>,
i.e. whether it is a "child" of <var>E</var> or not.
</p>
<p>Since layout schemata attach special meaning to the number and/or
positions of their children, a child of a layout schema is also called
an <em>argument</em> of that element. As a consequence of the
above definitions, the content of a layout schema consists exactly of
a sequence of zero or more elements that are its
arguments.
</p>
</div>
</div>
<div class="div3">
<h3><a name="presm.reqarg" id="presm.reqarg"></a>3.1.3 Required Arguments
</h3>
<p>Many of the elements described herein require a specific number of
arguments (always 1, 2, or 3). In the detailed descriptions of
element syntax given below, the number of required arguments is
implicitly indicated by giving names for the arguments at various
positions. A few elements have additional requirements on the number
or type of arguments, which are described with the individual
element. For example, some elements accept sequences of zero or more
arguments — that is, they are allowed to occur with no arguments
at all.
</p>
<p>Note that MathML elements encoding rendered space <em>do</em>
count as arguments of the elements in which they appear. See <a href="chapter3-d.html#presm.mspace">Section 3.2.7 Space <code><mspace/></code></a> for a discussion of the proper use of such
space-like elements.
</p>
<div class="div4">
<h4><a name="presm.inferredmrow" id="presm.inferredmrow"></a>3.1.3.1 Inferred <code><mrow></code>s
</h4>
<p>The elements listed in the following table as requiring 1*
argument (<code>msqrt</code>, <code>mstyle</code>, <code>merror</code>,
<code>mpadded</code>, <code>mphantom</code>, <code>menclose</code>,
<code>mtd</code>, <code>mscarry</code>,
and <code>math</code>)
conceptually accept a single argument,
but actually accept any number of children.
If the number of children is 0 or is more than 1, they treat their contents
as a single <em>inferred</em> <code>mrow</code> formed from all their children,
and treat this <code>mrow</code> as the argument.
</p>
<p>For example,
</p><pre class="mathml-fragment">
<mtd>
</mtd>
</pre><p>
is treated as if it were
</p><pre class="mathml-fragment">
<mtd>
<mrow>
</mrow>
</mtd>
</pre><p>
and
</p><pre class="mathml">
<msqrt>
<mo> - </mo>
<mn> 1 </mn>
</msqrt>
</pre><p>
is treated as if it were
</p><pre class="mathml">
<msqrt>
<mrow>
<mo> - </mo>
<mn> 1 </mn>
</mrow>
</msqrt>
</pre><p>This feature allows MathML data not to contain (and its authors to
leave out) many <code>mrow</code> elements that would otherwise be
necessary.
</p>
</div>
<div class="div4">
<h4><a name="id.3.1.3.2" id="id.3.1.3.2"></a>3.1.3.2 Table of argument requirements
</h4>
<p>For convenience, here is a table of each element's argument count
requirements and the roles of individual arguments when these are
distinguished. An argument count of 1* indicates an inferred <code>mrow</code> as described above.
Although the <code>math</code> element is
not a presentation element, it is listed below for completeness.
</p>
<table id="presm.table-reqarg" border="1">
<thead>
<tr>
<th>Element</th>
<th>Required argument count</th>
<th>Argument roles (when these differ by position)</th>
</tr>
</thead>
<tbody>
<tr>
<td><a href="chapter3-d.html#presm.mrow"><code>mrow</code></a></td>
<td>0 or more</td>
<td></td>
</tr>
<tr>
<td><a href="chapter3-d.html#presm.mfrac"><code>mfrac</code></a></td>
<td>2</td>
<td><em>numerator</em> <em>denominator</em></td>
</tr>
<tr>
<td><a href="chapter3-d.html#presm.mroot"><code>msqrt</code></a></td>
<td>1*</td>
<td></td>
</tr>
<tr>
<td><a href="chapter3-d.html#presm.mroot"><code>mroot</code></a></td>
<td>2</td>
<td><em>base</em> <em>index</em></td>
</tr>
<tr>
<td><a href="chapter3-d.html#presm.mstyle"><code>mstyle</code></a></td>
<td>1*</td>
<td></td>
</tr>
<tr>
<td><a href="chapter3-d.html#presm.merror"><code>merror</code></a></td>
<td>1*</td>
<td></td>
</tr>
<tr>
<td><a href="chapter3-d.html#presm.mpadded"><code>mpadded</code></a></td>
<td>1*</td>
<td></td>
</tr>
<tr>
<td><a href="chapter3-d.html#presm.mphantom"><code>mphantom</code></a></td>
<td>1*</td>
<td></td>
</tr>
<tr>
<td><a href="chapter3-d.html#presm.mfenced"><code>mfenced</code></a></td>
<td>0 or more</td>
<td></td>
</tr>
<tr>
<td><a href="chapter3-d.html#presm.menclose"><code>menclose</code></a></td>
<td>1*</td>
<td></td>
</tr>
<tr>
<td><a href="chapter3-d.html#presm.msub"><code>msub</code></a></td>
<td>2</td>
<td><em>base</em> <em>subscript</em></td>
</tr>
<tr>
<td><a href="chapter3-d.html#presm.msup"><code>msup</code></a></td>
<td>2</td>
<td><em>base</em> <em>superscript</em></td>
</tr>
<tr>
<td><a href="chapter3-d.html#presm.msubsup"><code>msubsup</code></a></td>
<td>3</td>
<td><em>base</em> <em>subscript</em> <em>superscript</em></td>
</tr>
<tr>
<td><a href="chapter3-d.html#presm.munder"><code>munder</code></a></td>
<td>2</td>
<td><em>base</em> <em>underscript</em></td>
</tr>
<tr>
<td><a href="chapter3-d.html#presm.mover"><code>mover</code></a></td>
<td>2</td>
<td><em>base</em> <em>overscript</em></td>
</tr>
<tr>
<td><a href="chapter3-d.html#presm.munderover"><code>munderover</code></a></td>
<td>3</td>
<td><em>base</em> <em>underscript</em> <em>overscript</em></td>
</tr>
<tr>
<td><a href="chapter3-d.html#presm.mmultiscripts"><code>mmultiscripts</code></a></td>
<td>1 or more</td>
<td><em>base</em>
(<em>subscript</em> <em>superscript</em>)*
[<code><mprescripts/></code>
(<em>presubscript</em> <em>presuperscript</em>)*]
</td>
</tr>
<tr>
<td><a href="chapter3-d.html#presm.mtable"><code>mtable</code></a></td>
<td>0 or more rows</td>
<td>0 or more <code>mtr</code> or <code>mlabeledtr</code> elements
</td>
</tr>
<tr>
<td><a href="chapter3-d.html#presm.mlabeledtr"><code>mlabeledtr</code></a></td>
<td>1 or more</td>
<td>a label and 0 or more <code>mtd</code> elements
</td>
</tr>
<tr>
<td><a href="chapter3-d.html#presm.mtr"><code>mtr</code></a></td>
<td>0 or more</td>
<td>0 or more <code>mtd</code> elements
</td>
</tr>
<tr>
<td><a href="chapter3-d.html#presm.mtd"><code>mtd</code></a></td>
<td>1*</td>
<td></td>
</tr>
<tr>
<td><a href="chapter3-d.html#presm.mstack"><code>mstack</code></a></td>
<td>0 or more</td>
<td></td>
</tr>
<tr>
<td><a href="chapter3-d.html#presm.mlongdiv"><code>mlongdiv</code></a></td>
<td>3 or more</td>
<td><em>divisor</em> <em>result</em> <em>dividend</em> (<em>msrow</em> | <em>msgroup</em> | <em>mscarries</em> | <em>msline</em>)*
</td>
</tr>
<tr>
<td><a href="chapter3-d.html#presm.msgroup"><code>msgroup</code></a></td>
<td>0 or more</td>
<td></td>
</tr>
<tr>
<td><a href="chapter3-d.html#presm.msrow"><code>msrow</code></a></td>
<td>0 or more</td>
<td></td>
</tr>
<tr>
<td><a href="chapter3-d.html#presm.mscarries"><code>mscarries</code></a></td>
<td>0 or more</td>
<td></td>
</tr>
<tr>
<td><a href="chapter3-d.html#presm.mscarry"><code>mscarry</code></a></td>
<td>1*</td>
<td></td>
</tr>
<tr>
<td><a href="chapter3-d.html#presm.maction"><code>maction</code></a></td>
<td>1 or more</td>
<td>depend on <code>actiontype</code> attribute
</td>
</tr>
<tr>
<td><a href="chapter2-d.html#interf.toplevel"><code>math</code></a></td>
<td>1*</td>
<td></td>
</tr>
</tbody>
</table>
</div>
</div>
<div class="div3">
<h3><a name="id.3.1.4" id="id.3.1.4"></a>3.1.4 Elements with Special Behaviors
</h3>
<p>Certain MathML presentation elements exhibit special behaviors in
certain contexts. Such special behaviors are discussed in the
detailed element descriptions below. However, for convenience, some
of the most important classes of special behavior are listed here.
</p>
<p>Certain elements are considered space-like; these are defined in
<a href="chapter3-d.html#presm.mspace">Section 3.2.7 Space <code><mspace/></code></a>. This definition affects some of the suggested rendering
rules for <code>mo</code> elements (<a href="chapter3-d.html#presm.mo">Section 3.2.5 Operator, Fence, Separator or Accent
<code><mo></code></a>).
</p>
<p>Certain elements, e.g. <code>msup</code>, are able to
embellish operators that are their first argument. These elements are
listed in <a href="chapter3-d.html#presm.mo">Section 3.2.5 Operator, Fence, Separator or Accent
<code><mo></code></a>, which precisely defines an "embellished
operator" and explains how this affects the suggested rendering rules
for stretchy operators.
</p>
</div>
<div class="div3">
<h3><a name="presm.bidi" id="presm.bidi"></a>3.1.5 Directionality
</h3>
<p>
In the notations familiar to most readers,
both the overall layout and the textual symbols are arranged
from left to right (LTR). Yet, as alluded to in the introduction,
mathematics written in Hebrew or in locales such
as Morocco or Persia, the overall layout is used unchanged, but
the embedded symbols (often Hebrew or Arabic) are written right to left (RTL).
Moreover, in most of the Arabic speaking world, the notation
is arranged entirely RTL; thus a superscript is still raised,
but it follows the base on the left rather than the right.
</p>
<p>MathML 3.0 therefore recognizes two distinct directionalities:
the directionality of the text and symbols within token elements
and the overall directionality represented by Layout Schemata.
These two facets are discussed below.
</p>
<div class="div4">
<h4><a name="presm.bidi.math" id="presm.bidi.math"></a>3.1.5.1 Overall Directionality of Mathematics Formulas
</h4>
<p>
The overall directionality for a formula, basically
the direction of the Layout Schemata, is specified by
the <code>dir</code> attribute on the containing <code>math</code> element
(see <a href="chapter2-d.html#interf.toplevel">Section 2.2 The Top-Level
<code>math</code> Element</a>).
The default is <code>ltr</code>. When <code>dir='rtl'</code>
is used, the layout is simply the mirror image of the conventional
European layout. That is, shifts up or down are unchanged,
but the progression in laying out is from right to left.
</p>
<p>For example, in a RTL layout, sub- and superscripts appear to the left of the base;
the surd for a root appears at the right, with the bar continuing over
the base to the left.
The layout details for elements whose behaviour depends on directionality
are given in the discussion of the element. In those discussions, the
terms leading and trailing are used to specify a side of an object
when which side to use depends on the directionality; ie. leading
means left in LTR but right in RTL.
The terms left and right may otherwise be safely assumed to mean left and right.
</p>
<p>
The overall directionality is usually set on the <code>math</code>, but
may also be switched for individual subformula by using the <code>dir</code>
attribute on <code>mrow</code> or <code>mstyle</code> elements.
When not specified, all elements inherit the directionality of their container.
</p>
</div>
<div class="div4">
<h4><a name="presm.bidi.token" id="presm.bidi.token"></a>3.1.5.2 Bidirectional Layout in Token Elements
</h4>
<p>The text directionality comes into play for the MathML token elements
that can contain text (<code>mtext</code>, <code>mo</code>, <code>mi</code>, <code>mn</code>
and <code>ms</code>) and is determined by the Unicode properties of that text.
A token element containing exclusively LTR or RTL characters
is displayed straightforwardly in the given direction.
When a mixture of directions is involved used, such as RTL Arabic
and LTR numbers, the Unicode bidirectional algorithm <a href="appendixg-d.html#Bidi">[Bidi]</a>
is applied. This algorithm specifies how runs of characters
with the same direction are processed and how the runs are (re)ordered.
The base, or initial, direction is given by the overall directionality
described above (<a href="chapter3-d.html#presm.bidi.math">Section 3.1.5.1 Overall Directionality of Mathematics Formulas</a>) and affects
how weakly directional characters are treated and how runs are nested.
(The <code>dir</code> attribute is thus allowed on token elements to specify
the initial directionality that may be needed in rare cases.)
Any <code>mglyph</code> or <code>malignmark</code> elements appearing within
a token element are effectively <em>neutral</em> and have no effect
on ordering.
</p>
<p>The important thing to notice is that the bidirectional algorithm
is applied independently to the contents of each token element;
each token element is an independent run of characters.
This is in contrast to the application of bidirectionality to HTML, where
the algorithm applies to the entire sequence of characters within each
block level element.
</p>
<p>Other features of Unicode and scripts that should be respected
are ‘mirroring’ and ‘glyph shaping’. Some Unicode characters are marked as
being mirrored when presented in a RTL context; that is, the character
is drawn as if it were mirrored or replaced by a corresponding character.
Thus an opening parenthesis, ‘(’, in RTL will display as ‘)’.
Conversely, the solidus (/ U+002F) is <em>not</em> marked
as mirrored. Thus, an Arabic author that desires the slash to be reversed
in an inline division should explicitly use reverse solidus (\ U+005C)
or an alternative such as the mirroring DIVISION SLASH (U+2215).
</p>
<p>Additionally, calligraphic scripts such as Arabic blend, or connect
sequences of characters together, changing their appearance.
As this can have an significant impact on readability, as well as aesthetics,
it is important to apply such shaping if possible. Glyph shaping,
like directionality, applies to each token element's contents individually.
</p>
<p>Please note that for the transfinite cardinals represented
by Hebrew characters, the code points U+2135-U+2138 (ALEF SYMBOL,
BET SYMBOL, GIMEL SYMBOL, DALET SYMBOL) should be used.
These are strong left-to-right.
</p>
</div>
</div>
<div class="div3">
<h3><a name="presm.scriptlevel" id="presm.scriptlevel"></a>3.1.6 Displaystyle and Scriptlevel
</h3>
<p>So-called ‘displayed’ formulas, those appearing on a line by themselves,
typically make more generous use of vertical space than inline formulas,
which should blend into the adjacent text without intruding into
neighboring lines. For example, in a displayed summation, the limits
are placed above and below the summation symbol, while when it appears inline
the limits would appear in the sub and superscript position.
For similar reasons, sub- and superscripts,
nested fractions and other constructs typically display in a
smaller size than the main part of the formula.
MathML implicitly associates with every presentation node
a <code>displaystyle</code> and <code>scriptlevel</code> reflecting whether
a more expansive vertical layout applies and the level of scripting
in the current context.
</p>
<p>These values are
initialized by the <a href="chapter2-d.html#interf.toplevel"><code>math</code></a> element
according to the <code>display</code> attribute.
They are automatically adjusted by the
various <a href="chapter3-d.html#presm.scrlim">script and limit schemata</a> elements,
and the elements
<a href="chapter3-d.html#presm.mfrac"><code>mfrac</code></a> and
<a href="chapter3-d.html#presm.mroot"><code>mroot</code></a>,
which typically set <code>displaystyle</code> false and increment <code>scriptlevel</code>
for some or all of their arguments.
(See the description for each element for the specific rules used.)
They also may be set explicitly via the <code>displaystyle</code> and <code>scriptlevel</code> attributes
on the <a href="chapter3-d.html#presm.mstyle"><code>mstyle</code></a> element
or the <code>displaystyle</code> attribute of <a href="chapter3-d.html#presm.mtable"><code>mtable</code></a>.
In all other cases, they are inherited from the node's parent.
</p>
<p>The <code>displaystyle</code> affects the amount of vertical space used to lay out a formula:
when true, the more spacious layout of displayed equations is used,
whereas when false a more compact layout of inline formula is used.
This primarily affects the interpretation
of the <code>largeop</code> and <code>movablelimits</code> attributes of
the <a href="chapter3-d.html#presm.mo"><code>mo</code></a> element.
However, more sophisticated renderers are free to use
this attribute to render more or less compactly.
</p>
<p>The main effect of <code>scriptlevel</code> is to control the font size.
Typically, the higher the <code>scriptlevel</code>, the smaller the font size.
(Non-visual renderers can respond to the font size in an analogous way for their medium.)
Whenever the <code>scriptlevel</code> is changed, whether automatically or explicitly,
the current font size is multiplied by the value of
<code>scriptsizemultiplier</code> to the power of the <em>change</em> in <code>scriptlevel</code>.
However, changes to the font size due to <code>scriptlevel</code> changes should
never reduce the size below <code>scriptminsize</code> to prevent scripts
becoming unreadably small.
The default <code>scriptsizemultiplier</code> is approximately the square root of 1/2
whereas <code>scriptminsize</code> defaults to 8 points;
these values may be changed on <code>mstyle</code>; see <a href="chapter3-d.html#presm.mstyle">Section 3.3.4 Style Change <code><mstyle></code></a>.
Note that the <code>scriptlevel</code> attribute of <code>mstyle</code> allows arbitrary
values of <code>scriptlevel</code> to be obtained, including negative values which
result in increased font sizes.
</p>
<p>The changes to the font size due to <code>scriptlevel</code> should be viewed
as being imposed from ‘outside’ the node.
This means that the effect of <code>scriptlevel</code> is applied
before an explicit <code>mathsize</code> (see <a href="chapter3-d.html#presm.commatt">Section 3.2.2 Mathematics style attributes common to token elements</a>)
on a token child of <code>mfrac</code>.
Thus, the <code>mathsize</code> effectively overrides the effect of <code>scriptlevel</code>.
However, that change to <code>scriptlevel</code> changes the current font size,
which affects the meaning of an "em" length
(see <a href="chapter2-d.html#fund.units">Section 2.1.5.2 Length Valued Attributes</a>)
and so the <code>scriptlevel</code> still may have an effect in such cases.
Note also that since <code>mathsize</code> is not constrained by <code>scriptminsize</code>,
such direct changes to font size can result in scripts smaller than <code>scriptminsize</code>.
</p>
<p>Note that direct changes to current font size, whether by
CSS or by the <code>mathsize</code> attribute (See <a href="chapter3-d.html#presm.commatt">Section 3.2.2 Mathematics style attributes common to token elements</a>),
have no effect on the value of <code>scriptlevel</code>.
</p>
<p>T<sub>E</sub>X's \displaystyle, \textstyle, \scriptstyle, and \scriptscriptstyle
correspond to <code>displaystyle</code> and <code>scriptlevel</code>
as
"true" and "0",
"false" and "0",
"false" and "1",
and "false" and "2", respectively.
Thus, <a href="chapter2-d.html#interf.toplevel"><code>math</code></a>'s
<code>display</code>="block" corresponds to \displaystyle,
while <code>display</code>="inline" corresponds to \textstyle.
</p>
</div>
<div class="div3">
<h3><a name="presm.linebreaking" id="presm.linebreaking"></a>3.1.7 Linebreaking of Expressions
</h3>
<div class="div4">
<h4><a name="id.3.1.7.1" id="id.3.1.7.1"></a>3.1.7.1 Control of Linebreaks
</h4>
<p>MathML provides support for both automatic and manual (forced)
linebreaking of expressions to break excessively long
expressions into several lines.
All such linebreaks take place within <code>mrow</code>
(including inferred <code>mrow</code>; see <a href="chapter3-d.html#presm.inferredmrow">Section 3.1.3.1 Inferred <code><mrow></code>s</a>)
or <code>mfenced</code>.
The breaks typically take place at <code>mo</code> elements
and also, for backwards compatibility, at <code>mspace</code>.
Renderers may also choose to place automatic linebreaks at other points such as between adjacent <code>mi</code> elements or even within a token element such as a very long <code>mn</code> element. MathML does not provide a means to specify such linebreaks, but if a render chooses to linebreak at such a point,
it should indent the following line according to the <a href="chapter3-d.html#presm.lbindent.attrs">indentation attributes</a> that are in effect at that point.
</p>
<p>
Automatic linebreaking occurs when the containing <code>math</code> element
has <code>overflow</code>="linebreak"
and the display engine determines that there is not enough space available to
display the entire formula. The available width must therefore be known
to the renderer. Like font properties, one is assumed to be inherited from the environment in
which the MathML element lives. If no width can be determined, an
infinite width should be assumed. Inside of a <code>mtable</code>,
each column has some width. This width may be specified as an attribute
or determined by the contents. This width should be used as the
line wrapping width for linebreaking, and each entry in an <code>mtable</code> is linewrapped as needed.
</p>
<p>Forced linebreaks are specified by using
<code>linebreak</code>="newline"
on a <code>mo</code> or <code>mspace</code> element.
Both automatic and manual linebreaking can occur within the same formula.
</p>
<p>Automatic linebreaking of subexpressions of <code>mfrac</code>, <code>msqrt</code>, <code>mroot</code>
and <code>menclose</code> and the various script elements is not required.
Renderers are free to ignore forced breaks within those elements if they choose.
</p>
<p>Attributes on <code>mo</code> and possibly on <code>mspace</code> elements control
linebreaking and indentation of the following line. The aspects of linebreaking
that can be controlled are:
</p>
<ul>
<li>
<p><em>Where</em> — attributes determine the desirability of
a linebreak at a specific operator or space, in particular whether a
break is required or inhibited. These can only be set on
<code>mo</code> and <code>mspace</code> elements.
(See <a href="chapter3-d.html#presm.lbattrs">Section 3.2.5.2.2 Linebreaking attributes</a>.)
</p>
</li>
<li>
<p><em>Operator Display/Position</em> — when a linebreak occurs,
determines whether the operator will appear
at the end of the line, at the beginning of the next line, or in both positions;
and how much vertical space should be added after the linebreak.
These attributes can be set on <code>mo</code> elements or inherited from
<code>mstyle</code> or <code>math</code> elements.
(See <a href="chapter3-d.html#presm.lbattrs">Section 3.2.5.2.2 Linebreaking attributes</a>.)
</p>
</li>
<li>
<p><em>Indentation</em> — determines the indentation of the
line following a linebreak, including indenting so that the next line aligns
with some point in a previous line.
These attributes can be set on <code>mo</code> elements or
inherited from <code>mstyle</code> or <code>math</code> elements.
(See <a href="chapter3-d.html#presm.lbindent.attrs">Section 3.2.5.2.3 Indentation attributes</a>.)
</p>
</li>
</ul>
<p>
When a math element appears in an inline context, it may obey whatever paragraph flow rules
are employed by the document's text rendering engine.
Such rules are necessarily outside of the scope of this specification.
Alternatively, it may use the value of the <code>math</code> element's overflow attribute.
(See <a href="chapter2-d.html#interf.toplevel.atts">Section 2.2.1 Attributes</a>.)
</p>
</div>
<div class="div4">
<h4><a name="presm.lbalgorithm" id="presm.lbalgorithm"></a>3.1.7.2 Automatic Linebreaking Algorithm (Informative)
</h4>
<p>One method of linebreaking that works reasonably well is sometimes referred
to as a "best-fit" algorithm. It works by computing a "penalty" for
each potential break point on a line. The break point with the smallest
penalty is chosen and the algorithm then works on the next line. Three
useful factors in a penalty calculation are:
</p>
<ol type="1">
<li>
<p>How much of the line width (after subtracting of the indent) is unused? The more unused, the higher the penalty. </p>
</li>
<li>
<p>How deeply nested is the breakpoint in the expression tree? The expression
tree's depth is roughly similar to the nesting depth of <code>mrow</code>s. The more deeply nested the break point, the higher the penalty.
</p>
</li>
<li>
<p>Does a linebreak here make layout of the next line difficult?
If the next line is not the last line and if the indentingstyle uses
information about the linebreak point to determine how much to indent,
then the amount of room left for linebreaking on the next line must be considered;
i.e., linebreaks that leave very little room to draw the next line
result in a higher penalty.
</p>
</li>
<li>
<p>Whether "linebreak" has been specified: "nobreak" effectively sets the penalty to infinity, "badbreak" increases the penalty,
"goodbreak" decreases the penalty, and "newline" effectively sets the penalty to 0.
</p>
</li>
</ol>
<p>This algorithm takes time proportional to the number of token elements times the number of lines. </p>
</div>
<div class="div4">
<h4><a name="presm.inline.lbalgorithm" id="presm.inline.lbalgorithm"></a>3.1.7.3 Linebreaking Algorithm for Inline Expressions (Informative)
</h4>
<p>
A common method for breaking inline expressions that are too long for the
space remaining on the current line is to pick an appropriate break point
for the expression and place the expression up to that point on the current line and place the remainder of the expression
on the following line.
This can be done by:
</p>
<ol type="1">
<li>
<p>Querying the text processing engine for the minimum and maximum amount of space available on the current line. </p>
</li>
<li>
<p>Using a variation of the automatic linebreaking algorithm
given <a href="chapter3-d.html#presm.lbalgorithm">above</a>),
and/or using hints provided by <a href="chapter3-d.html#presm.lbattrs">linebreak attributes</a>
on <code>mo</code> or <code>mspace</code> elements, to choose a line break.
The goal is that the first part of the formula fits "comfortably" on the current line
while breaking at a point that results in keeping related
parts of an expression on the same line.
</p>
</li>
<li>
<p>The remainder of the formula begins on the next line,
positioned both vertically and horizontally according
to the paragraph flow; MathML's <a href="chapter3-d.html#presm.lbindent.attrs">indentation attributes</a> are ignored in this algorithm.
</p>
</li>
<li>
<p>If the remainder does not fit on a line, steps 1 - 3 are repeated for the second and subsequent lines. Unlike the for the
first line, some part of the expression must be placed these lines so that the algorithm terminates.
</p>
</li>
</ol>
</div>
</div>
<div class="div3">
<h3><a name="presm.warnfinetuning" id="presm.warnfinetuning"></a>3.1.8 Warning about fine-tuning of presentation
</h3>
<p>Some use-cases require precise control of the math layout and presentation.
Several MathML elements and attributes expressly support such fine-tuning of the
rendering. However, MathML rendering agents exhibit wide variability in their
presentation of the the same MathML expression due to difference in platforms,
font availability, and requirements particular to the agent itself (see <a href="chapter3-d.html#presm.intro">Section 3.1 Introduction</a>).
The overuse of explicit rendering control may yield a ‘perfect’ layout on one platform, but give much
worse presentation on others. The following sections clarify the kinds of problems that can occur.
</p>
<div class="div4">
<h4><a name="presm.warntweaking" id="presm.warntweaking"></a>3.1.8.1 Warning: non-portability of "tweaking"
</h4>
<p>For particular expressions, authors may be tempted to use the
<a href="chapter3-d.html#presm.mpadded"><code>mpadded</code></a>,
<a href="chapter3-d.html#presm.mspace"><code>mspace</code></a>,
<a href="chapter3-d.html#presm.mphantom"><code>mphantom</code></a>, and
<a href="chapter3-d.html#presm.mtext"><code>mtext</code></a> elements to improve
("tweak") the spacing generated by a specific renderer.
</p>
<p>Without explicit spacing rules, various MathML renders may use different spacing
algorithms. Consequently, different MathML renderers may position symbols in different
locations relative to each other. Say that renderer B, for example, provides improved
spacing for a particular expression over renderer A. Authors are strongly warned that
"tweaking" the layout for renderer A may produce very poor results in renderer B,
very likely worse than without any explicit adjustment at all.
</p>
<p>Even when a specific choice of renderer can be assumed, its spacing
rules may be improved in successive versions, so that the effect of
tweaking in a given MathML document may grow worse with time. Also,
when style sheet mechanisms are extended to MathML, even one version
of a renderer may use different spacing rules for users with different
style sheets.
</p>
<p>Therefore, it is suggested that MathML markup never use
<code>mpadded</code> or <code>mspace</code> elements
to tweak the rendering of specific expressions, unless the MathML is
generated solely to be viewed using one specific version of one MathML
renderer, using one specific style sheet (if style sheets are
available in that renderer).
</p>
<p>In cases where the temptation to improve spacing proves too strong,
careful use of <code>mpadded</code>,
<code>mphantom</code>, or the alignment elements (<a href="chapter3-d.html#presm.malign">Section 3.5.5 Alignment Markers
<code><maligngroup/></code>, <code><malignmark/></code></a>) may give more portable results than the
direct insertion of extra space using <code>mspace</code> or
<code>mtext</code>. Advice given to the implementers of MathML
renderers might be still more productive, in the long run.
</p>
</div>
<div class="div4">
<h4><a name="presm.warnspacing" id="presm.warnspacing"></a>3.1.8.2 Warning: spacing should not be used to convey meaning
</h4>
<p>MathML elements that permit "negative spacing", namely
<code>mspace</code>, <code>mpadded</code>, and
<code>mtext</code>, could in theory be used to simulate new
notations or "overstruck" characters by the visual overlap of the
renderings of more than one MathML sub-expression.
</p>
<p>This practice is <em>strongly discouraged in all situations</em>,
for the following reasons:
</p>
<ul>
<li>
<p>it will give different results in different MathML renderers
(so the warning about "tweaking" applies), especially
if attempts are made to render glyphs outside the bounding box of
the MathML expression;
</p>
</li>
<li>
<p>it is likely to appear much worse than a more standard construct
supported by good renderers;
</p>
</li>
<li>
<p>such expressions are almost certain to be uninterpretable
by audio renderers, computer algebra systems,
text searches for standard symbols,
or other processors of MathML input.
</p>
</li>
</ul>
<p>More generally, any construct that uses spacing to convey
mathematical meaning, rather than simply as an aid to viewing
expression structure, is discouraged. That is, the constructs that
are discouraged are those that would be interpreted differently by a
human viewer of rendered MathML if all explicit spacing was
removed.
</p>
<p>Consider using the <a href="chapter3-d.html#presm.mglyph"><code>mglyph</code></a> element
for cases such as this. If such spacing constructs are used in spite of this warning, they should
be enclosed in a <code>semantics</code> element that also
provides an additional MathML expression that can be interpreted in a
standard way. See <a href="chapter5-d.html#mixing.semantic.annotations">Section 5.1 Annotation Framework</a> for further discussion.
</p>
<p>The above warning also applies to most uses of rendering
attributes to alter the meaning conveyed by an expression, with the
exception of attributes on <code>mi</code> (such as <code>mathvariant</code>)
used to distinguish one variable from another.
</p>
</div>
</div>
<div class="div3">
<h3><a name="presm.summary" id="presm.summary"></a>3.1.9 Summary of Presentation Elements
</h3>
<div class="div4">
<h4><a name="id.3.1.9.1" id="id.3.1.9.1"></a>3.1.9.1 Token Elements
</h4>
<table border="1" class="attributes">
<tbody>
<tr>
<td><a href="chapter3-d.html#presm.mi"><code>mi</code></a></td>
<td>identifier</td>
</tr>
<tr>
<td><a href="chapter3-d.html#presm.mn"><code>mn</code></a></td>
<td>number</td>
</tr>
<tr>
<td><a href="chapter3-d.html#presm.mo"><code>mo</code></a></td>
<td>operator, fence, or separator</td>
</tr>
<tr>
<td><a href="chapter3-d.html#presm.mtext"><code>mtext</code></a></td>
<td>text</td>
</tr>
<tr>
<td><a href="chapter3-d.html#presm.mspace"><code>mspace</code></a></td>
<td>space</td>
</tr>
<tr>
<td><a href="chapter3-d.html#presm.ms"><code>ms</code></a></td>
<td>string literal</td>
</tr>
</tbody>
</table>
<p>Additionally, the <a href="chapter3-d.html#presm.mglyph"><code>mglyph</code></a> element
may be used within Token elements to represent non-standard symbols as images.
</p>
</div>
<div class="div4">
<h4><a name="id.3.1.9.2" id="id.3.1.9.2"></a>3.1.9.2 General Layout Schemata
</h4>
<table border="1">
<tbody>
<tr>
<td><a href="chapter3-d.html#presm.mrow"><code>mrow</code></a></td>
<td>group any number of sub-expressions horizontally</td>
</tr>
<tr>
<td><a href="chapter3-d.html#presm.mfrac"><code>mfrac</code></a></td>
<td>form a fraction from two sub-expressions</td>
</tr>
<tr>
<td><a href="chapter3-d.html#presm.mroot"><code>msqrt</code></a></td>
<td>form a square root (radical without an index)</td>
</tr>
<tr>
<td><a href="chapter3-d.html#presm.mroot"><code>mroot</code></a></td>
<td>form a radical with specified index</td>
</tr>
<tr>
<td><a href="chapter3-d.html#presm.mstyle"><code>mstyle</code></a></td>
<td>style change</td>
</tr>
<tr>
<td><a href="chapter3-d.html#presm.merror"><code>merror</code></a></td>
<td>enclose a syntax error message from a preprocessor</td>
</tr>
<tr>
<td><a href="chapter3-d.html#presm.mpadded"><code>mpadded</code></a></td>
<td>adjust space around content</td>
</tr>
<tr>
<td><a href="chapter3-d.html#presm.mphantom"><code>mphantom</code></a></td>
<td>make content invisible but preserve its size</td>
</tr>
<tr>
<td><a href="chapter3-d.html#presm.mfenced"><code>mfenced</code></a></td>
<td>surround content with a pair of fences</td>
</tr>
<tr>
<td><a href="chapter3-d.html#presm.menclose"><code>menclose</code></a></td>
<td>enclose content with a stretching symbol such as a long division sign.</td>
</tr>
</tbody>
</table>
</div>
<div class="div4">
<h4><a name="id.3.1.9.3" id="id.3.1.9.3"></a>3.1.9.3 Script and Limit Schemata
</h4>
<table border="1">
<tbody>
<tr>
<td><a href="chapter3-d.html#presm.msub"><code>msub</code></a></td>
<td>attach a subscript to a base</td>
</tr>
<tr>
<td><a href="chapter3-d.html#presm.msup"><code>msup</code></a></td>
<td>attach a superscript to a base</td>
</tr>
<tr>
<td><a href="chapter3-d.html#presm.msubsup"><code>msubsup</code></a></td>
<td>attach a subscript-superscript pair to a base</td>
</tr>
<tr>
<td><a href="chapter3-d.html#presm.munder"><code>munder</code></a></td>
<td>attach an underscript to a base</td>
</tr>
<tr>
<td><a href="chapter3-d.html#presm.mover"><code>mover</code></a></td>
<td>attach an overscript to a base</td>
</tr>
<tr>
<td><a href="chapter3-d.html#presm.munderover"><code>munderover</code></a></td>
<td>attach an underscript-overscript pair to a base</td>
</tr>
<tr>
<td><a href="chapter3-d.html#presm.mmultiscripts"><code>mmultiscripts</code></a></td>
<td>attach prescripts and tensor indices to a base</td>
</tr>
</tbody>
</table>
</div>
<div class="div4">
<h4><a name="id.3.1.9.4" id="id.3.1.9.4"></a>3.1.9.4 Tables and Matrices
</h4>
<table border="1">
<tbody>
<tr>
<td><a href="chapter3-d.html#presm.mtable"><code>mtable</code></a></td>
<td>table or matrix</td>
</tr>
<tr>
<td><a href="chapter3-d.html#presm.mlabeledtr"><code>mlabeledtr</code></a></td>
<td>row in a table or matrix with a label or equation number</td>
</tr>
<tr>
<td><a href="chapter3-d.html#presm.mtr"><code>mtr</code></a></td>
<td>row in a table or matrix</td>
</tr>
<tr>
<td><a href="chapter3-d.html#presm.mtd"><code>mtd</code></a></td>
<td>one entry in a table or matrix</td>
</tr>
<tr>
<td>
<a href="chapter3-d.html#presm.malign"><code>maligngroup</code></a> and
<a href="chapter3-d.html#presm.malign"><code>malignmark</code></a></td>
<td>alignment markers</td>
</tr>
</tbody>
</table>
</div>
<div class="div4">
<h4><a name="id.3.1.9.5" id="id.3.1.9.5"></a>3.1.9.5 Elementary Math Layout
</h4>
<table border="1">
<tbody>
<tr>
<td><a href="chapter3-d.html#presm.mstack"><code>mstack</code></a></td>
<td>columns of aligned characters</td>
</tr>
<tr>
<td><a href="chapter3-d.html#presm.mlongdiv"><code>mlongdiv</code></a></td>
<td>similar to msgroup, with the addition of a divisor and result</td>
</tr>
<tr>
<td><a href="chapter3-d.html#presm.msgroup"><code>msgroup</code></a></td>
<td>a group of rows in an mstack that are shifted by similar amounts</td>
</tr>
<tr>
<td><a href="chapter3-d.html#presm.msrow"><code>msrow</code></a></td>
<td>a row in an mstack</td>
</tr>
<tr>
<td><a href="chapter3-d.html#presm.mscarries"><code>mscarries</code></a></td>
<td>row in an mstack that whose contents represent carries or borrows</td>
</tr>
<tr>
<td><a href="chapter3-d.html#presm.mscarry"><code>mscarry</code></a></td>
<td>one entry in an mscarries</td>
</tr>
<tr>
<td><a href="chapter3-d.html#presm.msline"><code>msline</code></a></td>
<td>horizontal line inside of <code>mstack</code></td>
</tr>
</tbody>
</table>
</div>
<div class="div4">
<h4><a name="id.3.1.9.6" id="id.3.1.9.6"></a>3.1.9.6 Enlivening Expressions
</h4>
<table border="1">
<tbody>
<tr>
<td><a href="chapter3-d.html#presm.maction"><code>maction</code></a></td>
<td>bind actions to a sub-expression</td>
</tr>
</tbody>
</table>
</div>
</div>
<div class="div3">
<h3><a name="presm.presatt" id="presm.presatt"></a>3.1.10 Mathematics style attributes common to presentation elements
</h3>
<p>In addition to the attributes listed in <a href="chapter2-d.html#fund.globatt">Section 2.1.6 Attributes Shared by all MathML Elements</a>,
all MathML presentation elements accept the following two attributes:
</p>
<table border="1" class="attributes">
<thead>
<tr>
<th>Name</th>
<th>values</th>
<th>default</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="2" class="attname">mathcolor</td>
<td><a href="chapter2-d.html#type.color"><em>color</em></a></td>
<td><em>inherited</em></td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies the foreground color to use when drawing the components of this element,
such as the content for token elements or any lines, surds, or other decorations.
It also establishes the default <code>mathcolor</code> used for child elements
when used on a layout element.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">mathbackground</td>
<td><a href="chapter2-d.html#type.color"><em>color</em></a> | "transparent"
</td>
<td>transparent</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies the background color to be used to fill in the bounding box
of the element and its children. The default, "transparent", lets the
background color, if any, used in the current rendering context to show through.
</td>
</tr>
</tbody>
</table>
<p>These style attributes are primarily intended for visual media.
They are not expected to affect the intended semantics of displayed
expressions, but are for use in highlighting or drawing attention
to the affected subexpressions. For example, a red "x" is not assumed
to be semantically different than a black "x", in contrast to
variables with different <code>mathvariant</code> (See <a href="chapter3-d.html#presm.commatt">Section 3.2.2 Mathematics style attributes common to token elements</a>).
</p>
<p>Since MathML expressions are often embedded in a textual data
format such as XHTML, the MathML renderer should inherit the
foreground color used in the context in which the MathML appears.
Note, however, that MathML doesn't specify the mechanism by which
style information is inherited from the rendering environment.
</p>
<p>Note that the suggested MathML visual rendering rules do not define the
precise extent of the region whose background is affected by the
<code>mathbackground</code> attribute,
except that, when the content does not have
negative dimensions and its drawing region is not overlapped by other
drawing due to surrounding negative spacing, this region should lie
behind all the drawing done to render the content, but should not lie behind any of the
drawing done to render surrounding expressions. The effect of overlap
of drawing regions caused by negative spacing on the extent of the
region affected by the <code>mathbackground</code> attribute is not
defined by these rules.
</p>
</div>
</div>
<div class="div2">
<h2><a name="presm.tokel" id="presm.tokel"></a>3.2 Token Elements
</h2>
<p>Token elements in presentation markup are broadly intended to
represent the smallest units of mathematical notation which carry
meaning. Tokens are roughly analogous to words in text. However,
because of the precise, symbolic nature of mathematical notation, the
various categories and properties of token elements figure prominently in
MathML markup. By contrast, in textual data, individual words rarely
need to be marked up or styled specially.
</p>
<p>Frequently, tokens consist of a single character denoting a
mathematical symbol. Other cases, e.g. function names, involve
multi-character tokens. Further, because traditional mathematical
notation makes wide use of symbols distinguished by their
typographical properties (e.g. a Fraktur 'g' for a Lie algebra, or a
bold 'x' for a vector), care must be taken to insure that styling
mechanisms respect typographical properties which carry meaning.
Consequently, characters, tokens, and typographical properties of
symbols are closely related to one another in MathML.
</p>
<p>Token elements represent
identifiers (<a href="chapter3-d.html#presm.mi"><code>mi</code></a>),
numbers (<a href="chapter3-d.html#presm.mn"><code>mn</code></a>),
operators (<a href="chapter3-d.html#presm.mo"><code>mo</code></a>),
text (<a href="chapter3-d.html#presm.mtext"><code>mtext</code></a>),
strings (<a href="chapter3-d.html#presm.ms"><code>ms</code></a>)
and spacing (<a href="chapter3-d.html#presm.mspace"><code>mspace</code></a>).
The <a href="chapter3-d.html#presm.mglyph"><code>mglyph</code></a> element
may be used <em>within</em> token elements
to represent non-standard symbols by images.
Preceding detailed discussion of the individual elements,
the next two subsections discuss the allowable content of
token elements and the attributes common to them.
</p>
<div class="div3">
<h3><a name="presm.tokenchars" id="presm.tokenchars"></a>3.2.1 MathML characters in token elements
</h3>
<p>Character data in MathML markup is only allowed to occur as part of
the content of token elements. Whitespace between elements is ignored.
With the exception of the empty <a href="chapter3-d.html#presm.mspace"><code>mspace</code></a> element,
token elements can contain any sequence of zero or more Unicode characters,
or <a href="chapter3-d.html#presm.mglyph"><code>mglyph</code></a> or
<code>malignmark</code> elements.
The <a href="chapter3-d.html#presm.mglyph"><code>mglyph</code></a> element is used
to represent non-standard characters or symbols by images;
the <code>malignmark</code> element establishes an alignment point for use within
table constructs, and is otherwise invisible (See <a href="chapter3-d.html#presm.malign">Section 3.5.5 Alignment Markers
<code><maligngroup/></code>, <code><malignmark/></code></a>).
</p>
<p>MathML characters can be either represented
directly as Unicode character data, or indirectly via numeric or
character entity references. See <a href="chapter7-d.html">Chapter 7 Characters, Entities and Fonts</a> for a
discussion of the advantages and disadvantages of numeric
character references versus
entity references, and <a href="appendixg-d.html#Entities">[Entities]</a> for a full list of the entity names available.
Also, see <a href="chapter7-d.html#chars.anomalous">Section 7.7 Anomalous Mathematical Characters</a> for a discussion of the
appropriate character content to choose for certain applications.
</p>
<p>Token elements (other than <code>mspace</code>) should
be rendered as their content, if any, (i.e. in the visual case, as a
closely-spaced horizontal row of standard glyphs for the characters
or images for the <code>mglyph</code>s in their content).
An <code>mspace</code> element is rendered as a blank space of a width determined by its attributes.
Rendering algorithms should also take into account the
mathematics style attributes as described below, and modify surrounding
spacing by rules or attributes specific to each type of token
element. The directional characteristics of the content must
also be respected (see <a href="chapter3-d.html#presm.bidi.token">Section 3.1.5.2 Bidirectional Layout in Token Elements</a>).
</p>
<div class="div4">
<h4><a name="presm.symbolchars" id="presm.symbolchars"></a>3.2.1.1 Alphanumeric symbol characters
</h4>
<p>A large class of mathematical symbols are single letter identifiers
typically used as variable names in formulas. Different font variants
of a letter are treated as separate symbols. For example, a Fraktur
'g' might denote a Lie algebra, while a Roman 'g' denotes the
corresponding Lie group. These letter-like symbols are traditionally
typeset differently than the same characters appearing in text, using
different spacing and ligature conventions. These characters must
also be treated specially by style mechanisms, since arbitrary style
transformations can change meaning in an expression.
</p>
<p>For these reasons, Unicode contains
more than nine hundred Math Alphanumeric Symbol characters
corresponding to letter-like symbols. These characters are in the
Secondary Multilingual Plane (SMP). See <a href="appendixg-d.html#Entities">[Entities]</a> for
more information. As valid Unicode data, these characters are
permitted in MathML and, as tools and fonts for them become widely
available, we anticipate they will be the predominant way of denoting
letter-like symbols.
</p>
<p>MathML also provides an alternative encoding
for these characters using only Basic Multilingual Plane
(BMP) characters together with markup. MathML defines a
correspondence between token elements with certain combinations of BMP
character data and the <code>mathvariant</code> attribute and tokens
containing SMP Math Alphanumeric Symbol characters. Processing
applications that accept SMP characters are required to treat the
corresponding BMP and attribute combinations identically. This is particularly important for applications that
support searching and/or equality testing.
</p>
<p>The <code>mathvariant</code> attribute is described in more detail in <a href="chapter3-d.html#presm.commatt">Section 3.2.2 Mathematics style attributes common to token elements</a>,
and a complete technical description of the corresponding characters is given in <a href="chapter7-d.html#chars.BMP-SMP">Section 7.5 Mathematical Alphanumeric Symbols</a>.
</p>
</div>
<div class="div4">
<h4><a name="presm.mglyph" id="presm.mglyph"></a>3.2.1.2 Using images to represent
symbols <code><mglyph/></code></h4>
<div class="div5">
<h5><a name="id.3.2.1.2.1" id="id.3.2.1.2.1"></a>3.2.1.2.1 Description
</h5>
<p>The <code>mglyph</code> element provides a mechanism
for displaying images to represent non-standard symbols.
It may be used within the content of the token elements
<code>mi</code>, <code>mn</code>, <code>mo</code>, <code>mtext</code> or <code>ms</code>
where existing Unicode characters are not adequate.
</p>
<p>Unicode defines a large number of characters used in mathematics
and, in most cases, glyphs representing these characters are widely
available in a variety of fonts. Although these characters should
meet almost all users needs, MathML recognizes that mathematics is not
static and that new characters and symbols are added when convenient. Characters
that become well accepted will likely be eventually incorporated by
the Unicode Consortium or other standards bodies, but that is often a
lengthy process.
</p>
<p>Note that the glyph's <code>src</code> attribute uniquely identifies the <code>mglyph</code>;
two <code>mglyph</code>s with the same values for <code>src</code> should
be considered identical by applications that must determine whether
two characters/glyphs are identical.
</p>
</div>
<div class="div5">
<h5><a name="id.3.2.1.2.2" id="id.3.2.1.2.2"></a>3.2.1.2.2 Attributes
</h5>
<p>The <code>mglyph</code> element accepts the attributes listed in
<a href="chapter3-d.html#presm.presatt">Section 3.1.10 Mathematics style attributes common to presentation elements</a>, but note that <code>mathcolor</code> has no effect.
The background color, <code>mathbackground</code>, should show through
if the specified image has transparency.
</p>
<p>
<code>mglyph</code> also accepts the additional attributes listed here.
</p>
<table border="1" class="attributes">
<thead>
<tr>
<th>Name</th>
<th>values</th>
<th>default</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="2" class="attname">src</td>
<td><a href="chapter2-d.html#type.uri"><em>URI</em></a></td>
<td><em>required</em></td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies the location of the image resource;
it may be a URI relative to the base-URI of the source of the MathML, if any.
Examples of widely recognized image formats include GIF, JPEG and PNG; However,
it may be advisable to omit the extension from the <code>src</code> URI, so
that a user agent may use content-negotiation to choose the most appropriate format.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">width</td>
<td><a href="chapter2-d.html#type.length"><em>length</em></a></td>
<td><em>from image</em></td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies the desired width of the glyph; see <code>height</code>.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">height</td>
<td><a href="chapter2-d.html#type.length"><em>length</em></a></td>
<td><em>from image</em></td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies the desired height of the glyph.
If only one of <code>width</code> and <code>height</code> are given,
the image should be scaled to preserve the aspect ratio;
if neither are given, the image should be displayed at its natural size.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">valign</td>
<td><a href="chapter2-d.html#type.length"><em>length</em></a>
</td>
<td>0ex</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies the baseline alignment point of the image with respect to the current baseline.
A positive value shifts the bottom of the image above the current baseline, while a negative value lowers it. A value of
0 (the default) means that the baseline of the image is at the bottom of the image.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">alt</td>
<td><a href="chapter2-d.html#type.string"><em>string</em></a></td>
<td><em>required</em></td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Provides an alternate name for the glyph. If the specified image can't be found or displayed,
the renderer may use this name in a warning message or some unknown glyph notation.
The name might also be used by an audio renderer or symbol processing
system and should be chosen to be descriptive.
</td>
</tr>
</tbody>
</table>
</div>
<div class="div5">
<h5><a name="id.3.2.1.2.3" id="id.3.2.1.2.3"></a>3.2.1.2.3 Example
</h5>
<p>The following example illustrates how a researcher might use
the <code>mglyph</code> construct with a set of images to work
with braid group notation.
</p><pre class="mathml-fragment">
<mrow>
<mi><mglyph src="my-braid-23" alt="2 3 braid"/></mi>
<mo>+</mo>
<mi><mglyph src="my-braid-132" alt="1 3 2 braid"/></mi>
<mo>=</mo>
<mi><mglyph src="my-braid-13" alt="1 3 braid"/></mi>
</mrow>
</pre><p>
This might render as:
</p>
<blockquote>
<p><img src="image/f3006.gif" alt="\includegraphics{braids}"></p>
</blockquote>
</div>
<div class="div5">
<h5><a name="id.3.2.1.2.4" id="id.3.2.1.2.4"></a>3.2.1.2.4 Deprecated Attributes
</h5>
<p>Originally, <code>mglyph</code> was designed to provide access to non-standard
fonts. Since this functionality was seldom implemented, nor were downloadable
web fonts widely available, this use of <code>mglyph</code> has been deprecated.
For reference, the following attributes were previously defined:
</p>
<table border="1" class="attributes">
<thead>
<tr>
<th>Name</th>
<th>values</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="2" class="attname">fontfamily</td>
<td><a href="chapter2-d.html#type.string"><em>string</em></a></td>
</tr>
<tr>
<td class="attdesc">
the name of a font that may be available to a MathML renderer,
or a CSS font specification; See <a href="chapter6-d.html#world-int-style">Section 6.5 Using CSS with MathML</a>
and CSS <a href="appendixh-d.html#CSS21">[CSS21]</a> for more information.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">index</td>
<td><a href="chapter2-d.html#type.integer"><em>integer</em></a></td>
</tr>
<tr>
<td class="attdesc">
Specified a position of the desired glyph within the font named
by the <code>fontfamily</code> attribute (see <a href="chapter3-d.html#presm.deprecatt">Section 3.2.2.1 Deprecated style attributes on token elements</a>).
</td>
</tr>
</tbody>
</table>
<p>
In MathML 1 and 2, both were required attributes; they are now optional
and should be ignored unless the <code>src</code> attribute is missing.
</p>
<p>Additionally, in MathML 2, <code>mglyph</code> accepted the attributes described in <a href="chapter3-d.html#presm.commatt">Section 3.2.2 Mathematics style attributes common to token elements</a>
(<code>mathvariant</code> and <code>mathsize</code>, along with the attributes deprecated there);
to make clear that <code>mglyph</code> is <em>not</em> a token element, and since
these attributes have no effect in any case, these attributes have been deprecated.
</p>
</div>
</div>
</div>
<div class="div3">
<h3><a name="presm.commatt" id="presm.commatt"></a>3.2.2 Mathematics style attributes common to token elements
</h3>
<p>In addition to the attributes defined for all presentation elements
(<a href="chapter3-d.html#presm.presatt">Section 3.1.10 Mathematics style attributes common to presentation elements</a>), MathML includes two <em>mathematics style</em> attributes
as well as a directionality attribute
valid on all presentation token elements,
as well as the <code>math</code> and <code>mstyle</code> elements;
<code>dir</code> is also valid on <code>mrow</code> elements.
The attributes are:
</p>
<table border="1" class="attributes">
<thead>
<tr>
<th>Name</th>
<th>values</th>
<th>default</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="2" class="attname">mathvariant</td>
<td>
"normal" | "bold" | "italic" | "bold-italic" | "double-struck" |
"bold-fraktur" | "script" | "bold-script" |
"fraktur" | "sans-serif" | "bold-sans-serif" | "sans-serif-italic" |
"sans-serif-bold-italic" | "monospace" |
"initial" | "tailed" | "looped" | "stretched"
</td>
<td>normal (<em>except on</em> <code><mi></code>)
</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies the logical class of the token. Note that this class
is more than styling, it typically conveys semantic intent; see the discussion below.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">mathsize</td>
<td>"small" | "normal" | "big" | <a href="chapter2-d.html#type.length"><em>length</em></a></td>
<td><em>inherited</em></td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies the size to display the token content.
The values "small" and "big" choose a size
smaller or larger than the current font size, but leave the exact proportions
unspecified; "normal" is allowed for completeness, but since
it is equivalent to "100%" or "1em", it has no effect.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">dir</td>
<td>"ltr" | "rtl"</td>
<td><em>inherited</em></td>
</tr>
<tr>
<td colspan="2" class="attdesc">
specifies the initial directionality for text within the token:
<code>ltr</code> (Left To Right) or <code>rtl</code> (Right To Left).
This attribute should only be needed in rare cases involving weak or neutral characters;
see <a href="chapter3-d.html#presm.bidi.math">Section 3.1.5.1 Overall Directionality of Mathematics Formulas</a> for further discussion.
It has no effect on <code>mspace</code>.
</td>
</tr>
</tbody>
</table>
<p>The <code>mathvariant</code> attribute defines logical classes of token
elements. Each class provides a collection of typographically-related
symbolic tokens. Each token has a specific meaning within a given
mathematical expression and, therefore, needs to be visually
distinguished and protected from inadvertent document-wide style
changes which might change its meaning. Each token is identified
by the combination of the <code>mathvariant</code> attribute value
and the character data in the token element.
</p>
<p>When MathML rendering takes place in an environment where CSS is
available, the mathematics style attributes can be viewed as
predefined selectors for CSS style rules.
See <a href="chapter6-d.html#world-int-style">Section 6.5 Using CSS with MathML</a> for discussion of the
interaction of MathML and CSS.
Also, see <a href="appendixh-d.html#MathMLforCSS">[MathMLforCSS]</a> for discussion of rendering MathML by CSS
and a sample CSS style sheet.
When CSS is not available, it is up to the internal style mechanism of the rendering application
to visually distinguish the different logical classes.
Most MathML renderers will probably want to rely on some degree to additional,
internal style processing algorithms.
In particular, the <code>mathvariant</code> attribute does not follow the CSS inheritance model;
the default value is "normal" (non-slanted)
for all tokens except for <code>mi</code> with single-character content.
See <a href="chapter3-d.html#presm.mi">Section 3.2.3 Identifier <code><mi></code></a> for details.
</p>
<p>Renderers have complete freedom in
mapping mathematics style attributes to specific rendering properties.
However, in practice, the mathematics style attribute names and values
suggest obvious typographical properties, and renderers should attempt
to respect these natural interpretations as far as possible. For
example, it is reasonable to render a token with the
<code>mathvariant</code> attribute set to "sans-serif" in
Helvetica or Arial. However, rendering the token in a Times Roman
font could be seriously misleading and should be avoided.
</p>
<p>In principle, any <code>mathvariant</code> value may be used with any
character data to define a specific symbolic token. In practice,
only certain combinations of character data and <code>mathvariant</code>
values will be visually distinguished by a given renderer. For example,
there is no clear-cut rendering for a "fraktur alpha" or a "bold italic
Kanji" character, and the <code>mathvariant</code> values "initial",
"tailed", "looped", and "stretched" are appropriate only for Arabic
characters.
</p>
<p>Certain combinations of character data and <code>mathvariant</code>
values are equivalent to assigned Unicode code points that encode
mathematical alphanumeric symbols. These Unicode code points are
the ones in the <a href="http://www.unicode.org/charts/PDF/U1D400.pdf">SMP
Mathematical Alphanumeric Symbol</a> range U+1D400 to U+1D7FF,
listed in the Unicode standard, and the ones in the
<a href="http://www.unicode.org/charts/PDF/U2100.pdf">Letterlike
Symbols</a> range U+2100 to U+214F that represent "holes" in the
alphabets in the SMP, listed in <a href="chapter7-d.html#chars.BMP-SMP">Section 7.5 Mathematical Alphanumeric Symbols</a>.
These characters are described in detail in section 2.2 of
<a href="http://www.unicode.org/reports/tr25/">UTR #25</a>.
The description of each such character in the Unicode standard
provides an unstyled character to which it would be equivalent
except for a font change that corresponds to a <code>mathvariant</code>
value. A token element that uses the unstyled character in combination
with the corresponding <code>mathvariant</code> value is equivalent to a
token element that uses the mathematical alphanumeric symbol character
without the <code>mathvariant</code> attribute. Note that the appearance
of a mathematical alphanumeric symbol character should not be altered
by surrounding <code>mathvariant</code> or other style declarations.
</p>
<p>Renderers should support those combinations of character data and
<code>mathvariant</code> values that correspond to Unicode characters,
and that they can visually distinguish using available font characters.
Renderers may ignore or support those combinations of character data
and <code>mathvariant</code> values that do not correspond to an assigned
Unicode code point, and authors should recognize that support for
mathematical symbols that do not correspond to assigned Unicode code
points may vary widely from one renderer to another.
</p>
<p>Since MathML expressions are often embedded in a textual data
format such as XHTML, the surrounding text and the MathML must share
rendering attributes such as font size, so that the renderings will be
compatible in style. For this reason, most attribute values affecting
text rendering are inherited from the rendering environment, as shown
in the "default" column in the table above. (In
cases where the surrounding text and the MathML are being rendered by
separate software, e.g. a browser and a plug-in, it is also important
for the rendering environment to provide the MathML renderer with
additional information, such as the baseline position of surrounding
text, which is not specified by any MathML attributes.)
Note, however, that MathML doesn't specify the mechanism by which
style information is inherited from the rendering environment.
</p>
<p>If the requested <code>mathsize</code> of the current font is not available, the
renderer should approximate it in the manner likely to lead to the
most intelligible, highest quality rendering.
Note that many MathML elements automatically change the font size
in some of their children; see the discussion in <a href="chapter3-d.html#presm.scriptlevel">Section 3.1.6 Displaystyle and Scriptlevel</a>.
</p>
<div class="div4">
<h4><a name="presm.deprecatt" id="presm.deprecatt"></a>3.2.2.1 Deprecated style attributes on token elements
</h4>
<p>The MathML 1.01 style attributes listed below
are <a href="chapter2-d.html#interf.deprec">deprecated</a> in MathML 2 and 3.
These attributes were aligned to CSS but, in rendering environments that support CSS,
it is preferable to use CSS directly to control the rendering properties
corresponding to these attributes, rather than the attributes themselves.
However as explained above, direct manipulation of these
rendering properties by whatever means should usually be avoided.
As a general rule, whenever there is a conflict between these
deprecated attributes and the corresponding attributes (<a href="chapter3-d.html#presm.commatt">Section 3.2.2 Mathematics style attributes common to token elements</a>),
the former attributes should be ignored.
</p>
<p>The deprecated attributes are:
</p>
<table border="1" class="attributes">
<thead>
<tr>
<th>Name</th>
<th>values</th>
<th>default</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="2" class="attname">fontfamily</td>
<td><a href="chapter2-d.html#type.string"><em>string</em></a></td>
<td><em>inherited</em></td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Should be the name of a font that may be available to a MathML renderer,
or a CSS font specification; See <a href="chapter6-d.html#world-int-style">Section 6.5 Using CSS with MathML</a>
and CSS <a href="appendixh-d.html#CSS21">[CSS21]</a> for more information.
Deprecated in favor of <code>mathvariant</code>.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">fontweight</td>
<td>"normal" | "bold"</td>
<td><em>inherited</em></td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specified the font weight for the token.
Deprecated in favor of <code>mathvariant</code>.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">fontstyle</td>
<td>"normal" | "italic"</td>
<td>normal (<em>except on</em> <code><mi></code>)
</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specified the font style to use for the token.
Deprecated in favor of <code>mathvariant</code>.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">fontsize</td>
<td><a href="chapter2-d.html#type.length"><em>length</em></a></td>
<td><em>inherited</em></td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specified the size for the token.
Deprecated in favor of <code>mathsize</code>.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">color</td>
<td><a href="chapter2-d.html#type.color"><em>color</em></a></td>
<td><em>inherited</em></td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specified the color for the token.
Deprecated in favor of <code>mathcolor</code>.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">background</td>
<td><a href="chapter2-d.html#type.color"><em>color</em></a> | "transparent"
</td>
<td>transparent</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specified the background color to be used to fill in the bounding box
of the element and its children. Deprecated in favor of <code>mathbackground</code>.
</td>
</tr>
</tbody>
</table>
</div>
</div>
<div class="div3">
<h3><a name="presm.mi" id="presm.mi"></a>3.2.3 Identifier <code><mi></code></h3>
<div class="div4">
<h4><a name="id.3.2.3.1" id="id.3.2.3.1"></a>3.2.3.1 Description
</h4>
<p>An <code>mi</code> element represents a symbolic name or
arbitrary text that should be rendered as an identifier. Identifiers
can include variables, function names, and symbolic constants.
A typical graphical renderer would render an <code>mi</code> element
as its content (See <a href="chapter3-d.html#presm.tokenchars">Section 3.2.1 MathML characters in token elements</a>),
with no extra spacing around it (except spacing associated with
neighboring elements).
</p>
<p>Not all "mathematical identifiers" are represented by
<code>mi</code> elements — for example, subscripted or primed
variables should be represented using <code>msub</code> or
<code>msup</code> respectively. Conversely, arbitrary text
playing the role of a "term" (such as an ellipsis in a summed series)
can be represented using an <code>mi</code> element, as shown
in an example in <a href="chapter3-d.html#presm.mixtextmath">Section 3.2.6.4 Mixing text and mathematics</a>.
</p>
<p>It should be stressed that <code>mi</code> is a
presentation element, and as such, it only indicates that its content
should be rendered as an identifier. In the majority of cases, the
contents of an <code>mi</code> will actually represent a
mathematical identifier such as a variable or function name. However,
as the preceding paragraph indicates, the correspondence between
notations that should render as identifiers and notations that are
actually intended to represent mathematical identifiers is not
perfect. For an element whose semantics is guaranteed to be that of an
identifier, see the description of <code>ci</code> in
<a href="chapter4-d.html">Chapter 4 Content Markup</a>.
</p>
</div>
<div class="div4">
<h4><a name="id.3.2.3.2" id="id.3.2.3.2"></a>3.2.3.2 Attributes
</h4>
<p><code>mi</code> elements accept the attributes listed in
<a href="chapter3-d.html#presm.commatt">Section 3.2.2 Mathematics style attributes common to token elements</a>, but in one case with a different default value:
</p>
<table border="1" class="attributes">
<thead>
<tr>
<th>Name</th>
<th>values</th>
<th>default</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="2" class="attname">mathvariant</td>
<td>"normal" | "bold" | "italic" | "bold-italic" | "double-struck" |
"bold-fraktur" | "script" | "bold-script" |
"fraktur" | "sans-serif" | "bold-sans-serif" | "sans-serif-italic" |
"sans-serif-bold-italic" | "monospace" |
"initial" | "tailed" | "looped" | "stretched"
</td>
<td><em>(depends on content; described below)</em></td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies the logical class of the token.
The default is "normal" (non-slanted) unless the content
is a single character, in which case it would be "italic".
</td>
</tr>
</tbody>
</table>
<p>Note that the deprecated <code>fontstyle</code> attribute
defaults in the same way as <code>mathvariant</code>, depending on the content.
</p>
<p>Note that for purposes of determining equivalences of Math
Alphanumeric Symbol
characters (See <a href="chapter7-d.html#chars.BMP-SMP">Section 7.5 Mathematical Alphanumeric Symbols</a> and <a href="chapter3-d.html#presm.symbolchars">Section 3.2.1.1 Alphanumeric symbol characters</a>) the value of the <code>mathvariant</code> attribute should be resolved first,
including the special defaulting behavior described above.
</p>
</div>
<div class="div4">
<h4><a name="id.3.2.3.3" id="id.3.2.3.3"></a>3.2.3.3 Examples
</h4><pre class="mathml">
<mi> x </mi>
<mi> D </mi>
<mi> sin </mi>
<mi mathvariant='script'> L </mi>
<mi></mi>
</pre><p>An <code>mi</code> element with no content is allowed;
<code><mi></mi></code> might, for example, be used by an
"expression editor" to represent a location in a MathML expression
which requires a "term" (according to conventional syntax for
mathematics) but does not yet contain one.
</p>
<p>Identifiers include function names such as
"sin". Expressions such as "sin <var>x</var>"
should be written using the character U+2061
(which also has the entity names <code>&af;</code> and <code>&ApplyFunction;</code>) as shown below;
see also the discussion of invisible operators in <a href="chapter3-d.html#presm.mo">Section 3.2.5 Operator, Fence, Separator or Accent
<code><mo></code></a>.
</p><pre class="mathml">
<mrow>
<mi> sin </mi>
<mo> &#x2061;<span style="color:#999900"><!--FUNCTION APPLICATION--></span> </mo>
<mi> x </mi>
</mrow>
</pre><p>Miscellaneous text that should be treated as a "term" can also be
represented by an <code>mi</code> element, as in:
</p><pre class="mathml">
<mrow>
<mn> 1 </mn>
<mo> + </mo>
<mi> ... </mi>
<mo> + </mo>
<mi> n </mi>
</mrow>
</pre><p>When an <code>mi</code> is used in such exceptional
situations, explicitly setting the <code>mathvariant</code> attribute
may give better results than the default behavior of some
renderers.
</p>
<p>The names of symbolic constants should be represented as
<code>mi</code> elements:
</p><pre class="mathml">
<mi> &#x3C0;<span style="color:#999900"><!--GREEK SMALL LETTER PI--></span> </mi>
<mi> &#x2148;<span style="color:#999900"><!--DOUBLE-STRUCK ITALIC SMALL I--></span> </mi>
<mi> &#x2147;<span style="color:#999900"><!--DOUBLE-STRUCK ITALIC SMALL E--></span> </mi>
</pre></div>
</div>
<div class="div3">
<h3><a name="presm.mn" id="presm.mn"></a>3.2.4 Number <code><mn></code></h3>
<div class="div4">
<h4><a name="id.3.2.4.1" id="id.3.2.4.1"></a>3.2.4.1 Description
</h4>
<p>An <code>mn</code> element represents a "numeric
literal" or other data that should be rendered as a numeric
literal. Generally speaking, a numeric literal is a sequence of digits,
perhaps including a decimal point, representing an unsigned integer or real
number.
A typical graphical renderer would render an <code>mn</code> element as
its content (See <a href="chapter3-d.html#presm.tokenchars">Section 3.2.1 MathML characters in token elements</a>), with no extra spacing around them
(except spacing from neighboring elements such as <code>mo</code>).
<code>mn</code> elements are typically rendered in an unslanted font.
</p>
<p>The mathematical concept of a "number" can be quite
subtle and involved, depending on the context. As a consequence, not all
mathematical numbers should be represented using <code>mn</code>; examples of mathematical numbers that should be
represented differently are shown below, and include
complex numbers, ratios of numbers shown as fractions, and names of numeric
constants.
</p>
<p>Conversely, since <code>mn</code> is a presentation
element, there are a few situations where it may be desirable to include
arbitrary text in the content of an <code>mn</code> that
should merely render as a numeric literal, even though that content
may not be unambiguously interpretable as a number according to any
particular standard encoding of numbers as character sequences. As a
general rule, however, the <code>mn</code> element should be
reserved for situations where its content is actually intended to
represent a numeric quantity in some fashion. For an element whose
semantics are guaranteed to be that of a particular kind of
mathematical number, see the description of <code>cn</code> in
<a href="chapter4-d.html">Chapter 4 Content Markup</a>.
</p>
</div>
<div class="div4">
<h4><a name="id.3.2.4.2" id="id.3.2.4.2"></a>3.2.4.2 Attributes
</h4>
<p><code>mn</code> elements accept the attributes listed in <a href="chapter3-d.html#presm.commatt">Section 3.2.2 Mathematics style attributes common to token elements</a>.
</p>
</div>
<div class="div4">
<h4><a name="id.3.2.4.3" id="id.3.2.4.3"></a>3.2.4.3 Examples
</h4><pre class="mathml">
<mn> 2 </mn>
<mn> 0.123 </mn>
<mn> 1,000,000 </mn>
<mn> 2.1e10 </mn>
<mn> 0xFFEF </mn>
<mn> MCMLXIX </mn>
<mn> twenty one </mn>
</pre></div>
<div class="div4">
<h4><a name="id.3.2.4.4" id="id.3.2.4.4"></a>3.2.4.4 Numbers that should <em>not</em> be written
using <code><mn></code> alone
</h4>
<p>Many mathematical numbers should be represented using presentation
elements other than <code>mn</code> alone; this includes
complex numbers, ratios of numbers shown as fractions, and
names of numeric constants. Examples of MathML representations of
such numbers include:
</p><pre class="mathml">
<mrow>
<mn> 2 </mn>
<mo> + </mo>
<mrow>
<mn> 3 </mn>
<mo> &#x2062;<span style="color:#999900"><!--INVISIBLE TIMES--></span> </mo>
<mi> &#x2148;<span style="color:#999900"><!--DOUBLE-STRUCK ITALIC SMALL I--></span> </mi>
</mrow>
</mrow>
<mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac>
<mi> &#x3C0;<span style="color:#999900"><!--GREEK SMALL LETTER PI--></span> </mi>
<mi> &#x2147;<span style="color:#999900"><!--DOUBLE-STRUCK ITALIC SMALL E--></span> </mi>
</pre></div>
</div>
<div class="div3">
<h3><a name="presm.mo" id="presm.mo"></a>3.2.5 Operator, Fence, Separator or Accent
<code><mo></code></h3>
<div class="div4">
<h4><a name="id.3.2.5.1" id="id.3.2.5.1"></a>3.2.5.1 Description
</h4>
<p>An <code>mo</code> element represents an operator or
anything that should be rendered as an operator. In general, the
notational conventions for mathematical operators are quite
complicated, and therefore MathML provides a relatively sophisticated
mechanism for specifying the rendering behavior of an
<code>mo</code> element. As a consequence, in MathML the list
of things that should "render as an operator" includes a number of
notations that are not mathematical operators in the ordinary
sense. Besides ordinary operators with infix, prefix, or postfix
forms, these include fence characters such as braces, parentheses, and
"absolute value" bars; separators
such as comma and semicolon; and
mathematical accents such as a bar or tilde over a symbol.
We will use the term "operator" in this chapter to refer to operators in this broad sense.
</p>
<p>Typical graphical renderers show all <code>mo</code>
elements as the content (See <a href="chapter3-d.html#presm.tokenchars">Section 3.2.1 MathML characters in token elements</a>),
with additional spacing around the element determined by its attributes and
further described below.
Renderers without access to complete fonts for the MathML character
set may choose to render an <code>mo</code> element as
not precisely the characters in its content in some cases. For example,
<code><mo> &le; </mo></code> might be rendered as
<code><=</code> to a terminal. However, as a general rule,
renderers should attempt to render the content of an
<code>mo</code> element as literally as possible.
That is,
<code><mo> &le; </mo></code> and
<code><mo> &lt;= </mo></code> should render differently.
The first one should render as a single character
representing a less-than-or-equal-to sign, and the second one as the
two-character sequence <code><=</code>.
</p>
<p>All operators, in the general sense used here,
are subject to essentially the same rendering
attributes and rules. Subtle distinctions in the
rendering of these classes of symbols,
when they exist, are supported using the Boolean attributes <code>fence</code>,
<code>separator</code> and <code>accent</code>, which can be used to distinguish these cases.
</p>
<p>A key feature of the <code>mo</code> element is that its
default attribute values are set on a case-by-case basis from an
"operator dictionary" as explained below. In particular, default
values for <code>fence</code>, <code>separator</code> and
<code>accent</code> can usually be found in the operator dictionary
and therefore need not be specified on each <code>mo</code>
element.
</p>
<p>Note that some mathematical operators are represented not by <code>mo</code> elements alone, but by <code>mo</code>
elements "embellished" with (for example) surrounding
superscripts; this is further described below. Conversely, as presentation
elements, <code>mo</code> elements can contain arbitrary text,
even when that text has no standard interpretation as an operator; for an
example, see the discussion "Mixing text and mathematics" in
<a href="chapter3-d.html#presm.mtext">Section 3.2.6 Text <code><mtext></code></a>. See also <a href="chapter4-d.html">Chapter 4 Content Markup</a> for
definitions of MathML content elements that are guaranteed to have the
semantics of specific mathematical operators.
</p>
<p>Note also that linebreaking, as discussed in
<a href="chapter3-d.html#presm.linebreaking">Section 3.1.7 Linebreaking of Expressions</a>, usually takes place at operators
(either before or after, depending on local conventions).
Thus, <code>mo</code> accepts attributes to encode the desirability
of breaking at a particular operator, as well as attributes
describing the treatment of the operator and indentation in case
the a linebreak is made at that operator.
</p>
</div>
<div class="div4">
<h4><a name="id.3.2.5.2" id="id.3.2.5.2"></a>3.2.5.2 Attributes
</h4>
<p><code>mo</code> elements accept
the attributes listed in <a href="chapter3-d.html#presm.commatt">Section 3.2.2 Mathematics style attributes common to token elements</a>
and the additional attributes listed here.
Since the display of operators is so critical in mathematics,
the <code>mo</code> element accepts a large number of attributes;
these are described in the next three subsections.
</p>
<p>
Most attributes get their default values from an enclosing
<code>mstyle</code> element, <code>math</code> element, or from the
<a href="chapter3-d.html#presm.opdict">Section 3.2.5.7.1 The operator dictionary</a>, as described later in this
section. When a value that is listed as "inherited" is not explicitly given on an
<code>mo</code>, <code>mstyle</code> element, <code>math</code> element, or found in the operator
dictionary for a given <code>mo</code> element, the default value shown in
parentheses is used.
The attributes may also appear on any ancestor of the <code>math</code> element, if permitted by
the containing document, to provide defaults for all contained <code>math</code> elements.
In such cases, the attributes would be in the MathML namespace.
</p>
<div class="div5">
<h5><a name="presm.mo.attrs" id="presm.mo.attrs"></a>3.2.5.2.1 Dictionary-based attributes
</h5>
<table border="1" id="presm.table-mo" class="attributes">
<thead>
<tr>
<th>Name</th>
<th>values</th>
<th>default</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="2" class="attname">form</td>
<td>"prefix" | "infix" | "postfix"</td>
<td><em>set by position of operator in an</em> <code>mrow</code></td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies the role of the operator in the enclosing expression.
This role and the operator content affect the lookup of the operator in the operator dictionary
which affects the spacing and other default properties;
see <a href="chapter3-d.html#presm.formdefval">Section 3.2.5.7.2 Default value of the form attribute</a>.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">fence</td>
<td>"true" | "false"</td>
<td><em>set by dictionary</em> (false)
</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies whether the operator represents a ‘fence’, such as a parenthesis.
This attribute generally has no direct effect on the visual rendering,
but may be useful in specific cases, such as non-visual renderers.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">separator</td>
<td>"true" | "false"</td>
<td><em>set by dictionary</em> (false)
</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies whether the operator represents a ‘separator’, or punctuation.
This attribute generally has no direct effect on the visual rendering,
but may be useful in specific cases, such as non-visual renderers.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">lspace</td>
<td><a href="chapter2-d.html#type.length"><em>length</em></a></td>
<td><em>set by dictionary</em> (thickmathspace)
</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies the leading space appearing before the operator;
see <a href="chapter3-d.html#presm.opspacing">Section 3.2.5.7.5 Spacing around an operator</a>.
(Note that before is on the right in a RTL context; see <a href="chapter3-d.html#presm.bidi">Section 3.1.5 Directionality</a>).
</td>
</tr>
<tr>
<td rowspan="2" class="attname">rspace</td>
<td><a href="chapter2-d.html#type.length"><em>length</em></a></td>
<td><em>set by dictionary</em> (thickmathspace)
</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies the trailing space appearing after the operator;
see <a href="chapter3-d.html#presm.opspacing">Section 3.2.5.7.5 Spacing around an operator</a>.
(Note that after is on the left in a RTL context; see <a href="chapter3-d.html#presm.bidi">Section 3.1.5 Directionality</a>).
</td>
</tr>
<tr>
<td rowspan="2" class="attname">stretchy</td>
<td>"true" | "false"</td>
<td><em>set by dictionary</em> (false)
</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies whether the operator should stretch to the size of adjacent material;
see <a href="chapter3-d.html#presm.op.stretch">Section 3.2.5.8 Stretching of operators, fences and accents</a>.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">symmetric</td>
<td>"true" | "false"</td>
<td><em>set by dictionary</em> (false)
</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies whether the operator should be kept symmetric around the math
<a href="appendixd-d.html#dt-axis">axis</a> when stretchy. glossary
Note that the default is true, but this property only applies to vertically stretched symbols.
See <a href="chapter3-d.html#presm.op.stretch">Section 3.2.5.8 Stretching of operators, fences and accents</a>.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">maxsize</td>
<td> <a href="chapter2-d.html#type.length"><em>length</em></a> | "infinity"
</td>
<td><em>set by dictionary</em> (infinity)
</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies the maximum size of the operator when stretchy;
see <a href="chapter3-d.html#presm.op.stretch">Section 3.2.5.8 Stretching of operators, fences and accents</a>.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">minsize</td>
<td> <a href="chapter2-d.html#type.length"><em>length</em></a></td>
<td><em>set by dictionary</em> (1em)
</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies the minimum size of the operator when stretchy;
see <a href="chapter3-d.html#presm.op.stretch">Section 3.2.5.8 Stretching of operators, fences and accents</a>.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">largeop</td>
<td>"true" | "false"</td>
<td><em>set by dictionary</em> (false)
</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies whether the operator is considered a ‘large’ operator,
that is, whether it should be drawn larger than normal when
<code>displaystyle</code>="true"
(similar to using T<sub>E</sub>X's <b>\displaystyle</b>).
Examples of large operators include <code>&int;</code>
and <code>&prod;</code>.
See <a href="chapter3-d.html#presm.scriptlevel">Section 3.1.6 Displaystyle and Scriptlevel</a> for more discussion.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">movablelimits</td>
<td>"true" | "false"</td>
<td><em>set by dictionary</em> (false)
</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies whether under- and overscripts attached to
this operator ‘move’ to the more compact sub- and superscript positions
when <code>displaystyle</code> is false.
Examples of operators that typically have <code>movablelimits</code>="true"
are <code>&sum;</code>, <code>&prod;</code>, and <b>lim</b>.
See <a href="chapter3-d.html#presm.scriptlevel">Section 3.1.6 Displaystyle and Scriptlevel</a> for more discussion.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">accent</td>
<td>"true" | "false"</td>
<td><em>set by dictionary</em> (false)
</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies whether this operator should be treated as an accent (diacritical mark)
when used as an underscript or overscript;
see <a href="chapter3-d.html#presm.munder"><code>munder</code></a>,
<a href="chapter3-d.html#presm.mover"><code>mover</code></a>
and <a href="chapter3-d.html#presm.munderover"><code>munderover</code></a>.
</td>
</tr>
</tbody>
</table>
</div>
<div class="div5">
<h5><a name="presm.lbattrs" id="presm.lbattrs"></a>3.2.5.2.2 Linebreaking attributes
</h5>
<p>The following attributes affect when a linebreak does or does not occur,
and the appearance of the linebreak when it does occur.
</p>
<table border="1" class="attributes">
<thead>
<tr>
<th> Name </th>
<th> values </th>
<th> default </th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="2" class="attname">linebreak</td>
<td>"auto" | "newline" | "nobreak" | "goodbreak" | "badbreak"</td>
<td>auto</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies the desirability of a linebreak occurring at this operator:
the default "auto" indicates the renderer should use its default
linebreaking algorithm to determine whether to break;
"newline" is used to force a linebreak;
For automatic linebreaking, "nobreak" forbids a break;
"goodbreak" suggests a good position;
"badbreak" suggests a poor position.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">lineleading </td>
<td> <a href="chapter2-d.html#type.length"><em>length</em></a>
</td>
<td><em>inherited</em> (100%)
</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies the amount of vertical space to use after a linebreak.
For tall lines, it is often clearer to use more leading at linebreaks.
Rendering agents are free to choose an appropriate default.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">linebreakstyle</td>
<td> "before" | "after" | "duplicate"
| "infixlinebreakstyle"
</td>
<td><em>set by dictionary</em> (before)
</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies whether a linebreak occurs ‘before’ or ‘after’ the operator
when a linebreaks occur on this operator; or whether the operator is duplicated.
"before" causes the operator to appears at the beginning of the new line
(but possibly indented);
"after" causes it to appear at the end of the line before the break.
"duplicate" places the operator at both positions.
"infixlinebreakstyle" uses the value that has been specified for
infix operators; This value (one of "before",
"after" or "duplicate") can be specified by
the application or bound by <a href="chapter3-d.html#presm.mstyle"><code>mstyle</code></a>
("before" corresponds to the most common style of linebreaking).
</td>
</tr>
<tr>
<td rowspan="2" class="attname">linebreakmultchar</td>
<td><a href="chapter2-d.html#type.string"><em>string</em></a></td>
<td><em>inherited</em> (&InvisibleTimes;)
</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies the character used to make an &InvisibleTimes; operator visible at a linebreak.
For example, <code>linebreakmultchar</code>="&#xB7;" would make the
multiplication visible as a center dot.
</td>
</tr>
</tbody>
</table>
<p>
<code>linebreak</code> values on adjacent <code>mo</code> and <code>mspace</code>elements do
not interact; <code>linebreak</code>="nobreak" on a <code>mo</code> does
not, in itself, inhibit a break on a preceding or following (possibly nested) <code>mo</code> or <code>mspace</code> element and does not interact with the <code>linebreakstyle</code> attribute value of the preceding or following <code>mo</code> element. It does prevent breaks from occurring on either side of the <code>mo</code> element in all other situations.
</p>
</div>
<div class="div5">
<h5><a name="presm.lbindent.attrs" id="presm.lbindent.attrs"></a>3.2.5.2.3 Indentation attributes
</h5>
<p>The following attributes affect indentation of the lines making up a formula.
Primarily these attributes control the positioning of new lines following a linebreak,
whether automatic or manual. However, <code>indentalignfirst</code> and <code>indentshiftfirst</code>
also control the positioning of single line formula without any linebreaks.
When these attributes appear on <code>mo</code> or <code>mspace</code> they apply if a linebreak occurs
at that element.
When they appear on <code>mstyle</code> or <code>math</code> elements, they determine
defaults for the style to be used for any linebreaks occurring within.
Note that except for cases where heavily marked-up manual linebreaking is desired,
many of these attributes are most useful when bound on an
<code>mstyle</code> or <code>math</code> element.
</p>
<p>Note that since the rendering context, such as available the width and current font,
is not always available to the author of the MathML,
a render may ignore the values of these attributes if they result in a line in which
the remaining width is too small to usefully display the expression or if they result in a line in
which the remaining width exceeds the available linewrapping width.
</p>
<table border="1" class="attributes">
<thead>
<tr>
<th> Name </th>
<th> values </th>
<th> default </th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="2" class="attname">indentalign</td>
<td>"left" | "center" | "right" | "auto" | "id"</td>
<td><em>inherited</em> (auto)
</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies the positioning of lines when linebreaking takes place within an <code>mrow</code>;
see below for discussion of the attribute values.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">indentshift </td>
<td><a href="chapter2-d.html#type.length"><em>length</em></a></td>
<td><em>inherited</em> (0)
</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies an additional indentation offset relative to the position determined
by <code>indentalign</code>.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">indenttarget</td>
<td><a href="chapter2-d.html#type.idref"><em>idref</em></a></td>
<td><em> inherited (none)</em></td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies the <a href="chapter2-d.html#type.id">id</a> of another element
whose horizontal position determines the position of indented lines
when <code>indentalign</code>="id".
Note that the identified element may be outside of the current
<code>math</code> element, allowing for inter-expression alignment,
or may be within invisible content such as <code>mphantom</code>;
it must appear <em>before</em> being referenced, however.
This may lead to an id being unavailable to a given renderer;
in such cases, the <code>indentalign</code> should revert to "auto".
</td>
</tr>
<tr>
<td rowspan="2" class="attname">indentalignfirst </td>
<td>"left" | "center" | "right" | "auto" | "id" | "indentalign"</td>
<td><em>inherited</em> (indentalign)
</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies the indentation style to use for the first line of a formula;
the value "indentalign" (the default) means
to indent the same way as used for the general line.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">indentshiftfirst </td>
<td><a href="chapter2-d.html#type.length"><em>length</em></a> | "indentshift"
</td>
<td><em>inherited</em> (indentshift)
</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies the offset to use for the first line of a formula;
the value "indentshift" (the default) means
to use the same offset as used for the general line.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">indentalignlast </td>
<td>"left" | "center" | "right" | "auto" | "id" | "indentalign"</td>
<td><em>inherited</em> (indentalign)
</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies the indentation style to use for the last line when a linebreak
occurs within a given <code>mrow</code>;
the value "indentalign" (the default) means
to indent the same way as used for the general line.
When there are exactly two lines, the value of this attribute should
be used for the second line in preference to <code>indentalign</code>.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">indentshiftlast </td>
<td><a href="chapter2-d.html#type.length"><em>length</em></a> | "indentshift"
</td>
<td><em>inherited</em> (indentshift)
</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies the offset to use for the last line when a linebreak
occurs within a given <code>mrow</code>;
the value "indentshift" (the default) means
to indent the same way as used for the general line.
When there are exactly two lines, the value of this attribute should
be used for the second line in preference to <code>indentshift</code>.
</td>
</tr>
</tbody>
</table>
<p>The legal values of indentalign are:
</p>
<table id="presm.table-indentalign" border="1">
<thead>
<tr>
<th> Value </th>
<th> Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td> left </td>
<td> Align the left side of the next line to the left side of the line wrapping width </td>
</tr>
<tr>
<td> center </td>
<td> Align the center of the next line to the center of the line wrapping width </td>
</tr>
<tr>
<td> right </td>
<td> Align the right side of the next line to the right side of the line wrapping width </td>
</tr>
<tr>
<td> auto </td>
<td>
(default) indent using the renderer's default indenting style; this may
be a fixed amount or one that varies with the depth of the element in
the mrow nesting or some other similar method.
</td>
</tr>
<tr>
<td> id </td>
<td> Align the left side of the next line to the left side of the element
referenced by the <a href="chapter2-d.html#type.idref"><em>idref</em></a>
(given by <code>indenttarget</code>);
if no such element exists, use "auto" as the <code>indentalign</code> value
</td>
</tr>
</tbody>
</table>
</div>
</div>
<div class="div4">
<h4><a name="id.3.2.5.3" id="id.3.2.5.3"></a>3.2.5.3 Examples with ordinary operators
</h4><pre class="mathml">
<mo> + </mo>
<mo> &lt; </mo>
<mo> &#x2264;<span style="color:#999900"><!--LESS-THAN OR EQUAL TO--></span> </mo>
<mo> &lt;= </mo>
<mo> ++ </mo>
<mo> &#x2211;<span style="color:#999900"><!--N-ARY SUMMATION--></span> </mo>
<mo> .NOT. </mo>
<mo> and </mo>
<mo> &#x2062;<span style="color:#999900"><!--INVISIBLE TIMES--></span> </mo>
<mo mathvariant='bold'> + </mo>
</pre></div>
<div class="div4">
<h4><a name="id.3.2.5.4" id="id.3.2.5.4"></a>3.2.5.4 Examples with fences and separators
</h4>
<p>Note that the <code>mo</code> elements in these examples
don't need explicit <code>fence</code> or <code>separator</code> attributes,
since these can be found using the
operator dictionary as described below. Some of these examples could also
be encoded using the <code>mfenced</code> element described in
<a href="chapter3-d.html#presm.mfenced">Section 3.3.8 Expression Inside Pair of Fences
<code><mfenced></code></a>.
</p>
<p>(<var>a</var>+<var>b</var>)
</p><pre class="mathml">
<mrow>
<mo> ( </mo>
<mrow>
<mi> a </mi>
<mo> + </mo>
<mi> b </mi>
</mrow>
<mo> ) </mo>
</mrow>
</pre><p>[0,1)
</p><pre class="mathml">
<mrow>
<mo> [ </mo>
<mrow>
<mn> 0 </mn>
<mo> , </mo>
<mn> 1 </mn>
</mrow>
<mo> ) </mo>
</mrow>
</pre><p><var>f</var>(<var>x</var>,<var>y</var>)
</p><pre class="mathml">
<mrow>
<mi> f </mi>
<mo> &#x2061;<span style="color:#999900"><!--FUNCTION APPLICATION--></span> </mo>
<mrow>
<mo> ( </mo>
<mrow>
<mi> x </mi>
<mo> , </mo>
<mi> y </mi>
</mrow>
<mo> ) </mo>
</mrow>
</mrow>
</pre></div>
<div class="div4">
<h4><a name="presm.invisibleops" id="presm.invisibleops"></a>3.2.5.5 Invisible operators
</h4>
<p>Certain operators that are "invisible" in traditional
mathematical notation should be represented using specific entity
references within <code>mo</code> elements, rather than simply
by nothing. The characters used for these "invisible
operators" are:
</p>
<table border="1">
<thead>
<tr>
<th>Character</th>
<th>Entity name</th>
<th>Short name</th>
<th>Examples of use</th>
</tr>
</thead>
<tbody>
<tr>
<td>U+2061</td>
<td><code>&ApplyFunction;</code></td>
<td><code>&af;</code></td>
<td><var>f</var>(<var>x</var>) sin <var>x</var></td>
</tr>
<tr>
<td>U+2062</td>
<td><code>&InvisibleTimes;</code></td>
<td><code>&it;</code></td>
<td><var>x</var><var>y</var></td>
</tr>
<tr>
<td>U+2063</td>
<td><code>&InvisibleComma;</code></td>
<td><code>&ic;</code></td>
<td><var>m</var><sub>12</sub></td>
</tr>
<tr>
<td>U+2064</td>
<td></td>
<td></td>
<td>2¾</td>
</tr>
</tbody>
</table>
<p>The MathML representations of the examples in the above table are:
</p><pre class="mathml">
<mrow>
<mi> f </mi>
<mo> &#x2061;<span style="color:#999900"><!--FUNCTION APPLICATION--></span> </mo>
<mrow>
<mo> ( </mo>
<mi> x </mi>
<mo> ) </mo>
</mrow>
</mrow>
<mrow>
<mi> sin </mi>
<mo> &#x2061;<span style="color:#999900"><!--FUNCTION APPLICATION--></span> </mo>
<mi> x </mi>
</mrow>
<mrow>
<mi> x </mi>
<mo> &#x2062;<span style="color:#999900"><!--INVISIBLE TIMES--></span> </mo>
<mi> y </mi>
</mrow>
<msub>
<mi> m </mi>
<mrow>
<mn> 1 </mn>
<mo> &#x2063;<span style="color:#999900"><!--INVISIBLE SEPARATOR--></span> </mo>
<mn> 2 </mn>
</mrow>
</msub>
<mrow>
<mn> 2 </mn>
<mo> &#x2064;<!-- INVISIBLE PLUS --> </mo>
<mfrac>
<mn> 3 </mn>
<mn> 4 </mn>
</mfrac>
</mrow>
</pre><p>The reasons for using specific <code>mo</code> elements for
invisible operators include:
</p>
<ul>
<li>
<p>such operators should often have specific effects on visual
rendering (particularly spacing and linebreaking rules) that are not
the same as either the lack of any operator, or spacing represented by
<code>mspace</code> or <code>mtext</code>
elements;
</p>
</li>
<li>
<p>these operators should often have specific audio renderings
different than that of the lack of any operator;
</p>
</li>
<li>
<p>automatic semantic interpretation of MathML presentation elements
is made easier by the explicit specification of such operators.
</p>
</li>
</ul>
<p>For example, an audio renderer might render <var>f</var>(<var>x</var>)
(represented as in the above examples) by speaking "f of x", but use
the word "times" in its rendering of <var>x</var><var>y</var>.
Although its rendering must still be different depending on the structure
of neighboring elements (sometimes leaving out "of" or
"times" entirely), its task is made much easier by the use of
a different <code>mo</code> element for each invisible
operator.
</p>
</div>
<div class="div4">
<h4><a name="id.3.2.5.6" id="id.3.2.5.6"></a>3.2.5.6 Names for other special operators
</h4>
<p>MathML also includes <code>&DifferentialD;</code> (U+2146) for use
in an <code>mo</code> element representing the differential
operator symbol usually denoted by "d". The reasons for
explicitly using this special character are similar to those for using
the special characters for invisible operators described in the
preceding section.
</p>
</div>
<div class="div4">
<h4><a name="id.3.2.5.7" id="id.3.2.5.7"></a>3.2.5.7 Detailed rendering rules for <code><mo></code> elements
</h4>
<p>Typical visual rendering behaviors for <code>mo</code>
elements are more complex than for the other MathML token elements, so
the rules for rendering them are described in this separate
subsection.
</p>
<p>Note that, like all rendering rules in MathML, these rules are
suggestions rather than requirements. Furthermore, no attempt is made
to specify the rendering completely; rather, enough information is
given to make the intended effect of the various rendering attributes
as clear as possible.
</p>
<div class="div5">
<h5><a name="presm.opdict" id="presm.opdict"></a>3.2.5.7.1 The operator dictionary
</h5>
<p>Many mathematical symbols, such as an integral sign, a plus sign,
or a parenthesis, have a well-established, predictable, traditional
notational usage. Typically, this usage amounts to certain default
attribute values for <code>mo</code> elements with specific
contents and a specific <code>form</code> attribute. Since these
defaults vary from symbol to symbol, MathML anticipates that renderers
will have an "operator dictionary" of default attributes for
<code>mo</code> elements (see <a href="appendixc-d.html">Appendix C Operator Dictionary</a>) indexed by each
<code>mo</code> element's content and <code>form</code>
attribute. If an <code>mo</code> element is not listed in the
dictionary, the default values shown in parentheses in the table of
attributes for <code>mo</code> should be used, since these
values are typically acceptable for a generic operator.
</p>
<p>Some operators are "overloaded", in the sense that they can occur
in more than one form (prefix, infix, or postfix), with possibly
different rendering properties for each form. For example, "+" can be
either a prefix or an infix operator. Typically, a visual renderer
would add space around both sides of an infix operator, while only in
front of a prefix operator. The <code>form</code> attribute allows
specification of which form to use, in case more than one form is
possible according to the operator dictionary and the default value
described below is not suitable.
</p>
</div>
<div class="div5">
<h5><a name="presm.formdefval" id="presm.formdefval"></a>3.2.5.7.2 Default value of the <code>form</code> attribute
</h5>
<p>The <code>form</code> attribute does not usually have to be
specified explicitly, since there are effective heuristic rules for
inferring the value of the <code>form</code> attribute from the
context. If it is not specified, and there is more than one possible
form in the dictionary for an <code>mo</code> element with
given content, the renderer should choose which form to use as follows
(but see the exception for embellished operators, described later):
</p>
<ul>
<li>
<p>If the operator is the first argument in an <code>mrow</code>
with more than one argument
(ignoring all space-like arguments (see <a href="chapter3-d.html#presm.mspace">Section 3.2.7 Space <code><mspace/></code></a>) in the
determination of both the length and the first argument), the prefix form
is used;
</p>
</li>
<li>
<p>if it is the last argument in an <code>mrow</code> with more than one argument (ignoring all space-like arguments), the postfix
form is used;
</p>
</li>
<li>
<p>if it is the only element in an implicit or explicit <code>mrow</code> and if it is in a script position of one of the elements listed in <a href="chapter3-d.html#presm.scrlim">Section 3.4 Script and Limit Schemata</a>, the postfix form is used;
</p>
</li>
<li>
<p>in all other cases, including when the operator is not part of an
<code>mrow</code>, the infix form is used.
</p>
</li>
</ul>
<p>Note that the <code>mrow</code> discussed above may be <em>inferred</em>;
See <a href="chapter3-d.html#presm.inferredmrow">Section 3.1.3.1 Inferred <code><mrow></code>s</a>.
</p>
<p>Opening fences should have <code>form</code><code>="prefix"</code>,
and closing fences should have <code>form</code><code>="postfix"</code>;
separators are usually "infix", but not always,
depending on their surroundings. As with ordinary operators,
these values do not usually need to be specified explicitly.
</p>
<p>If the operator does not occur in the dictionary with the specified
form, the renderer should use one of the forms that is available
there, in the order of preference: infix, postfix, prefix; if no forms
are available for the given <code>mo</code> element content, the
renderer should use the defaults given in parentheses in the table of
attributes for <code>mo</code>.
</p>
</div>
<div class="div5">
<h5><a name="id.3.2.5.7.3" id="id.3.2.5.7.3"></a>3.2.5.7.3 Exception for embellished operators
</h5>
<p>There is one exception to the above rules for choosing an <code>mo</code> element's default <code>form</code>
attribute. An <code>mo</code> element that is
"embellished" by one or more nested subscripts, superscripts,
surrounding text or whitespace, or style changes behaves differently. It is
the embellished operator as a whole (this is defined precisely, below)
whose position in an <code>mrow</code> is examined by the above
rules and whose surrounding spacing is affected by its form, not the <code>mo</code> element at its core; however, the attributes
influencing this surrounding spacing are taken from the <code>mo</code> element at the core (or from that element's
dictionary entry).
</p>
<p>For example, the "+<sub>4</sub>" in
<var>a</var>+<sub>4</sub><var>b</var>
should be considered an infix operator as a whole, due to its position
in the middle of an <code>mrow</code>, but its rendering
attributes should be taken from the <code>mo</code> element
representing the "+", or when those are not specified explicitly,
from the operator dictionary entry for <code><mo form="infix"> +
</mo></code>.
The precise definition of an "embellished operator" is:
</p>
<ul>
<li>
<p>an <code>mo</code> element;
</p>
</li>
<li>
<p>or one of the elements
<code>msub</code>,
<code>msup</code>,
<code>msubsup</code>,
<code>munder</code>,
<code>mover</code>,
<code>munderover</code>,
<code>mmultiscripts</code>,
<code>mfrac</code>, or
<code>semantics</code>
(<a href="chapter5-d.html#mixing.semantic.annotations">Section 5.1 Annotation Framework</a>), whose first argument exists and is an embellished
operator;
</p>
</li>
<li>
<p>or one of the elements
<code>mstyle</code>,
<code>mphantom</code>, or
<code>mpadded</code>,
such that an <code>mrow</code> containing the same
arguments would be an embellished operator;
</p>
</li>
<li>
<p>or an <code>maction</code> element whose selected
sub-expression exists and is an embellished operator;
</p>
</li>
<li>
<p>or an <code>mrow</code> whose arguments consist (in any order)
of one embellished operator and zero or more space-like elements.
</p>
</li>
</ul>
<p>
Note that this definition permits nested embellishment only when
there are no intervening enclosing elements not in the above list.
</p>
<p>The above rules for choosing operator forms and defining
embellished operators are chosen so that in all ordinary cases it will
not be necessary for the author to specify a <code>form</code>
attribute.
</p>
</div>
<div class="div5">
<h5><a name="id.3.2.5.7.4" id="id.3.2.5.7.4"></a>3.2.5.7.4 Rationale for definition of embellished operators
</h5>
<p>The following notes are included as a rationale for certain aspects
of the above definitions, but should not be important for most users
of MathML.
</p>
<p>An <code>mfrac</code> is included as an
"embellisher" because of the common notation for a
differential operator:
</p><pre class="mathml">
<mfrac>
<mo> &#x2146;<span style="color:#999900"><!--DOUBLE-STRUCK ITALIC SMALL D--></span> </mo>
<mrow>
<mo> &#x2146;<span style="color:#999900"><!--DOUBLE-STRUCK ITALIC SMALL D--></span> </mo>
<mi> x </mi>
</mrow>
</mfrac>
</pre><p>Since the definition of embellished operator affects the use of the
attributes related to stretching, it is important that it includes
embellished fences as well as ordinary operators; thus it applies to
any <code>mo</code> element.
</p>
<p>Note that an <code>mrow</code> containing a single argument
is an embellished operator if and only if its argument is an embellished
operator. This is because an <code>mrow</code> with a single
argument must be equivalent in all respects to that argument alone (as
discussed in <a href="chapter3-d.html#presm.mrow">Section 3.3.1 Horizontally Group Sub-Expressions
<code><mrow></code></a>). This means that an <code>mo</code> element that is the sole argument of an <code>mrow</code> will determine its default <code>form</code> attribute based on that <code>mrow</code>'s position in a surrounding, perhaps inferred, <code>mrow</code> (if there is one), rather than based on its own
position in the <code>mrow</code> in which it is the sole
argument.
</p>
<p>Note that the above definition defines every
<code>mo</code> element to be "embellished" — that is,
"embellished operator" can be considered (and implemented in
renderers) as a special class of MathML expressions, of which
<code>mo</code> is a specific case.
</p>
</div>
<div class="div5">
<h5><a name="presm.opspacing" id="presm.opspacing"></a>3.2.5.7.5 Spacing around an operator
</h5>
<p>The amount of horizontal space added around an operator (or embellished operator),
when it occurs in an <code>mrow</code>, can be directly
specified by the <code>lspace</code> and <code>rspace</code>
attributes. Note that <code>lspace</code> and <code>rspace</code> should
be interpreted as leading and trailing space, in the case of RTL direction.
By convention, operators that tend to bind tightly to their
arguments have smaller values for spacing than operators that tend to bind
less tightly. This convention should be followed in the operator dictionary
included with a MathML renderer.
</p>
<p>Some renderers may choose to use no space around most operators
appearing within subscripts or superscripts, as is done in T<sub>E</sub>X.
</p>
<p>Non-graphical renderers should treat spacing attributes, and other
rendering attributes described here, in analogous ways for their
rendering medium. For example, more space might translate into a
longer pause in an audio rendering.
</p>
</div>
</div>
<div class="div4">
<h4><a name="presm.op.stretch" id="presm.op.stretch"></a>3.2.5.8 Stretching of operators, fences and accents
</h4>
<p>Four attributes govern whether and how an operator (perhaps embellished)
stretches so that it matches the size of other elements: <code>stretchy</code>, <code>symmetric</code>, <code>maxsize</code>, and <code>minsize</code>. If an
operator has the attribute <code>stretchy</code>="true", then it (that is, each character in its content)
obeys the stretching rules listed below, given the constraints imposed by
the fonts and font rendering system. In practice, typical renderers will
only be able to stretch a small set of characters, and quite possibly will
only be able to generate a discrete set of character sizes.
</p>
<p>There is no provision in MathML for specifying in which direction
(horizontal or vertical) to stretch a specific character or operator;
rather, when <code>stretchy</code>="true" it
should be stretched in each direction for which stretching is possible
and reasonable for that character.
It is up to the renderer to know in which directions it is reasonable to
stretch a character, if it can stretch the character.
Most characters can be stretched in at most one direction
by typical renderers, but some renderers may be able to stretch certain
characters, such as diagonal arrows, in both directions independently.
</p>
<p>The <code>minsize</code> and <code>maxsize</code>
attributes limit the amount of stretching (in either direction). These two
attributes are given as multipliers of the operator's normal size in the
direction or directions of stretching, or as absolute sizes using units.
For example, if a character has <code>maxsize</code>="3", then it
can grow to be no more than three times its normal (unstretched) size.
</p>
<p>The <code>symmetric</code> attribute governs whether the
height and
depth above and below the <a class="termref" title="" href="appendixd-d.html#dt-axis">axis</a> of the
character are forced to be equal
(by forcing both height and depth to become the maximum of the two).
An example of a situation where one might set
<code>symmetric</code>="false"
arises with parentheses around a matrix not aligned on the <a class="termref" title="" href="appendixd-d.html#dt-axis">axis</a>, which
frequently occurs when multiplying non-square matrices. In this case, one
wants the parentheses to stretch to cover the matrix, whereas stretching
the parentheses symmetrically would cause them to protrude beyond one edge
of the matrix. The <code>symmetric</code> attribute only applies
to characters that stretch vertically (otherwise it is ignored).
</p>
<p>If a stretchy <code>mo</code> element is embellished (as defined
earlier in this section), the <code>mo</code> element at its core is
stretched to a size based on the context of the embellished operator
as a whole, i.e. to the same size as if the embellishments were not
present. For example, the parentheses in the following example (which
would typically be set to be stretchy by the operator dictionary) will be
stretched to the same size as each other, and the same size they would
have if they were not underlined and overlined, and furthermore will
cover the same vertical interval:
</p><pre class="mathml">
<mrow>
<munder>
<mo> ( </mo>
<mo> &#x5F;<span style="color:#999900"><!--LOW LINE--></span> </mo>
</munder>
<mfrac>
<mi> a </mi>
<mi> b </mi>
</mfrac>
<mover>
<mo> ) </mo>
<mo> &#x203E;<span style="color:#999900"><!--OVERLINE--></span> </mo>
</mover>
</mrow>
</pre><p>Note that this means that the stretching rules given below must
refer to the context of the embellished operator as a whole, not just
to the <code>mo</code> element itself.
</p>
<div class="div5">
<h5><a name="id.3.2.5.8.1" id="id.3.2.5.8.1"></a>3.2.5.8.1 Example of stretchy attributes
</h5>
<p>This shows one way to set the maximum size of a parenthesis so that
it does not grow, even though its default value is
<code>stretchy</code>="true".
</p><pre class="mathml">
<mrow>
<mo maxsize="1"> ( </mo>
<mfrac>
<mi> a </mi> <mi> b </mi>
</mfrac>
<mo maxsize="1"> ) </mo>
</mrow>
</pre><p>The above should render as
<img src="image/f3001.gif" alt="(\frac{a}{b})" align="middle">
as opposed to the default rendering
<img src="image/f3002.gif" alt="\left(\frac{a}{b}\right)" align="middle">.
</p>
<p>Note that each parenthesis is sized independently; if only one of
them had <code>maxsize</code>="1", they would render with different
sizes.
</p>
</div>
<div class="div5">
<h5><a name="id.3.2.5.8.2" id="id.3.2.5.8.2"></a>3.2.5.8.2 Vertical Stretching Rules
</h5>
<p>The general rules governing stretchy operators are:</p>
<ul>
<li>
<p>If a stretchy operator is a direct sub-expression of an <code>mrow</code> element, or is the sole direct sub-expression of an
<code>mtd</code> element in some row of a table, then it should
stretch to cover the height and depth (above and below the axis) of the <em>non</em>-stretchy direct sub-expressions in the
<code>mrow</code> element or table row, unless stretching is
constrained by <code>minsize</code> or <code>maxsize</code> attributes.
</p>
</li>
<li>
<p>In the case of an embellished stretchy operator, the preceding
rule applies to the stretchy operator at its core.
</p>
</li>
<li>
<p>The preceding rules also apply in situations where the <code>mrow</code> element is inferred.
</p>
</li>
<li>
<p>The rules for symmetric stretching only apply if <code>symmetric</code>="true" and if the stretching occurs in an <code>mrow</code> or in an <code>mtr</code> whose <code>rowalign</code> value is either "baseline" or "axis".
</p>
</li>
</ul>
<p>The following algorithm specifies the height and depth of vertically stretched characters:
</p>
<ol type="1">
<li>
<p>Let <code>maxheight</code> and <code>maxdepth</code> be the maximum height and depth of the <em>non</em>-stretchy
siblings within the same <code>mrow</code> or <code>mtr</code>. Let axis be the
height of the math axis above the baseline.
</p>
<p>Note that even if a <code>minsize</code> or <code>maxsize</code> value is set on a stretchy operator, it is <em>not</em> used in the initial calculation of the maximum height and depth of an <code>mrow</code>.
</p>
</li>
<li>
<p>
If <code>symmetric</code>="true", then the computed height
and depth of the stretchy operator are:
</p><pre class="algorithm">
height=max(maxheight-axis, maxdepth+axis) + axis
depth =max(maxheight-axis, maxdepth+axis) - axis
</pre><p>
Otherwise the height and depth are:
</p><pre class="algorithm">
height= maxheight
depth = maxdepth
</pre></li>
<li>
<p>
If the total size = height+depth is less than minsize
or greater than maxsize, increase or decrease both
height and depth proportionately so that the effective
size meets the constraint.
</p>
</li>
</ol>
<p>By default, most vertical arrows, along with most opening and closing fences are defined in the operator
dictionary to stretch by default.
</p>
<p>In the case of a stretchy operator in a table cell (i.e. within an
<code>mtd</code> element), the above rules assume each cell of
the table row containing the stretchy operator covers exactly one row.
(Equivalently, the value of the <code>rowspan</code> attribute is
assumed to be 1 for all the table cells in the table row, including
the cell containing the operator.) When this is not the case, the
operator should only be stretched vertically to cover those table
cells that are entirely within the set of table rows that the
operator's cell covers. Table cells that extend into rows not covered
by the stretchy operator's table cell should be ignored. See
<a href="chapter3-d.html#presm.mtdatts">Section 3.5.4.2 Attributes</a> for details about the <code>rowspan</code> attribute.
</p>
</div>
<div class="div5">
<h5><a name="presm.horiz.stretch.rules" id="presm.horiz.stretch.rules"></a>3.2.5.8.3 Horizontal Stretching Rules
</h5>
<ul>
<li>
<p>If a stretchy operator, or an embellished stretchy operator,
is a direct sub-expression of an <code>munder</code>,
<code>mover</code>, or <code>munderover</code> element,
or if it is the sole direct sub-expression of an <code>mtd</code> element in some
column of a table (see <code>mtable</code>), then it, or the <code>mo</code> element at its core, should stretch to cover
the width of the other direct sub-expressions in the given element (or
in the same table column), given the constraints mentioned above.
</p>
</li>
<li>
<p>In the case of an embellished stretchy operator, the preceding
rule applies to the stretchy operator at its core.
</p>
</li>
</ul>
<p>By default, most horizontal arrows and some accents stretch
horizontally.
</p>
<p>In the case of a stretchy operator in a table cell (i.e. within an
<code>mtd</code> element), the above rules assume each cell of
the table column containing the stretchy operator covers exactly one
column. (Equivalently, the value of the <code>columnspan</code>
attribute is assumed to be 1 for all the table cells in the table row,
including the cell containing the operator.) When this is not the
case, the operator should only be stretched horizontally to cover
those table cells that are entirely within the set of table columns
that the operator's cell covers. Table cells that extend into columns
not covered by the stretchy operator's table cell should be
ignored. See <a href="chapter3-d.html#presm.mtdatts">Section 3.5.4.2 Attributes</a> for details about the <code>rowspan</code> attribute.
</p>
<p>The rules for horizontal stretching include <code>mtd</code>
elements to allow arrows to stretch for use in commutative diagrams
laid out using <code>mtable</code>. The rules for the horizontal
stretchiness include scripts to make examples such as the following
work:
</p><pre class="mathml">
<mrow>
<mi> x </mi>
<munder>
<mo> &#x2192;<span style="color:#999900"><!--RIGHTWARDS ARROW--></span> </mo>
<mtext> maps to </mtext>
</munder>
<mi> y </mi>
</mrow>
</pre><p>This displays as
<img src="image/f3003.gif" alt="x \widearrow{\mathrm{maps~to}} y" align="middle">.
</p>
</div>
<div class="div5">
<h5><a name="id.3.2.5.8.4" id="id.3.2.5.8.4"></a>3.2.5.8.4 Rules Common to both Vertical and Horizontal Stretching
</h5>
<p>If a stretchy operator is not required to stretch (i.e. if it is
not in one of the locations mentioned above, or if there are no other
expressions whose size it should stretch to match), then it has the
standard (unstretched) size determined by the font and current
<code>mathsize</code>.
</p>
<p>If a stretchy operator is required to stretch, but all other expressions
in the containing element (as described above) are also stretchy,
all elements that can stretch should grow to the maximum of the normal
unstretched sizes of all elements in the containing object, if they can
grow that large. If the value of <code>minsize</code> or <code>maxsize</code> prevents
that, then the specified (min or max) size is
used.
</p>
<p>For example, in an <code>mrow</code> containing nothing but
vertically stretchy operators, each of the operators should stretch to
the maximum of all of their normal unstretched sizes, provided no
other attributes are set that override this behavior. Of course,
limitations in fonts or font rendering may result in the final,
stretched sizes being only approximately the same.
</p>
</div>
</div>
<div class="div4">
<h4><a name="presm.mo.linebreaks" id="presm.mo.linebreaks"></a>3.2.5.9 Examples of Linebreaking
</h4>
<p>The following example demonstrates forced linebreaks and forced alignment:</p><pre class="mathml">
<mrow>
<mrow> <mi>f</mi> <mo>&#x2061;<span style="color:#999900"><!--FUNCTION APPLICATION--></span></mo> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow>
<mo id='eq1-equals'>=</mo>
<mrow>
<msup>
<mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow>
<mn>4</mn>
</msup>
<mo linebreak='newline' linebreakstyle='before'
indentalign='id' indenttarget='eq1-equals'>=</mo>
<mrow>
<msup> <mi>x</mi> <mn>4</mn> </msup>
<mo id='eq1-plus'>+</mo>
<mrow> <mn>4</mn> <mo>&#x2062;<span style="color:#999900"><!--INVISIBLE TIMES--></span></mo> <msup> <mi>x</mi> <mn>3</mn> </msup> </mrow>
<mo>+</mo>
<mrow> <mn>6</mn> <mo>&#x2062;<span style="color:#999900"><!--INVISIBLE TIMES--></span></mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow>
<mo linebreak='newline' linebreakstyle='before'
indentalignlast='id' indenttarget='eq1-plus'>+</mo>
<mrow> <mn>4</mn> <mo>&#x2062;<span style="color:#999900"><!--INVISIBLE TIMES--></span></mo> <mi>x</mi> </mrow>
<mo>+</mo>
<mn>1</mn>
</mrow>
</mrow>
</mrow>
</pre><p>This displays as </p>
<blockquote>
<p><img src="image/linebreak-example1.png" alt="example with equal and plus signs aligned"></p>
</blockquote>
<p>Note that because <code>indentalignlast</code> defaults to "indentalign",
in the above example <code>indentalign</code> could have been used in place of
<code>indentalignlast</code>. Also, the specifying <code>linebreakstyle='before'</code>
is not needed because that is the default value.
</p>
</div>
</div>
<div class="div3">
<h3><a name="presm.mtext" id="presm.mtext"></a>3.2.6 Text <code><mtext></code></h3>
<div class="div4">
<h4><a name="id.3.2.6.1" id="id.3.2.6.1"></a>3.2.6.1 Description
</h4>
<p>An <code>mtext</code> element is used to represent
arbitrary text that should be rendered as itself. In general, the
<code>mtext</code> element is intended to denote commentary
text.
</p>
<p>Note that some text with a clearly defined notational role might be
more appropriately marked up using <code>mi</code> or
<code>mo</code>; this is discussed further below.
</p>
<p>An <code>mtext</code> element can be used to contain
"renderable whitespace", i.e. invisible characters that are
intended to alter the positioning of surrounding elements. In non-graphical
media, such characters are intended to have an analogous effect, such as
introducing positive or negative time delays or affecting rhythm in an
audio renderer. This is not related to any whitespace in the source MathML
consisting of blanks, newlines, tabs, or carriage returns; whitespace
present directly in the source is trimmed and collapsed, as described in
<a href="chapter2-d.html#fund.collapse">Section 2.1.7 Collapsing Whitespace in Input</a>. Whitespace that is intended to be rendered
as part of an element's content must be represented by entity references
or <code>mspace</code> elements
(unless it consists only of single blanks between non-whitespace
characters).
</p>
</div>
<div class="div4">
<h4><a name="id.3.2.6.2" id="id.3.2.6.2"></a>3.2.6.2 Attributes
</h4>
<p><code>mtext</code> elements accept the attributes listed in
<a href="chapter3-d.html#presm.commatt">Section 3.2.2 Mathematics style attributes common to token elements</a>.
</p>
<p>See also the warnings about the legal grouping of "space-like elements"
in <a href="chapter3-d.html#presm.mspace">Section 3.2.7 Space <code><mspace/></code></a>, and about the use of
such elements for "tweaking" in <a href="chapter3-d.html#presm.warnfinetuning">Section 3.1.8 Warning about fine-tuning of presentation</a>.
</p>
</div>
<div class="div4">
<h4><a name="id.3.2.6.3" id="id.3.2.6.3"></a>3.2.6.3 Examples
</h4><pre class="mathml">
<mtext> Theorem 1: </mtext>
<mtext> &#x2009;<span style="color:#999900"><!--THIN SPACE--></span> </mtext>
<mtext> &#x205F;&#x200A;<span style="color:#999900"><!--space of width 5/18 em--></span>&#x205F;&#x200A;<span style="color:#999900"><!--space of width 5/18 em--></span> </mtext>
<mtext> /* a comment */ </mtext>
</pre></div>
<div class="div4">
<h4><a name="presm.mixtextmath" id="presm.mixtextmath"></a>3.2.6.4 Mixing text and mathematics
</h4>
<p>In some cases, text embedded in mathematics could be more appropriately
represented using <code>mo</code> or <code>mi</code> elements.
For example, the expression 'there exists
<img src="image/f3004.gif" alt="\delta>0" align="middle">
such that <var>f</var>(<var>x</var>) <1' is equivalent to
<img src="image/f3005.gif" alt="\exists \delta>0 \backepsilon f(x)<1" align="middle">
and could be represented as:
</p><pre class="mathml">
<mrow>
<mo> there exists </mo>
<mrow>
<mrow>
<mi> &#x3B4;<span style="color:#999900"><!--GREEK SMALL LETTER DELTA--></span> </mi>
<mo> &gt; </mo>
<mn> 0 </mn>
</mrow>
<mo> such that </mo>
<mrow>
<mrow>
<mi> f </mi>
<mo> &#x2061;<span style="color:#999900"><!--FUNCTION APPLICATION--></span> </mo>
<mrow>
<mo> ( </mo>
<mi> x </mi>
<mo> ) </mo>
</mrow>
</mrow>
<mo> &lt; </mo>
<mn> 1 </mn>
</mrow>
</mrow>
</mrow>
</pre><p>An example involving an <code>mi</code> element is:
<var>x</var>+<var>x</var><sup>2</sup>+···+<var>x</var><sup><var>n</var></sup>.
In this example, ellipsis should be represented using an <code>mi</code> element, since it takes the place of a term in the
sum; (see <a href="chapter3-d.html#presm.mi">Section 3.2.3 Identifier <code><mi></code></a>).
</p>
<p>On the other hand, expository text within MathML is best
represented with an <code>mtext</code> element. An example
of this is:
</p>
<blockquote>
<p> Theorem 1: if <var>x</var> > 1, then
<var>x</var><sup>2</sup> > <var>x</var>.
</p>
</blockquote>
<p> However, when MathML is
embedded in HTML, or another document markup language, the example is
probably best rendered with only the two inequalities represented as
MathML at all, letting the text be part of the surrounding HTML.
</p>
<p>Another factor to consider in deciding how to mark up text is the
effect on rendering. Text enclosed in an <code>mo</code>
element is unlikely to be found in a renderer's operator dictionary,
so it will be rendered with the format and spacing appropriate for an
"unrecognized operator", which may or may not be better than the
format and spacing for "text" obtained by using an
<code>mtext</code> element. An ellipsis entity in an
<code>mi</code> element is apt to be spaced more appropriately
for taking the place of a term within a series than if it appeared in
an <code>mtext</code> element.
</p>
</div>
</div>
<div class="div3">
<h3><a name="presm.mspace" id="presm.mspace"></a>3.2.7 Space <code><mspace/></code></h3>
<div class="div4">
<h4><a name="id.3.2.7.1" id="id.3.2.7.1"></a>3.2.7.1 Description
</h4>
<p>An <code>mspace</code> empty element represents a blank
space of any desired size, as set by its attributes. It can also be
used to make linebreaking suggestions to a visual renderer.
Note that the default values for attributes have been chosen so that
they typically will have no effect on rendering. Thus, the <code>mspace</code> element is generally used with one
or more attribute values explicitly specified.
</p>
<p>Note the warning about the legal grouping of "space-like
elements" given below, and the warning about the use of such
elements for "tweaking" in <a href="chapter3-d.html#presm.warnfinetuning">Section 3.1.8 Warning about fine-tuning of presentation</a>.
See also the other elements that can render as
whitespace, namely <code>mtext</code>, <code>mphantom</code>, and
<code>maligngroup</code>.
</p>
</div>
<div class="div4">
<h4><a name="id.3.2.7.2" id="id.3.2.7.2"></a>3.2.7.2 Attributes
</h4>
<p>In addition to the attributes listed below,
<code>mspace</code> elements accept the attributes described in <a href="chapter3-d.html#presm.commatt">Section 3.2.2 Mathematics style attributes common to token elements</a>,
but note that <code>mathvariant</code> and <code>mathcolor</code> have no effect and that
<code>mathsize</code> only affects the interpretation of units in sizing
attributes (see <a href="chapter2-d.html#fund.units">Section 2.1.5.2 Length Valued Attributes</a>).
<code>mspace</code> also accepts the indentation attributes described in <a href="chapter3-d.html#presm.lbindent.attrs">Section 3.2.5.2.3 Indentation attributes</a>.
</p>
<table border="1" class="attributes">
<thead>
<tr>
<th>Name</th>
<th>values</th>
<th>default</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="2" class="attname">width</td>
<td><a href="chapter2-d.html#type.length"><em>length</em></a></td>
<td>0em</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies the desired width of the space.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">height</td>
<td><a href="chapter2-d.html#type.length"><em>length</em></a></td>
<td>0ex</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies the desired height (above the baseline) of the space.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">depth</td>
<td><a href="chapter2-d.html#type.length"><em>length</em></a></td>
<td>0ex</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies the desired depth (below the baseline) of the space.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">linebreak</td>
<td>"auto" | "newline" | "nobreak" | "goodbreak" | "badbreak"</td>
<td>auto</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies the desirability of a linebreak at this space.
This attribute should be ignored if any dimensional attribute is set.
</td>
</tr>
</tbody>
</table>
<p>Linebreaking was originally specified on <code>mspace</code> in MathML2,
but controlling linebreaking on <a href="chapter3-d.html#presm.mo"><code>mo</code></a>
is to be preferred starting with MathML 3. MathML 3 adds new linebreaking attributes only to <code>mo</code>, not <code>mspace</code>. However, because a linebreak can be specified on <code>mspace</code>, control over the indentation that follows that break can be specified using the attributes listed in <a href="chapter3-d.html#presm.lbindent.attrs">Section 3.2.5.2.3 Indentation attributes</a>.
</p>
<p>
The value "indentingnewline" was defined in MathML2 for <code>mspace</code>;
it is now deprecated. Its meaning is the same as <code>newline</code>, which is compatible with its earlier use when no other linebreaking attributes are specified.
Note that <code>linebreak</code> values on adjacent <code>mo</code> and <code>mspace</code> elements do
not interact; a "nobreak" on an <code>mspace</code> will
not, in itself, inhibit a break on an adjacent <code>mo</code> element.
</p>
</div>
<div class="div4">
<h4><a name="id.3.2.7.3" id="id.3.2.7.3"></a>3.2.7.3 Examples
</h4><pre class="mathml-fragment">
<mspace height="3ex" depth="2ex"/>
<mrow>
<mi>a</mi>
<mo id="firstop">+</mo>
<mi>b</mi>
<mspace linebreak="newline" indentalign="id" indenttarget="firstop"/>
<mo>+</mo>
<mi>c</mi>
</mrow>
</pre><p>
In the last example, <code>mspace</code> will cause the line to end after the "b" and the following line to be indented so that the "+" that follows will align with
the "+" with <code>id</code>="firstop".
</p>
</div>
<div class="div4">
<h4><a name="id.3.2.7.4" id="id.3.2.7.4"></a>3.2.7.4 Definition of space-like elements
</h4>
<p>A number of MathML presentation elements are "space-like" in the
sense that they typically render as whitespace, and do not affect the
mathematical meaning of the expressions in which they appear. As a
consequence, these elements often function in somewhat exceptional
ways in other MathML expressions. For example, space-like elements are
handled specially in the suggested rendering rules for
<code>mo</code> given in <a href="chapter3-d.html#presm.mo">Section 3.2.5 Operator, Fence, Separator or Accent
<code><mo></code></a>.
The following MathML elements are defined to be "space-like":
</p>
<ul>
<li>
<p>an <code>mtext</code>, <code>mspace</code>,
<code>maligngroup</code>, or <code>malignmark</code>
element;
</p>
</li>
<li>
<p>an <code>mstyle</code>, <code>mphantom</code>, or
<code>mpadded</code> element, all of whose direct sub-expressions
are space-like;
</p>
</li>
<li>
<p>an <code>maction</code> element whose selected
sub-expression exists and is space-like;
</p>
</li>
<li>
<p>an <code>mrow</code> all of whose direct
sub-expressions are space-like.
</p>
</li>
</ul>
<p>Note that an <code>mphantom</code> is <em>not</em>
automatically defined to be space-like, unless its content is
space-like. This is because operator spacing is affected by whether
adjacent elements are space-like. Since the
<code>mphantom</code> element is primarily intended as an aid
in aligning expressions, operators adjacent to an
<code>mphantom</code> should behave as if they were adjacent
to the <em>contents</em> of the <code>mphantom</code>,
rather than to an equivalently sized area of whitespace.
</p>
</div>
<div class="div4">
<h4><a name="id.3.2.7.5" id="id.3.2.7.5"></a>3.2.7.5 Legal grouping of space-like elements
</h4>
<p>Authors who insert space-like elements or
<code>mphantom</code> elements into an existing MathML
expression should note that such elements <em>are</em> counted as
arguments, in elements that require a specific number of arguments,
or that interpret different argument positions differently.
</p>
<p>Therefore, space-like elements inserted into such a MathML element
should be grouped with a neighboring argument of that element by
introducing an <code>mrow</code> for that purpose. For example,
to allow for vertical alignment on the right edge of the base of a
superscript, the expression
</p><pre class="error">
<msup>
<mi> x </mi>
<malignmark edge="right"/>
<mn> 2 </mn>
</msup>
</pre><p>
is illegal, because <code>msup</code> must have exactly 2 arguments;
the correct expression would be:
</p><pre class="mathml">
<msup>
<mrow>
<mi> x </mi>
<malignmark edge="right"/>
</mrow>
<mn> 2 </mn>
</msup>
</pre><p>See also the warning about "tweaking" in
<a href="chapter3-d.html#presm.warnfinetuning">Section 3.1.8 Warning about fine-tuning of presentation</a>.
</p>
</div>
</div>
<div class="div3">
<h3><a name="presm.ms" id="presm.ms"></a>3.2.8 String Literal <code><ms></code></h3>
<div class="div4">
<h4><a name="id.3.2.8.1" id="id.3.2.8.1"></a>3.2.8.1 Description
</h4>
<p>The <code>ms</code> element is used to represent
"string literals" in expressions meant to be interpreted by
computer algebra systems or other systems containing "programming
languages". By default, string literals are displayed surrounded by
double quotes, with no extra spacing added around the string.
As explained in <a href="chapter3-d.html#presm.mtext">Section 3.2.6 Text <code><mtext></code></a>, ordinary text
embedded in a mathematical expression should be marked up with <code>mtext</code>,
or in some cases <code>mo</code> or <code>mi</code>, but never with <code>ms</code>.
</p>
<p>Note that the string literals encoded by <code>ms</code> are made up of characters, <code>mglyph</code>s and
<code>malignmark</code>s rather than "ASCII
strings". For
example, <code><ms>&amp;</ms></code> represents a string
literal containing a single character, <code>&</code>, and
<code><ms>&amp;amp;</ms></code> represents a string literal
containing 5 characters, the first one of which is
<code>&</code>.
</p>
<p>The content of <code>ms</code> elements should be rendered with visible
"escaping" of certain characters in the content,
including at least the left and right quoting
characters, and preferably whitespace other than individual
space characters. The intent is for the viewer to see that the
expression is a string literal, and to see exactly which characters
form its content. For example, <code><ms>double quote is
"</ms></code> might be rendered as "double quote is \"".
</p>
<p>Like all token elements, <code>ms</code> <em>does</em> trim and
collapse whitespace in its content according to the rules of
<a href="chapter2-d.html#fund.collapse">Section 2.1.7 Collapsing Whitespace in Input</a>, so whitespace intended to remain in
the content should be encoded as described in that section.
</p>
</div>
<div class="div4">
<h4><a name="id.3.2.8.2" id="id.3.2.8.2"></a>3.2.8.2 Attributes
</h4>
<p><code>ms</code> elements accept the attributes listed in
<a href="chapter3-d.html#presm.commatt">Section 3.2.2 Mathematics style attributes common to token elements</a>, and additionally:
</p>
<table border="1" class="attributes">
<thead>
<tr>
<th>Name</th>
<th>values</th>
<th>default</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="2" class="attname">lquote</td>
<td><a href="chapter2-d.html#type.string"><em>string</em></a></td>
<td><code>&quot;</code></td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies the opening quote to enclose the content.
(not necessarily ‘left quote’ in RTL context).
</td>
</tr>
<tr>
<td rowspan="2" class="attname">rquote</td>
<td><a href="chapter2-d.html#type.string"><em>string</em></a></td>
<td><code>&quot;</code></td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies the closing quote to enclose the content.
(not necessarily ‘right quote’ in RTL context).
</td>
</tr>
</tbody>
</table>
</div>
</div>
</div>
<div class="div2">
<h2><a name="presm.genlayout" id="presm.genlayout"></a>3.3 General Layout Schemata
</h2>
<p>Besides tokens there are several families of MathML presentation
elements. One family of elements deals with various
"scripting" notations, such as subscript and
superscript. Another family is concerned with matrices and tables. The
remainder of the elements, discussed in this section, describe other basic
notations such as fractions and radicals, or deal with general functions
such as setting style properties and error handling.
</p>
<div class="div3">
<h3><a name="presm.mrow" id="presm.mrow"></a>3.3.1 Horizontally Group Sub-Expressions
<code><mrow></code></h3>
<div class="div4">
<h4><a name="id.3.3.1.1" id="id.3.3.1.1"></a>3.3.1.1 Description
</h4>
<p>An <code>mrow</code> element is used to group together any
number of sub-expressions, usually consisting of one or more <code>mo</code> elements acting as "operators" on one
or more other expressions that are their "operands".
</p>
<p>Several elements automatically treat their arguments as if they were
contained in an <code>mrow</code> element. See the discussion of
inferred <code>mrow</code>s in <a href="chapter3-d.html#presm.reqarg">Section 3.1.3 Required Arguments</a>. See also <code>mfenced</code> (<a href="chapter3-d.html#presm.mfenced">Section 3.3.8 Expression Inside Pair of Fences
<code><mfenced></code></a>), which can effectively form an <code>mrow</code> containing its arguments separated by commas.
</p>
<p><code>mrow</code> elements are typically rendered visually
as a horizontal row of their arguments, left to right in the order in
which the arguments occur within a context with LTR directionality,
or right to left within a context with RTL directionality.
The <code>dir</code> attribute can be used to specify
the directionality for a specific <code>mrow</code>, otherwise it inherits the
directionality from the context. For aural agents, the arguments would be
rendered audibly as a sequence of renderings of
the arguments. The description in <a href="chapter3-d.html#presm.mo">Section 3.2.5 Operator, Fence, Separator or Accent
<code><mo></code></a> of suggested rendering
rules for <code>mo</code> elements assumes that all horizontal
spacing between operators and their operands is added by the rendering
of <code>mo</code> elements (or, more generally, embellished
operators), not by the rendering of the <code>mrow</code>s
they are contained in.
</p>
<p>MathML provides support for both automatic and manual
linebreaking of expressions (that is, to break excessively long
expressions into several lines). All such linebreaks take place
within <code>mrow</code>s, whether they are explicitly marked up
in the document, or inferred (See <a href="chapter3-d.html#presm.inferredmrow">Section 3.1.3.1 Inferred <code><mrow></code>s</a>),
although the control of linebreaking is effected through attributes
on other elements (See <a href="chapter3-d.html#presm.linebreaking">Section 3.1.7 Linebreaking of Expressions</a>).
</p>
</div>
<div class="div4">
<h4><a name="id.3.3.1.2" id="id.3.3.1.2"></a>3.3.1.2 Attributes
</h4>
<p><code>mrow</code> elements accept the attribute listed below in addition to
those listed in <a href="chapter3-d.html#presm.presatt">Section 3.1.10 Mathematics style attributes common to presentation elements</a>.
</p>
<table border="1" class="attributes">
<thead>
<tr>
<th>Name</th>
<th>values</th>
<th>default</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="2" class="attname">dir</td>
<td>"ltr" | "rtl"</td>
<td><em>inherited</em></td>
</tr>
<tr>
<td colspan="2" class="attdesc">
specifies the overall directionality <code>ltr</code> (Left To Right) or
<code>rtl</code> (Right To Left) to use to layout the children of the row.
See <a href="chapter3-d.html#presm.bidi.math">Section 3.1.5.1 Overall Directionality of Mathematics Formulas</a> for further discussion.
</td>
</tr>
</tbody>
</table>
</div>
<div class="div4">
<h4><a name="id.3.3.1.3" id="id.3.3.1.3"></a>3.3.1.3 Proper grouping of sub-expressions using <code><mrow></code></h4>
<p>Sub-expressions should be grouped by the document author in the same way
as they are grouped in the mathematical interpretation of the expression;
that is, according to the underlying "syntax tree" of the
expression. Specifically, operators and their mathematical arguments should
occur in a single <code>mrow</code>; more than one operator
should occur directly in one <code>mrow</code> only when they
can be considered (in a syntactic sense) to act together on the interleaved
arguments, e.g. for a single parenthesized term and its parentheses, for
chains of relational operators, or for sequences of terms separated by
<code>+</code> and <code>-</code>. A precise rule is given below.
</p>
<p>Proper grouping has several purposes: it improves display by
possibly affecting spacing; it allows for more intelligent
linebreaking and indentation; and it simplifies possible semantic
interpretation of presentation elements by computer algebra systems,
and audio renderers.
</p>
<p>Although improper grouping will sometimes result in suboptimal
renderings, and will often make interpretation other than pure visual
rendering difficult or impossible, any grouping of expressions using
<code>mrow</code> is allowed in MathML syntax; that is,
renderers should not assume the rules for proper grouping will be
followed.
</p>
<div class="div5">
<h5><a name="id.3.3.1.3.1" id="id.3.3.1.3.1"></a>3.3.1.3.1 <code><mrow></code> of one argument
</h5>
<p>MathML renderers are required to treat an <code>mrow</code>
element containing exactly one argument as equivalent in all ways to
the single argument occurring alone, provided there are no attributes
on the <code>mrow</code> element. If there are
attributes on the <code>mrow</code> element, no
requirement of equivalence is imposed. This equivalence condition is
intended to simplify the implementation of MathML-generating software
such as template-based authoring tools. It directly affects the
definitions of embellished operator and space-like element and the
rules for determining the default value of the <code>form</code>
attribute of an <code>mo</code> element;
see <a href="chapter3-d.html#presm.mo">Section 3.2.5 Operator, Fence, Separator or Accent
<code><mo></code></a> and <a href="chapter3-d.html#presm.mspace">Section 3.2.7 Space <code><mspace/></code></a>. See also the discussion of equivalence of MathML
expressions in <a href="chapter2-d.html#interf.genproc">Section 2.3 Conformance</a>.
</p>
</div>
<div class="div5">
<h5><a name="id.3.3.1.3.2" id="id.3.3.1.3.2"></a>3.3.1.3.2 Precise rule for proper grouping
</h5>
<p>A precise rule for when and how to nest sub-expressions using
<code>mrow</code> is especially desirable when generating
MathML automatically by conversion from other formats for displayed
mathematics, such as T<sub>E</sub>X, which don't always specify how sub-expressions
nest. When a precise rule for grouping is desired, the following rule
should be used:
</p>
<p>Two adjacent operators, possibly embellished, possibly separated by operands (i.e. anything
other than operators), should occur in the same
<code>mrow</code> only when the leading operator has an infix or
prefix form (perhaps inferred), the following operator has an infix or
postfix form, and the operators have the same priority in the
operator dictionary (<a href="appendixc-d.html">Appendix C Operator Dictionary</a>).
In all other cases, nested <code>mrow</code>s should be used.
</p>
<p>When forming a nested <code>mrow</code> (during generation
of MathML) that includes just one of two successive operators with
the forms mentioned above (which mean that either operator could in
principle act on the intervening operand or operands), it is necessary
to decide which operator acts on those operands directly (or would do
so, if they were present). Ideally, this should be determined from the
original expression; for example, in conversion from an
operator-precedence-based format, it would be the operator with the
higher precedence.
</p>
<p>Note that the above rule has no effect on whether any MathML
expression is valid, only on the recommended way of generating MathML
from other formats for displayed mathematics or directly from written
notation.
</p>
<p>(Some of the terminology used in stating the above rule in defined
in <a href="chapter3-d.html#presm.mo">Section 3.2.5 Operator, Fence, Separator or Accent
<code><mo></code></a>.)
</p>
</div>
</div>
<div class="div4">
<h4><a name="id.3.3.1.4" id="id.3.3.1.4"></a>3.3.1.4 Examples
</h4>
<p>As an example, 2<var>x</var>+<var>y</var>-<var>z</var>
should be written as:
</p><pre class="mathml">
<mrow>
<mrow>
<mn> 2 </mn>
<mo> &#x2062;<span style="color:#999900"><!--INVISIBLE TIMES--></span> </mo>
<mi> x </mi>
</mrow>
<mo> + </mo>
<mi> y </mi>
<mo> - </mo>
<mi> z </mi>
</mrow>
</pre><p>The proper encoding of (<var>x</var>, <var>y</var>) furnishes a less obvious
example of nesting <code>mrow</code>s:
</p><pre class="mathml">
<mrow>
<mo> ( </mo>
<mrow>
<mi> x </mi>
<mo> , </mo>
<mi> y </mi>
</mrow>
<mo> ) </mo>
</mrow>
</pre><p>In this case, a nested <code>mrow</code> is required inside
the parentheses, since parentheses and commas, thought of as fence and
separator "operators", do not act together on their arguments.
</p>
</div>
</div>
<div class="div3">
<h3><a name="presm.mfrac" id="presm.mfrac"></a>3.3.2 Fractions <code><mfrac></code></h3>
<div class="div4">
<h4><a name="id.3.3.2.1" id="id.3.3.2.1"></a>3.3.2.1 Description
</h4>
<p>The <code>mfrac</code> element is used for fractions. It can
also be used to mark up fraction-like objects such as binomial coefficients
and Legendre symbols. The syntax for <code>mfrac</code> is
</p><pre>
<mfrac> <em>numerator</em> <em>denominator</em> </mfrac>
</pre><p>The <code>mfrac</code> element sets <code>displaystyle</code> to "false", or if it
was already false increments <code>scriptlevel</code> by 1,
within <em>numerator</em> and <em>denominator</em>.
(See <a href="chapter3-d.html#presm.scriptlevel">Section 3.1.6 Displaystyle and Scriptlevel</a>.)
</p>
</div>
<div class="div4">
<h4><a name="id.3.3.2.2" id="id.3.3.2.2"></a>3.3.2.2 Attributes
</h4>
<p><code>mfrac</code> elements accept the attributes listed below
in addition to those listed in <a href="chapter3-d.html#presm.presatt">Section 3.1.10 Mathematics style attributes common to presentation elements</a>.
The fraction line, if any, should be drawn using the color specified by <code>mathcolor</code>.
</p>
<table border="1" class="attributes">
<thead>
<tr>
<th>Name</th>
<th>values</th>
<th>default</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="2" class="attname">linethickness</td>
<td> <a href="chapter2-d.html#type.length"><em>length</em></a> | "thin" | "medium" | "thick"
</td>
<td>medium</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies the thickness of the horizontal "fraction bar", or "rule"
The default value is "medium",
"thin" is thinner, but visible,
"thick" is thicker;
the exact thickness of these is left up to the rendering agent.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">numalign</td>
<td>"left" | "center" | "right"</td>
<td>center</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies the alignment of the numerator over the fraction.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">denomalign</td>
<td>"left" | "center" | "right"</td>
<td>center</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies the alignment of the denominator under the fraction.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">bevelled</td>
<td>"true" | "false"</td>
<td>false</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies whether the fraction should be displayed in a beveled style
(the numerator slightly raised, the denominator slightly lowered
and both separated by a slash), rather than "build up" vertically.
See below for an example.
</td>
</tr>
</tbody>
</table>
<p>Thicker lines (e.g. <code>linethickness</code>="thick") might be used with nested fractions;
a value of "0" renders without the bar such as for binomial coefficients.
These cases are shown below:
</p>
<blockquote>
<p><img src="image/f3007.gif" alt="\binom{a}{b} \quad \genfrac{}{}{1pt}{}{\frac{a}{b}}{\frac{c}{d}}"></p>
</blockquote>
<p>An example illustrating the bevelled form is shown below:
</p>
<blockquote>
<p><img src="image/f3008.gif" alt="\frac{1}{x^3 + \frac{x}{3}} = \raisebox{1ex}{$1$}\! \left/ \!\raisebox{-1ex}{$x^3+\frac{x}{3}$} \right."></p>
</blockquote>
<p>
In a RTL directionality context, the numerator leads (on the right),
the denominator follows (on the left) and the diagonal line slants upwards going from right to left (See <a href="chapter3-d.html#presm.bidi.math">Section 3.1.5.1 Overall Directionality of Mathematics Formulas</a> for clarification).
Although this format is an established convention, it is not universally
followed; for situations where a forward slash is desired in a RTL context,
alternative markup, such as an <code>mo</code> within an <code>mrow</code> should be used.
</p>
</div>
<div class="div4">
<h4><a name="id.3.3.2.3" id="id.3.3.2.3"></a>3.3.2.3 Examples
</h4>
<p>The examples shown above can be represented in MathML as:
</p><pre class="mathml">
<mrow>
<mo> ( </mo>
<mfrac linethickness="0">
<mi> a </mi>
<mi> b </mi>
</mfrac>
<mo> ) </mo>
</mrow>
<mfrac linethickness="2">
<mfrac>
<mi> a </mi>
<mi> b </mi>
</mfrac>
<mfrac>
<mi> c </mi>
<mi> d </mi>
</mfrac>
</mfrac>
</pre><pre class="mathml">
<mfrac>
<mn> 1 </mn>
<mrow>
<msup>
<mi> x </mi>
<mn> 3 </mn>
</msup>
<mo> + </mo>
<mfrac>
<mi> x </mi>
<mn> 3 </mn>
</mfrac>
</mrow>
</mfrac>
<mo> = </mo>
<mfrac bevelled="true">
<mn> 1 </mn>
<mrow>
<msup>
<mi> x </mi>
<mn> 3 </mn>
</msup>
<mo> + </mo>
<mfrac>
<mi> x </mi>
<mn> 3 </mn>
</mfrac>
</mrow>
</mfrac>
</pre><p>A more generic example is:
</p><pre class="mathml">
<mfrac>
<mrow>
<mn> 1 </mn>
<mo> + </mo>
<msqrt>
<mn> 5 </mn>
</msqrt>
</mrow>
<mn> 2 </mn>
</mfrac>
</pre></div>
</div>
<div class="div3">
<h3><a name="presm.mroot" id="presm.mroot"></a>3.3.3 Radicals <code><msqrt></code>, <code><mroot></code></h3>
<div class="div4">
<h4><a name="id.3.3.3.1" id="id.3.3.3.1"></a>3.3.3.1 Description
</h4>
<p>These elements construct radicals. The <code>msqrt</code> element is
used for square roots, while the <code>mroot</code> element is used
to draw radicals with indices, e.g. a cube root. The syntax for these
elements is:
</p><pre>
<msqrt> <em>base</em> </msqrt>
<mroot> <em>base</em> <em>index</em> </mroot>
</pre><p>The <code>mroot</code> element requires exactly 2 arguments.
However, <code>msqrt</code> accepts a single argument, possibly
being an inferred <code>mrow</code> of multiple children; see <a href="chapter3-d.html#presm.reqarg">Section 3.1.3 Required Arguments</a>.
The <code>mroot</code> element increments <code>scriptlevel</code> by 2,
and sets <code>displaystyle</code> to "false", within
<em>index</em>, but leaves both attributes unchanged within <em>base</em>.
The <code>msqrt</code> element leaves both
attributes unchanged within its argument.
(See <a href="chapter3-d.html#presm.scriptlevel">Section 3.1.6 Displaystyle and Scriptlevel</a>.)
</p>
<p>Note that in a RTL directionality, the surd begins
on the right, rather than the left, along with the index in the case
of <code>mroot</code>.
</p>
</div>
<div class="div4">
<h4><a name="id.3.3.3.2" id="id.3.3.3.2"></a>3.3.3.2 Attributes
</h4>
<p><code>msqrt</code> and <code>mroot</code> elements accept the attributes listed in
<a href="chapter3-d.html#presm.presatt">Section 3.1.10 Mathematics style attributes common to presentation elements</a>. The surd and overbar should be drawn using the
color specified by <code>mathcolor</code>.
</p>
</div>
</div>
<div class="div3">
<h3><a name="presm.mstyle" id="presm.mstyle"></a>3.3.4 Style Change <code><mstyle></code></h3>
<div class="div4">
<h4><a name="id.3.3.4.1" id="id.3.3.4.1"></a>3.3.4.1 Description
</h4>
<p>The <code>mstyle</code> element is used to make style
changes that affect the rendering of its
contents.
Firstly, as a presentation element, it accepts
the attributes described in <a href="chapter3-d.html#presm.presatt">Section 3.1.10 Mathematics style attributes common to presentation elements</a>.
Additionally, it
can be given any attribute
accepted by any other presentation element, except for the
attributes described below.
Finally,
the <code>mstyle</code> element can be given certain special
attributes listed in the next subsection.
</p>
<p>The <code>mstyle</code> element accepts a single argument,
possibly being an inferred <code>mrow</code> of multiple children;
see <a href="chapter3-d.html#presm.reqarg">Section 3.1.3 Required Arguments</a>.
</p>
<p>Loosely speaking, the effect of the <code>mstyle</code> element
is to change the default value of an attribute for the elements it
contains. Style changes work in one of several ways, depending on
the way in which default values are specified for an attribute.
The cases are:
</p>
<ul>
<li>
<p>Some attributes, such as <code>displaystyle</code> or
<code>scriptlevel</code> (explained below), are inherited
from the surrounding context when they are not explicitly set. Specifying
such an attribute on an <code>mstyle</code> element sets the
value that will be inherited by its child elements. Unless a child element
overrides this inherited value, it will pass it on to its children, and
they will pass it to their children, and so on. But if a child element does
override it, either by an explicit attribute setting or automatically (as
is common for <code>scriptlevel</code>), the new (overriding)
value will be passed on to that element's children, and then to their
children, etc, unless it is again overridden.
</p>
</li>
<li>
<p>Other attributes, such as <code>linethickness</code> on
<code>mfrac</code>, have default values that are not normally
inherited. That is, if the <code>linethickness</code> attribute
is not set on the <code>mfrac</code> element,
it will normally use the default value of "1", even if it was
contained in a larger <code>mfrac</code> element that set this
attribute to a different value. For attributes like this, specifying a
value with an <code>mstyle</code> element has the effect of
changing the default value for all elements within its scope. The net
effect is that setting the attribute value with <code>mstyle</code> propagates the change to all the elements it
contains directly or indirectly, except for the individual elements on
which the value is overridden. Unlike in the case of inherited attributes,
elements that explicitly override this attribute have no effect on this
attribute's value in their children.
</p>
</li>
<li>
<p>Another group of attributes, such as <code>stretchy</code> and <code>form</code>, are
computed from operator dictionary information, position in the
enclosing <code>mrow</code>, and other similar data. For
these attributes, a value specified by an enclosing <code>mstyle</code> overrides the value that would normally be
computed.
</p>
</li>
</ul>
<p>Note that attribute values inherited from an
<code>mstyle</code> in any manner affect a descendant element
in the <code>mstyle</code>'s content only if that attribute is
not given a value by the descendant element. On any element for
which the attribute is set explicitly, the value specified overrides the inherited value. The only exception to this
rule is when the attribute value
is documented as
specifying an incremental change to the value inherited from that
element's context or rendering environment.
</p>
<p>Note also that the difference between inherited and non-inherited
attributes set by <code>mstyle</code>, explained above, only
matters when the attribute is set on some element within the
<code>mstyle</code>'s contents that has descendants also
setting it. Thus it never matters for attributes, such as
<code>mathcolor</code>, which can only be set on token elements (or on
<code>mstyle</code> itself).
</p>
<p>MathML specifies that when
the attributes <code>height</code>, <code>depth</code> or <code>width</code>
are specified on an <code>mstyle</code> element, they apply only to
<code>mspace</code> elements, and not to the corresponding attributes of
<code>mglyph</code>, <code>mpadded</code>, or <code>mtable</code>. Similarly, when
<code>rowalign</code>, <code>columnalign</code>, or <code>groupalign</code>
are specified on an <code>mstyle</code> element, they apply only to the
<code>mtable</code> element, and not the <code>mtr</code>, <code>mlabeledtr</code>,
<code>mtd</code>, and <code>maligngroup</code> elements.
When the <code>lspace</code> attribute is set with <code>mstyle</code>, it
applies only to the <code>mo</code> element and not to <code>mpadded</code>.
To be consistent, the <code>voffset</code> attribute of the
<code>mpadded</code> element can not be set on <code>mstyle</code>.
When the deprecated <code>fontfamily</code> attribute is specified on an
<code>mstyle</code> element, it does not apply to the <code>mglyph</code> element.
The deprecated <code>index</code> attribute cannot be set on <code>mstyle</code>.
When the <code>align</code> attribute is set with <code>mstyle</code>, it
applies only to the <code>munder</code>, <code>mover</code>, and <code>munderover</code>
elements, and not to the <code>mtable</code> and <code>mstack</code> elements.
The required attributes <code>src</code> and <code>alt</code> on <code>mglyph</code>,
and <code>actiontype</code> on <code>maction</code>, cannot be set on <code>mstyle</code>.
</p>
<p>As a presentation element, <code>mstyle</code> directly accepts
the <code>mathcolor</code> and <code>mathbackground</code> attributes.
Thus, the <code>mathbackground</code> specifies the color to fill the bounding
box of the <code>mstyle</code> element itself; it does <em>not</em>
specify the default background color.
This is an incompatible change from MathML 2, but we feel it is more useful
and intuitive. Since the default for <code>mathcolor</code> is inherited,
this is no change in its behaviour.
</p>
</div>
<div class="div4">
<h4><a name="presm.mstyle.attrs" id="presm.mstyle.attrs"></a>3.3.4.2 Attributes
</h4>
<p>As stated above, <code>mstyle</code> accepts all
attributes of all MathML presentation elements which do not have
required values. That is, all attributes which have an explicit
default value or a default value which is inherited or computed are
accepted by the <code>mstyle</code> element.
</p>
<p><code>mstyle</code> elements accept the attributes listed in
<a href="chapter3-d.html#presm.presatt">Section 3.1.10 Mathematics style attributes common to presentation elements</a>.
</p>
<p>Additionally, <code>mstyle</code> can be given the following special
attributes that are implicitly inherited by every MathML element as
part of its rendering environment:
</p>
<table border="1" class="attributes">
<thead>
<tr>
<th>Name</th>
<th>values</th>
<th>default</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="2" class="attname">scriptlevel</td>
<td>( "+" | "-" )? <a href="chapter2-d.html#type.unsigned-integer"><em>unsigned-integer</em></a></td>
<td><em>inherited</em></td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Changes the <code>scriptlevel</code> in effect for the children.
When the value is given without a sign, it sets <code>scriptlevel</code> to the specified value;
when a sign is given, it increments ("+") or decrements ("-") the current value.
(Note that large decrements can result in negative values of <code>scriptlevel</code>,
but these values are considered legal.)
See <a href="chapter3-d.html#presm.scriptlevel">Section 3.1.6 Displaystyle and Scriptlevel</a>.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">displaystyle</td>
<td>"true" | "false"</td>
<td><em>inherited</em></td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Changes the <code>displaystyle</code> in effect for the children.
See <a href="chapter3-d.html#presm.scriptlevel">Section 3.1.6 Displaystyle and Scriptlevel</a>.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">scriptsizemultiplier</td>
<td><a href="chapter2-d.html#type.number"><em>number</em></a></td>
<td>0.71</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies the multiplier to be used to adjust font size due
to changes in <code>scriptlevel</code>.
See <a href="chapter3-d.html#presm.scriptlevel">Section 3.1.6 Displaystyle and Scriptlevel</a>.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">scriptminsize</td>
<td><a href="chapter2-d.html#type.length"><em>length</em></a></td>
<td>8pt</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies the minimum font size allowed due to changes in <code>scriptlevel</code>.
Note that this does not limit the font size due to changes to <code>mathsize</code>.
See <a href="chapter3-d.html#presm.scriptlevel">Section 3.1.6 Displaystyle and Scriptlevel</a>.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">infixlinebreakstyle</td>
<td>"before" | "after" | "duplicate"</td>
<td>before</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies the default linebreakstyle to use for infix operators;
see <a href="chapter3-d.html#presm.lbattrs">Section 3.2.5.2.2 Linebreaking attributes</a>
</td>
</tr>
<tr>
<td rowspan="2" class="attname">decimalpoint</td>
<td><a href="chapter2-d.html#type.character"><em>character</em></a></td>
<td>.</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
specifies the character used to determine the alignment point within
<a href="chapter3-d.html#presm.mstack"><code>mstack</code></a>
and
<a href="chapter3-d.html#presm.mtable"><code>mtable</code></a> columns
when the "decimalpoint" value is used to specify the alignment.
The default, ".", is the decimal separator used to separate the integral
and decimal fractional parts of floating point numbers in many countries.
(See <a href="chapter3-d.html#presm.elementary">Section 3.6 Elementary Math</a> and <a href="chapter3-d.html#presm.malign">Section 3.5.5 Alignment Markers
<code><maligngroup/></code>, <code><malignmark/></code></a>).
</td>
</tr>
</tbody>
</table>
<p>If <code>scriptlevel</code> is changed incrementally by an
<code>mstyle</code> element that also sets certain other
attributes, the overall effect of the changes may depend on the order
in which they are processed. In such cases, the attributes in the
following list should be processed in the following order, regardless
of the order in which they occur in the XML-format attribute list of
the <code>mstyle</code> start tag:
<code>scriptsizemultiplier</code>, <code>scriptminsize</code>,
<code>scriptlevel</code>, <code>mathsize</code>.
</p>
<div class="div5">
<h5><a name="id.3.3.4.2.1" id="id.3.3.4.2.1"></a>3.3.4.2.1 Deprecated Attributes
</h5>
<p>MathML2 allowed the binding of <a href="chapter2-d.html#type.namedspace"><em>namedspaces</em></a>
to new values.
It appears that this capability was never implemented, and is now deprecated;
<a href="chapter2-d.html#type.namedspace"><em>namedspaces</em></a> are now considered constants.
For backwards compatibility, the following attributes are accepted
on the <code>mstyle</code> element, but are expected to have no effect.
</p>
<table border="1" class="attributes">
<thead>
<tr>
<th>Name</th>
<th>values</th>
<th>default</th>
</tr>
</thead>
<tbody>
<tr>
<td class="attname">veryverythinmathspace</td>
<td><a href="chapter2-d.html#type.length"><em>length</em></a></td>
<td>0.0555556em</td>
</tr>
<tr>
<td class="attname">verythinmathspace</td>
<td><a href="chapter2-d.html#type.length"><em>length</em></a></td>
<td>0.111111em</td>
</tr>
<tr>
<td class="attname">thinmathspace</td>
<td><a href="chapter2-d.html#type.length"><em>length</em></a></td>
<td>0.166667em</td>
</tr>
<tr>
<td class="attname">mediummathspace</td>
<td><a href="chapter2-d.html#type.length"><em>length</em></a></td>
<td>0.222222em</td>
</tr>
<tr>
<td class="attname">thickmathspace</td>
<td><a href="chapter2-d.html#type.length"><em>length</em></a></td>
<td>0.277778em</td>
</tr>
<tr>
<td class="attname">verythickmathspace</td>
<td><a href="chapter2-d.html#type.length"><em>length</em></a></td>
<td>0.333333em</td>
</tr>
<tr>
<td class="attname">veryverythickmathspace</td>
<td><a href="chapter2-d.html#type.length"><em>length</em></a></td>
<td>0.388889em</td>
</tr>
</tbody>
</table>
</div>
</div>
<div class="div4">
<h4><a name="id.3.3.4.3" id="id.3.3.4.3"></a>3.3.4.3 Examples
</h4>
<p>The example of limiting the stretchiness of a parenthesis shown in the
section on <mo>,
</p><pre class="mathml">
<mrow>
<mo maxsize="1"> ( </mo>
<mfrac> <mi> a </mi> <mi> b </mi> </mfrac>
<mo maxsize="1"> ) </mo>
</mrow>
</pre><p>can be rewritten using <code>mstyle</code> as:
</p><pre class="mathml">
<mstyle maxsize="1">
<mrow>
<mo> ( </mo>
<mfrac> <mi> a </mi> <mi> b </mi> </mfrac>
<mo> ) </mo>
</mrow>
</mstyle>
</pre></div>
</div>
<div class="div3">
<h3><a name="presm.merror" id="presm.merror"></a>3.3.5 Error Message <code><merror></code></h3>
<div class="div4">
<h4><a name="id.3.3.5.1" id="id.3.3.5.1"></a>3.3.5.1 Description
</h4>
<p>The <code>merror</code> element displays its contents as an
"error message". This might be done, for example, by displaying the
contents in red, flashing the contents, or changing the background
color. The contents can be any expression or expression sequence.
</p>
<p><code>merror</code> accepts
a single argument possibly being an inferred <code>mrow</code> of multiple children;
see <a href="chapter3-d.html#presm.reqarg">Section 3.1.3 Required Arguments</a>.
</p>
<p>The intent of this element is to provide a standard way for
programs that <em>generate</em> MathML from other input to report
syntax errors in their input. Since it is anticipated that
preprocessors that parse input syntaxes designed for easy hand entry
will be developed to generate MathML, it is important that they have
the ability to indicate that a syntax error occurred at a certain
point. See <a href="chapter2-d.html#interf.error">Section 2.3.2 Handling of Errors</a>.
</p>
<p>The suggested use of <code>merror</code> for reporting
syntax errors is for a preprocessor to replace the erroneous part of
its input with an <code>merror</code> element containing a
description of the error, while processing the surrounding expressions
normally as far as possible. By this means, the error message will be
rendered where the erroneous input would have appeared, had it been
correct; this makes it easier for an author to determine from the
rendered output what portion of the input was in error.
</p>
<p>No specific error message format is suggested here, but as with
error messages from any program, the format should be designed to make
as clear as possible (to a human viewer of the rendered error message)
what was wrong with the input and how it can be fixed. If the
erroneous input contains correctly formatted subsections, it may be
useful for these to be preprocessed normally and included in the error
message (within the contents of the <code>merror</code>
element), taking advantage of the ability of
<code>merror</code> to contain arbitrary MathML expressions
rather than only text.
</p>
</div>
<div class="div4">
<h4><a name="id.3.3.5.2" id="id.3.3.5.2"></a>3.3.5.2 Attributes
</h4>
<p><code>merror</code> elements accept the attributes listed in
<a href="chapter3-d.html#presm.presatt">Section 3.1.10 Mathematics style attributes common to presentation elements</a>.
</p>
</div>
<div class="div4">
<h4><a name="id.3.3.5.3" id="id.3.3.5.3"></a>3.3.5.3 Example
</h4>
<p>If a MathML syntax-checking preprocessor
received the input
</p><pre class="error">
<mfraction>
<mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow>
<mn> 2 </mn>
</mfraction>
</pre><p>
which contains the non-MathML element <code>mfraction</code>
(presumably in place of the MathML element <code>mfrac</code>),
it might generate the error message
</p><pre class="mathml">
<merror>
<mtext> Unrecognized element: mfraction;
arguments were: </mtext>
<mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow>
<mtext> and </mtext>
<mn> 2 </mn>
</merror>
</pre><p>Note that the preprocessor's input is not, in this case, valid MathML,
but the error message it outputs is valid MathML.
</p>
</div>
</div>
<div class="div3">
<h3><a name="presm.mpadded" id="presm.mpadded"></a>3.3.6 Adjust Space Around Content
<code><mpadded></code></h3>
<div class="div4">
<h4><a name="id.3.3.6.1" id="id.3.3.6.1"></a>3.3.6.1 Description
</h4>
<p>An <code>mpadded</code> element renders the same as its child content,
but with the size of the child's bounding box and the relative positioning
point of its content modified according to
<code>mpadded</code>'s attributes. It
does not rescale (stretch or shrink) its content. The name of the
element reflects the typical use of <code>mpadded</code> to add padding,
or extra space, around its content. However, <code>mpadded</code> can be
used to make more general adjustments of size and positioning, and some
combinations, e.g. negative padding, can cause the content of
<code>mpadded</code> to overlap the rendering of neighboring content. See
<a href="chapter3-d.html#presm.warnfinetuning">Section 3.1.8 Warning about fine-tuning of presentation</a> for warnings about several
potential pitfalls of this effect.
</p>
<p>The <code>mpadded</code> element accepts
a single argument which may be an inferred <code>mrow</code> of multiple children;
see <a href="chapter3-d.html#presm.reqarg">Section 3.1.3 Required Arguments</a>.
</p>
<p>It is suggested that audio renderers add (or shorten) time delays
based on the attributes representing horizontal space
(<code>width</code> and <code>lspace</code>).
</p>
</div>
<div class="div4">
<h4><a name="id.3.3.6.2" id="id.3.3.6.2"></a>3.3.6.2 Attributes
</h4>
<p><code>mpadded</code> elements accept the attributes listed
below in addition to those specified in <a href="chapter3-d.html#presm.presatt">Section 3.1.10 Mathematics style attributes common to presentation elements</a>.
</p>
<table border="1" class="attributes">
<thead>
<tr>
<th>Name</th>
<th>values</th>
<th>default</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="2" class="attname">height</td>
<td>( "+" | "-" )?
<a href="chapter2-d.html#type.unsigned-number"><em>unsigned-number</em></a>
( ("%" <em>pseudo-unit</em>?)
| <em>pseudo-unit</em>
| <a href="chapter2-d.html#type.unit"><em>unit</em></a>
| <a href="chapter2-d.html#type.namedspace"><em>namedspace</em></a>
)
</td>
<td><em>same as content</em></td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Sets or increments the height of the <code>mpadded</code> element.
See below for discussion.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">depth</td>
<td>( "+" | "-" )?
<a href="chapter2-d.html#type.unsigned-number"><em>unsigned-number</em></a>
(("%" <em>pseudo-unit</em>?)
| <em>pseudo-unit</em>
| <a href="chapter2-d.html#type.unit"><em>unit</em></a>
| <a href="chapter2-d.html#type.namedspace"><em>namedspace</em></a>
)
</td>
<td><em>same as content</em></td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Sets or increments the depth of the <code>mpadded</code> element.
See below for discussion.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">width</td>
<td>( "+" | "-" )?
<a href="chapter2-d.html#type.unsigned-number"><em>unsigned-number</em></a>
( ("%" <em>pseudo-unit</em>?)
| <em>pseudo-unit</em>
| <a href="chapter2-d.html#type.unit"><em>unit</em></a>
| <a href="chapter2-d.html#type.namedspace"><em>namedspace</em></a>
)
</td>
<td><em>same as content</em></td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Sets or increments the width of the <code>mpadded</code> element.
See below for discussion.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">lspace</td>
<td>( "+" | "-" )?
<a href="chapter2-d.html#type.unsigned-number"><em>unsigned-number</em></a>
( ("%" <em>pseudo-unit</em>?)
| <em>pseudo-unit</em>
| <a href="chapter2-d.html#type.unit"><em>unit</em></a>
| <a href="chapter2-d.html#type.namedspace"><em>namedspace</em></a>
)
</td>
<td>0</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Sets the horizontal position of the child content.
See below for discussion.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">voffset</td>
<td>( "+" | "-" )?
<a href="chapter2-d.html#type.unsigned-number"><em>unsigned-number</em></a>
( ("%" <em>pseudo-unit</em>?)
| <em>pseudo-unit</em>
| <a href="chapter2-d.html#type.unit"><em>unit</em></a>
| <a href="chapter2-d.html#type.namedspace"><em>namedspace</em></a>
)
</td>
<td>0</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Sets the vertical position of the child content.
See below for discussion.
</td>
</tr>
</tbody>
</table>
<p>The <em>pseudo-unit</em> syntax symbol is described below.
Also, <code>height</code>, <code>depth</code> and
<code>width</code> attributes are
referred to as size attributes, while <code>lspace</code> and <code>voffset</code> attributes
are position attributes.
</p>
<p>These attributes specify the size of the bounding box of the <code>mpadded</code>
element relative to the size of the bounding box of its child content, and specify
the position of the child content of the <code>mpadded</code> element relative to the
natural positioning of the <code>mpadded</code> element. The typographical
layout parameters determined by these attributes are described in the next subsection.
Depending on the form of the attribute value, a dimension may be set to a new value,
or specified relative to the child content's corresponding dimension. Values may be given as
multiples or percentages of any of the
dimensions of the normal rendering of the child content using so-called pseudo-units,
or they can be set directly using standard units <a href="chapter2-d.html#fund.units">Section 2.1.5.2 Length Valued Attributes</a>.
</p>
<p>If the value of a size attribute begins with a <code>+</code> or <code>-</code> sign,
it specifies an <em>increment</em> or <em>decrement</em> to the corresponding
dimension by the following length value. Otherwise the corresponding
dimension is set directly to the following length value.
Note that since a leading minus sign indicates a decrement, the size
attributes (<code>height</code>, <code>depth</code>, <code>width</code>)
cannot be set directly to negative values. In addition, specifying a
decrement that would produce a net negative value for these attributes
has the same effect as
setting the attribute to zero. In other words, the effective
bounding box of an <code>mpadded</code> element always has non-negative
dimensions. However, negative values are allowed for the relative positioning
attributes <code>lspace</code> and <code>voffset</code>.
</p>
<p>Length values (excluding any sign) can be specified in several formats.
Each format begins with an <a href="chapter2-d.html#type.unsigned-number"><em>unsigned-number</em></a>,
which may be followed by
a <code>%</code> sign (effectively scaling the number)
and an optional <em>pseudo-unit</em>,
by a <em>pseudo-unit</em> alone,
or by a <a href="chapter2-d.html#type.unit"><em>unit</em></a> (excepting <code>%</code>).
The possible <em>pseudo-units</em> are the keywords <code>height</code>,
<code>depth</code>, and <code>width</code>. They represent the length of the same-named dimension of the
<code>mpadded</code> element's child content.
</p>
<p>For any of these length formats, the resulting length
is the product of the number (possibly including the <code>%</code>)
and the following <em>pseudo-unit</em>,
<a href="chapter2-d.html#type.unit"><em>unit</em></a>,
<a href="chapter2-d.html#type.namedspace"><em>namedspace</em></a>
or the default value for the attribute if no such unit or space is given.
</p>
<p>Some examples of attribute formats using pseudo-units (explicit or
default) are as follows: <code>depth="100%height"</code> and
<code>depth="1.0height"</code> both set the depth of the
<code>mpadded</code> element to the height of its content.
<code>depth="105%"</code> sets the depth to 1.05 times the content's
depth, and either <code>depth="+100%"</code> or
<code>depth="200%"</code> sets the depth to twice the content's
depth.
</p>
<p>The rules given above imply that all of the following attribute
settings have the same effect, which is to leave the content's
dimensions unchanged:
</p><pre>
<mpadded width="+0em"> ... </mpadded>
<mpadded width="+0%"> ... </mpadded>
<mpadded width="-0em"> ... </mpadded>
<mpadded width="-0height"> ... </mpadded>
<mpadded width="100%"> ... </mpadded>
<mpadded width="100%width"> ... </mpadded>
<mpadded width="1width"> ... </mpadded>
<mpadded width="1.0width"> ... </mpadded>
<mpadded> ... </mpadded>
</pre><p>
Note that the examples in the Version 2 of the MathML specification showed
spaces within the attribute values, suggesting that this was the intended format.
Formally, spaces are not allowed within these values, but implementers may
wish to ignore such spaces to maximize backward compatibility.
</p>
</div>
<div class="div4">
<h4><a name="id.3.3.6.3" id="id.3.3.6.3"></a>3.3.6.3 Meanings of size and position attributes
</h4>
<p>See <a href="appendixd-d.html">Appendix D Glossary</a> for definitions of some of the typesetting
terms used here.
</p>
<p>The content of an <code>mpadded</code> element defines a fragment of mathematical
notation, such as a character, fraction, or expression, that can be regarded as
a single typographical element with a natural positioning point relative to its
natural bounding box.
</p>
<p>The size of the bounding box of an <code>mpadded</code> element is
defined as the size of the bounding box of its content, except as
modified by the <code>mpadded</code> element's
<code>height</code>, <code>depth</code>, and
<code>width</code> attributes. The natural positioning point of the
child content of the <code>mpadded</code> element is located to coincide
with the natural positioning point of the <code>mpadded</code> element,
except as modified by the <code>lspace</code> and <code>voffset</code>
attributes. Thus, the size attributes of <code>mpadded</code> can be used
to expand or shrink the apparent bounding box of its content, and the
position attributes of <code>mpadded</code> can be used to move the
content relative to the bounding box (and hence also neighboring elements).
Note that MathML doesn't define the precise relationship between "ink",
bounding boxes and positioning points, which are implementation
specific. Thus, absolute values for mpadded attributes may not be
portable between implementations.
</p>
<p>The <code>height</code> attribute specifies the vertical extent of the
bounding box of the <code>mpadded</code> element above its baseline.
Increasing the <code>height</code> increases the space between the baseline
of the <code>mpadded</code> element and the content above it, and introduces
padding above the rendering of the child content. Decreasing the
<code>height</code> reduces the space between the baseline of the
<code>mpadded</code> element and the content above it, and removes
space above the rendering of the child content. Decreasing the
<code>height</code> may cause content above the <code>mpadded</code>
element to overlap the rendering of the child content, and should
generally be avoided.
</p>
<p>The <code>depth</code> attribute specifies the vertical extent of the
bounding box of the <code>mpadded</code> element below its baseline.
Increasing the <code>depth</code> increases the space between the baseline
of the <code>mpadded</code> element and the content below it, and introduces
padding below the rendering of the child content. Decreasing the
<code>depth</code> reduces the space between the baseline of the <code>mpadded</code>
element and the content below it, and removes space below the rendering
of the child content. Decreasing the <code>depth</code> may cause content
below the <code>mpadded</code> element to overlap the rendering of the child
content, and should generally be avoided.
</p>
<p>The <code>width</code> attribute specifies the horizontal distance
between the positioning point of the <code>mpadded</code> element and the
positioning point of the following content.
Increasing the <code>width</code> increases the space between the
positioning point of the <code>mpadded</code> element and the content
that follows it, and introduces padding after the rendering of the
child content. Decreasing the <code>width</code> reduces the space
between the positioning point of the <code>mpadded</code> element and
the content that follows it, and removes space after the rendering
of the child content. Setting the <code>width</code> to zero causes
following content to be positioned at the positioning point of the
<code>mpadded</code> element. Decreasing the <code>width</code> should
generally be avoided, as it may cause overprinting of the following
content.
</p>
<p>The <code>lspace</code> attribute ("leading" space;
see <a href="chapter3-d.html#presm.bidi.math">Section 3.1.5.1 Overall Directionality of Mathematics Formulas</a>) specifies the horizontal
location of the positioning point of the child content with respect to
the positioning point of the <code>mpadded</code> element. By default they
coincide, and therefore absolute values for lspace have the same effect
as relative values.
Positive values for the <code>lspace</code> attribute increase the space
between the preceding content and the child content, and introduce padding
before the rendering of the child content. Negative values for the
<code>lspace</code> attributes reduce the space between the preceding
content and the child content, and may cause overprinting of the
preceding content, and should generally be avoided. Note that the
<code>lspace</code> attribute does not affect the <code>width</code> of
the <code>mpadded</code> element, and so the <code>lspace</code> attribute
will also affect the space between the child content and following
content, and may cause overprinting of the following content, unless
the <code>width</code> is adjusted accordingly.
</p>
<p>The <code>voffset</code> attribute specifies the vertical location
of the positioning point of the child content with respect to the
positioning point of the <code>mpadded</code> element. Positive values
for the <code>voffset</code> attribute raise the rendering of the child
content above the baseline. Negative values for the <code>voffset</code>
attribute lower the rendering of the child content below the baseline.
In either case, the <code>voffset</code> attribute may cause overprinting
of neighboring content, which should generally be avoided. Note that t
he <code>voffset</code> attribute does not affect the <code>height</code>
or <code>depth</code> of the <code>mpadded</code> element, and so the <code>voffset</code>
attribute will also affect the space between the child content and neighboring
content, and may cause overprinting of the neighboring content, unless the
<code>height</code> or <code>depth</code> is adjusted accordingly.
</p>
<p>MathML renderers should ensure that, except for the effects of the
attributes, the relative spacing between the contents of the
<code>mpadded</code> element and surrounding MathML elements would
not be modified by replacing an <code>mpadded</code> element with an
<code>mrow</code> element with the same content, even if linebreaking
occurs within the <code>mpadded</code> element. MathML does not define
how non-default attribute values of an <code>mpadded</code> element interact
with the linebreaking algorithm.
</p>
<p>The effects of the size and position attributes are illustrated
below. The following diagram illustrates the use of <code>lspace</code>
and <code>voffset</code> to shift the position of child content without
modifying the <code>mpadded</code> bounding box.
</p>
<blockquote>
<p><img src="image/mpadded-shift.png" alt="illustration of the use of mpadded to shift the position of child content without modifying the bounding box"></p>
</blockquote>
<p>The corresponding MathML is:
</p><pre class="mathml">
<mrow>
<mi>x</mi>
<mpadded lspace="0.2em" voffset="0.3ex">
<mi>y</mi>
</mpadded>
<mi>z</mi>
</mrow>
</pre><p>The next diagram illustrates the use of
<code>width</code>, <code>height</code> and <code>depth</code>
to modifying the <code>mpadded</code> bounding box without changing the relative position
of the child content.
</p>
<blockquote>
<p><img src="image/mpadded-resize.png" alt="illustration of the use of mpadded to modifying its bounding box without shifting the relative location of its child content"></p>
</blockquote>
<p>The corresponding MathML is:
</p><pre class="mathml">
<mrow>
<mi>x</mi>
<mpadded width="+90%width" height="+0.3ex" depth="+0.3ex">
<mi>y</mi>
</mpadded>
<mi>z</mi>
</mrow>
</pre><p>The final diagram illustrates the generic use of <code>mpadded</code> to modify both
the bounding box and relative position of child content.
</p>
<blockquote>
<p><img src="image/mpadded-combined.png" alt="illustration of the use of mpadded to modify both the bounding box size and position of child content"></p>
</blockquote>
<p>The corresponding MathML is:
</p><pre class="mathml">
<mrow>
<mi>x</mi>
<mpadded lspace="0.3em" width="+0.6em">
<mi>y</mi>
</mpadded>
<mi>z</mi>
</mrow>
</pre></div>
</div>
<div class="div3">
<h3><a name="presm.mphantom" id="presm.mphantom"></a>3.3.7 Making Sub-Expressions Invisible <code><mphantom></code></h3>
<div class="div4">
<h4><a name="id.3.3.7.1" id="id.3.3.7.1"></a>3.3.7.1 Description
</h4>
<p>The <code>mphantom</code> element renders invisibly, but
with the same size and other dimensions, including baseline position,
that its contents would have if they were rendered
normally. <code>mphantom</code> can be used to align parts of
an expression by invisibly duplicating sub-expressions.
</p>
<p>The <code>mphantom</code> element accepts
a single argument possibly being an inferred <code>mrow</code> of multiple children;
see <a href="chapter3-d.html#presm.reqarg">Section 3.1.3 Required Arguments</a>.
</p>
<p>Note that it is possible to wrap both an
<code>mphantom</code> and an <code>mpadded</code>
element around one MathML expression, as in
<code><mphantom><mpadded attribute-settings>
... </mpadded></mphantom></code>, to change its size and make it
invisible at the same time.
</p>
<p>MathML renderers should ensure that the relative spacing between
the contents of an <code>mphantom</code> element and the
surrounding MathML elements is the same as it would be if the
<code>mphantom</code> element were replaced by an
<code>mrow</code> element with the same content. This holds
even if linebreaking occurs within the <code>mphantom</code>
element.
</p>
<p>For the above reason, <code>mphantom</code> is
<em>not</em> considered space-like (<a href="chapter3-d.html#presm.mspace">Section 3.2.7 Space <code><mspace/></code></a>) unless its
content is space-like, since the suggested rendering rules for
operators are affected by whether nearby elements are space-like. Even
so, the warning about the legal grouping of space-like elements may
apply to uses of <code>mphantom</code>.
</p>
</div>
<div class="div4">
<h4><a name="id.3.3.7.2" id="id.3.3.7.2"></a>3.3.7.2 Attributes
</h4>
<p><code>mphantom</code> elements accept the attributes listed in
<a href="chapter3-d.html#presm.presatt">Section 3.1.10 Mathematics style attributes common to presentation elements</a> (the <code>mathcolor</code> has no effect).
</p>
</div>
<div class="div4">
<h4><a name="id.3.3.7.3" id="id.3.3.7.3"></a>3.3.7.3 Examples
</h4>
<p>There is one situation where the preceding rules for rendering an
<code>mphantom</code> may not give the desired effect. When an
<code>mphantom</code> is wrapped around a subsequence of the
arguments of an <code>mrow</code>, the default determination
of the <code>form</code> attribute for an <code>mo</code>
element within the subsequence can change. (See the default value of
the <code>form</code> attribute described in <a href="chapter3-d.html#presm.mo">Section 3.2.5 Operator, Fence, Separator or Accent
<code><mo></code></a>.) It may be
necessary to add an explicit <code>form</code> attribute to such an
<code>mo</code> in these cases. This is illustrated in the
following example.
</p>
<p>In this example, <code>mphantom</code> is used to ensure
alignment of corresponding parts of the numerator and denominator of a
fraction:
</p><pre class="mathml">
<mfrac>
<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
<mo> + </mo>
<mi> z </mi>
</mrow>
<mrow>
<mi> x </mi>
<mphantom>
<mo form="infix"> + </mo>
<mi> y </mi>
</mphantom>
<mo> + </mo>
<mi> z </mi>
</mrow>
</mfrac>
</pre><p>This would render as something like
</p>
<blockquote>
<p><img src="image/mphantom.gif" alt="\frac{x+y+x}{x\phantom{{}+y}+z}"></p>
</blockquote>
<p>
rather than as
</p>
<blockquote>
<p><img src="image/mphantom-bad.gif" alt="\frac{x+y+z}{x+z}"></p>
</blockquote>
<p>The explicit attribute setting <code>form</code><code>="infix"</code> on the
<code>mo</code> element inside the <code>mphantom</code> sets the
<code>form</code> attribute to what it would have been in the absence of the
surrounding <code>mphantom</code>. This is necessary since
otherwise, the <code>+</code> sign would be interpreted as a prefix
operator, which might have slightly different spacing.
</p>
<p>Alternatively, this problem could be avoided without any explicit
attribute settings, by wrapping each of the arguments
<code><mo>+</mo></code> and <code><mi>y</mi></code> in its
own <code>mphantom</code> element, i.e.
</p><pre class="mathml">
<mfrac>
<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
<mo> + </mo>
<mi> z </mi>
</mrow>
<mrow>
<mi> x </mi>
<mphantom>
<mo> + </mo>
</mphantom>
<mphantom>
<mi> y </mi>
</mphantom>
<mo> + </mo>
<mi> z </mi>
</mrow>
</mfrac>
</pre></div>
</div>
<div class="div3">
<h3><a name="presm.mfenced" id="presm.mfenced"></a>3.3.8 Expression Inside Pair of Fences
<code><mfenced></code></h3>
<div class="div4">
<h4><a name="id.3.3.8.1" id="id.3.3.8.1"></a>3.3.8.1 Description
</h4>
<p>The <code>mfenced</code> element provides a convenient form
in which to express common constructs involving fences (i.e. braces,
brackets, and parentheses), possibly including separators (such as
comma) between the arguments.
</p>
<p>For example, <code><mfenced> <mi>x</mi> </mfenced></code>
renders as "(<var>x</var>)" and is equivalent to
</p><pre class="mathml">
<mrow> <mo> ( </mo> <mi>x</mi> <mo> ) </mo> </mrow>
</pre><p>
and
<code><mfenced> <mi>x</mi> <mi>y</mi> </mfenced></code>
renders as "(<var>x</var>, <var>y</var>)"
and is equivalent to
</p><pre class="mathml">
<mrow>
<mo> ( </mo>
<mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> </mrow>
<mo> ) </mo>
</mrow>
</pre><p>Individual fences or separators are represented using
<code>mo</code> elements, as described in <a href="chapter3-d.html#presm.mo">Section 3.2.5 Operator, Fence, Separator or Accent
<code><mo></code></a>. Thus, any <code>mfenced</code>
element is completely equivalent to an expanded form described below;
either form can be used in MathML, at the convenience of an author or
of a MathML-generating program. A MathML renderer is required to
render either of these forms in exactly the same way.
</p>
<p>In general, an <code>mfenced</code> element can contain
zero or more arguments, and will enclose them between fences in an
<code>mrow</code>; if there is more than one argument, it will
insert separators between adjacent arguments, using an additional
nested <code>mrow</code> around the arguments and separators
for proper grouping (<a href="chapter3-d.html#presm.mrow">Section 3.3.1 Horizontally Group Sub-Expressions
<code><mrow></code></a>). The general expanded form is
shown below. The fences and separators will be parentheses and comma
by default, but can be changed using attributes, as shown in the
following table.
</p>
</div>
<div class="div4">
<h4><a name="id.3.3.8.2" id="id.3.3.8.2"></a>3.3.8.2 Attributes
</h4>
<p><code>mfenced</code> elements accept the attributes listed
below in addition to those specified in <a href="chapter3-d.html#presm.presatt">Section 3.1.10 Mathematics style attributes common to presentation elements</a>.
The delimiters and separators should be drawn using the color specified by <code>mathcolor</code>.
</p>
<table border="1" class="attributes">
<thead>
<tr>
<th>Name</th>
<th>values</th>
<th>default</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="2" class="attname">open</td>
<td><a href="chapter2-d.html#type.string"><em>string</em></a></td>
<td>(</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies the opening delimiter.
Since it is used as the content of an <code>mo</code> element, any whitespace
will be trimmed and collapsed as described in <a href="chapter2-d.html#fund.collapse">Section 2.1.7 Collapsing Whitespace in Input</a>.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">close</td>
<td><a href="chapter2-d.html#type.string"><em>string</em></a></td>
<td>)</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies the closing delimiter.
Since it is used as the content of an <code>mo</code> element, any whitespace
will be trimmed and collapsed as described in <a href="chapter2-d.html#fund.collapse">Section 2.1.7 Collapsing Whitespace in Input</a>.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">separators</td>
<td><a href="chapter2-d.html#type.string"><em>string</em></a></td>
<td>,</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies a sequence of zero or more separator characters, optionally separated by whitespace.
Each pair of arguments is displayed separated by the corresponding separator
(none appears after the last argument).
If there are too many separators, the excess are ignored;
if there are too few, the last separator is repeated.
Any whitespace within <code>separators</code> is ignored.
</td>
</tr>
</tbody>
</table>
<p>A generic <code>mfenced</code> element, with all attributes
explicit, looks as follows:
</p><pre>
<mfenced open="opening-fence"
close="closing-fence"
separators="sep#1 sep#2 ... sep#(n-1)" >
arg#1
...
arg#n
</mfenced>
</pre><p>In an RTL directionality context, since the initial text
direction is RTL, characters in the <code>open</code> and <code>close</code>
attributes that have a mirroring counterpart will be rendered in that
mirrored form. In particular, the default values will render correctly
as a parenthesized sequence in both LTR and RTL contexts.
</p>
<p>The general <code>mfenced</code> element shown above is
equivalent to the following expanded form:
</p><pre>
<mrow>
<mo fence="true"> opening-fence </mo>
<mrow>
arg#1
<mo separator="true"> sep#1 </mo>
...
<mo separator="true"> sep#(n-1) </mo>
arg#n
</mrow>
<mo fence="true"> closing-fence </mo>
</mrow>
</pre><p>Each argument except the last is followed by a separator. The inner
<code>mrow</code> is added for proper grouping, as described in
<a href="chapter3-d.html#presm.mrow">Section 3.3.1 Horizontally Group Sub-Expressions
<code><mrow></code></a>.
</p>
<p>When there is only one argument, the above form has no separators;
since <code><mrow> arg#1 </mrow></code> is equivalent to
<code>arg#1</code> (as described in <a href="chapter3-d.html#presm.mrow">Section 3.3.1 Horizontally Group Sub-Expressions
<code><mrow></code></a>), this case is also equivalent to:
</p><pre>
<mrow>
<mo fence="true"> opening-fence </mo>
arg#1
<mo fence="true"> closing-fence </mo>
</mrow>
</pre><p>If there are too many separator characters, the extra ones are
ignored. If separator characters are given, but there are too few, the
last one is repeated as necessary. Thus, the default value of
<code>separators</code>="," is equivalent to
<code>separators</code>=",,", <code>separators</code>=",,,", etc. If
there are no separator characters provided but some are needed, for
example if <code>separators</code>=" " or "" and there is more than
one argument, then no separator elements are inserted at all — that
is, the elements <code><mo separator="true"> sep#i
</mo></code> are left out entirely. Note that this is different
from inserting separators consisting of <code>mo</code>
elements with empty content.
</p>
<p>Finally, for the case with no arguments, i.e.
</p><pre>
<mfenced open="opening-fence"
close="closing-fence"
separators="anything" >
</mfenced>
</pre><p>
the equivalent expanded form is defined to include just
the fences within an <code>mrow</code>:
</p><pre>
<mrow>
<mo fence="true"> opening-fence </mo>
<mo fence="true"> closing-fence </mo>
</mrow>
</pre><p>Note that not all "fenced expressions" can be encoded by an
<code>mfenced</code> element. Such exceptional expressions
include those with an "embellished" separator or fence or one
enclosed in an <code>mstyle</code> element, a missing or extra
separator or fence, or a separator with multiple content
characters. In these cases, it is necessary to encode the expression
using an appropriately modified version of an expanded form. As
discussed above, it is always permissible to use the expanded form
directly, even when it is not necessary. In particular, authors cannot
be guaranteed that MathML preprocessors won't replace occurrences of
<code>mfenced</code> with equivalent expanded forms.
</p>
<p>Note that the equivalent expanded forms shown above include
attributes on the <code>mo</code> elements that identify them as fences or
separators. Since the most common choices of fences and separators
already occur in the operator dictionary with those attributes,
authors would not normally need to specify those attributes explicitly
when using the expanded form directly. Also, the rules for the default
<code>form</code> attribute (<a href="chapter3-d.html#presm.mo">Section 3.2.5 Operator, Fence, Separator or Accent
<code><mo></code></a>) cause the
opening and closing fences to be effectively given the values
<code>form</code><code>="prefix"</code> and
<code>form</code><code>="postfix"</code> respectively, and the
separators to be given the value
<code>form</code><code>="infix"</code>.
</p>
<p>Note that it would be incorrect to use <code>mfenced</code>
with a separator of, for instance, "+", as an abbreviation for an
expression using "+" as an ordinary operator, e.g.
</p><pre class="mathml">
<mrow>
<mi>x</mi> <mo>+</mo> <mi>y</mi> <mo>+</mo> <mi>z</mi>
</mrow>
</pre><p>
This is because the <code>+</code> signs would be treated as separators,
not infix operators. That is, it would render as if they were marked up as
<code><mo separator="true">+</mo></code>, which might therefore
render inappropriately.
</p>
</div>
<div class="div4">
<h4><a name="id.3.3.8.3" id="id.3.3.8.3"></a>3.3.8.3 Examples
</h4>
<p>(<var>a</var>+<var>b</var>)
</p><pre class="mathml">
<mfenced>
<mrow>
<mi> a </mi>
<mo> + </mo>
<mi> b </mi>
</mrow>
</mfenced>
</pre><p>Note that the above <code>mrow</code> is necessary so that
the <code>mfenced</code> has just one argument. Without it, this
would render incorrectly as "(<var>a</var>, +,
<var>b</var>)".
</p>
<p>[0,1)
</p><pre class="mathml">
<mfenced open="[">
<mn> 0 </mn>
<mn> 1 </mn>
</mfenced>
</pre><p><var>f</var>(<var>x</var>,<var>y</var>)
</p><pre class="mathml">
<mrow>
<mi> f </mi>
<mo> &#x2061;<span style="color:#999900"><!--FUNCTION APPLICATION--></span> </mo>
<mfenced>
<mi> x </mi>
<mi> y </mi>
</mfenced>
</mrow>
</pre></div>
</div>
<div class="div3">
<h3><a name="presm.menclose" id="presm.menclose"></a>3.3.9 Enclose Expression Inside Notation
<code><menclose></code></h3>
<div class="div4">
<h4><a name="id.3.3.9.1" id="id.3.3.9.1"></a>3.3.9.1 Description
</h4>
<p>The <code>menclose</code> element renders its content
inside the enclosing notation specified by its <code>notation</code> attribute.
<code>menclose</code> accepts
a single argument possibly being an inferred <code>mrow</code> of multiple children;
see <a href="chapter3-d.html#presm.reqarg">Section 3.1.3 Required Arguments</a>.
</p>
</div>
<div class="div4">
<h4><a name="id.3.3.9.2" id="id.3.3.9.2"></a>3.3.9.2 Attributes
</h4>
<p><code>menclose</code> elements accept the attributes listed
below in addition to those specified in <a href="chapter3-d.html#presm.presatt">Section 3.1.10 Mathematics style attributes common to presentation elements</a>.
The notations should be drawn using the color specified by <code>mathcolor</code>.
</p>
<p>
The values allowed for <code>notation</code> are open-ended.
Conforming renderers may ignore any value they do not handle, although
renderers are encouraged to render as many of the values listed below as
possible.
</p>
<table border="1" class="attributes">
<thead>
<tr>
<th>Name</th>
<th>values</th>
<th>default</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="2" class="attname">notation</td>
<td>("longdiv" | "actuarial" | "radical" | "box" | "roundedbox" | "circle" |
"left" | "right" | "top" | "bottom" |
"updiagonalstrike" | "downdiagonalstrike" | "verticalstrike" | "horizontalstrike"
| "madruwb" | text) +
</td>
<td>longdiv</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies a space separated list of notations to be used to enclose the children.
See below for a description of each type of notation.
</td>
</tr>
</tbody>
</table>
<p>Any number of values can be given for
<code>notation</code> separated by whitespace; all of those given and
understood by a MathML renderer should be rendered.
Each should be rendered as if the others were not present; they should not nest one inside of the other. For example,
<code>notation</code>="circle box" should
result in circle and a box around the contents of <code>menclose</code>; the circle and box may overlap. This is shown in the first example below.
Of the predefined notations, only "radical"
is affected by the directionality (see <a href="chapter3-d.html#presm.bidi.math">Section 3.1.5.1 Overall Directionality of Mathematics Formulas</a>).
</p>
<p>When <code>notation</code> has the value "longdiv",
the contents are drawn enclosed by a long division symbol. A complete
example of long division is accomplished by also using <code>mtable</code>
and <code>malign</code>. When <code>notation</code> is specified as
"actuarial", the contents are drawn enclosed by an
actuarial symbol. A similar result can be achieved
with the value "top right". The case of
<code>notation</code>="radical" is equivalent to the
<code>msqrt</code> schema.
</p>
<p> The values "box",
"roundedbox", and "circle" should
enclose the contents as indicated by the values. The amount of
distance between the box, roundedbox, or circle, and the contents are
not specified by MathML, and is left to the renderer. In practice,
paddings on each side of 0.4em in the horizontal direction and .5ex in
the vertical direction seem to work well.
</p>
<p>The values "left",
"right", "top" and
"bottom" should result in lines drawn on those sides of
the contents. The values "updiagonalstrike",
"downdiagonalstrike", "verticalstrike"
and "horizontalstrike" should result in the indicated
strikeout lines being superimposed over the content of the
<code>menclose</code>, e.g. a strikeout that extends from the lower left
corner to the upper right corner of the <code>menclose</code> element for
"updiagonalstrike", etc.
</p>
<p>The value "madruwb" should generate an enclosure
representing an Arabic factorial (‘madruwb’ is the transliteration
of the Arabic مضروب for factorial).
This is shown in the third example below.
</p>
<p>The baseline of an <code>menclose</code> element is the baseline of its child (which might be an implied <code>mrow</code>).
</p>
</div>
<div class="div4">
<h4><a name="id.3.3.9.3" id="id.3.3.9.3"></a>3.3.9.3 Examples
</h4>
<p>An example of using multiple attributes is
</p><pre class="mathml">
<menclose notation='circle box'>
<mi> x </mi><mo> + </mo><mi> y </mi>
</menclose>
</pre><p>
which renders with the box and circle overlapping roughly as
</p>
<blockquote>
<p><img src="image/circlebox.png" alt="[Image of a circle and box around x plus y]"></p>
</blockquote>
<p>.
</p>
<p>An example of using <code>menclose</code> for actuarial
notation is
</p><pre class="mathml">
<msub>
<mi>a</mi>
<mrow>
<menclose notation='actuarial'>
<mi>n</mi>
</menclose>
<mo>&#x2063;<span style="color:#999900"><!--INVISIBLE SEPARATOR--></span></mo>
<mi>i</mi>
</mrow>
</msub>
</pre><p>
which renders roughly as
</p>
<blockquote>
<p><img src="image/actuarial.png" alt="[image of actuarial notation for a angle n at i]"></p>
</blockquote>
<p>An example of "madruwb" is:
</p><pre class="mathml">
<menclose notation="madruwb">
<mn>12</mn>
</menclose>
</pre><p>
which renders roughly as
</p>
<blockquote>
<p><img src="image/madruwb12.png" alt="[Image of 12 factorial in Arabic style]"></p>
</blockquote>
<p>.
</p>
</div>
</div>
</div>
<div class="div2">
<h2><a name="presm.scrlim" id="presm.scrlim"></a>3.4 Script and Limit Schemata
</h2>
<p>The elements described in this section position one or more scripts
around a base. Attaching various kinds of scripts and embellishments to
symbols is a very common notational device in mathematics. For purely
visual layout, a single general-purpose element could suffice for
positioning scripts and embellishments in any of the traditional script
locations around a given base. However, in order to capture the abstract
structure of common notation better, MathML provides several more
specialized scripting elements.
</p>
<p>In addition to sub/superscript elements, MathML has overscript
and underscript elements that place scripts above and below the base. These
elements can be used to place limits on large operators, or for placing
accents and lines above or below the base. The rules for rendering accents
differ from those for overscripts and underscripts, and this difference can
be controlled with the <code>accent</code> and <code>accentunder</code> attributes, as described in the appropriate
sections below.
</p>
<p>Rendering of scripts is affected by the <code>scriptlevel</code> and <code>displaystyle</code>
attributes, which are part of the environment inherited by the rendering
process of every MathML expression, and are described in <a href="chapter3-d.html#presm.scriptlevel">Section 3.1.6 Displaystyle and Scriptlevel</a>.
These attributes cannot be given explicitly on a scripting element, but can be
specified on the start tag of a surrounding <code>mstyle</code>
element if desired.
</p>
<p>MathML also provides an element for attachment of tensor indices.
Tensor indices are distinct from ordinary subscripts and superscripts in
that they must align in vertical columns. Tensor indices can also occur in
prescript positions. Note that ordinary scripts follow the base (on the right
in LTR context, but on the left in RTL context); prescripts precede the base
(on the left (right) in LTR (RTL) context).
</p>
<p>Because presentation elements should be used to describe the abstract
notational structure of expressions, it is important that the base
expression in all "scripting" elements (i.e. the first
argument expression) should be the entire expression that is being
scripted, not just the trailing character. For example,
(<var>x</var>+<var>y</var>)<sup>2</sup> should be written as:
</p><pre class="mathml">
<msup>
<mrow>
<mo> ( </mo>
<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
</mrow>
<mo> ) </mo>
</mrow>
<mn> 2 </mn>
</msup>
</pre><div class="div3">
<h3><a name="presm.msub" id="presm.msub"></a>3.4.1 Subscript <code><msub></code></h3>
<div class="div4">
<h4><a name="id.3.4.1.1" id="id.3.4.1.1"></a>3.4.1.1 Description
</h4>
<p>The <code>msub</code> element attaches a subscript to a base using the syntax
</p><pre>
<msub> <em>base</em> <em>subscript</em> </msub>
</pre><p>
It increments <code>scriptlevel</code> by 1, and sets <code>displaystyle</code> to
"false", within <em>subscript</em>, but leaves both attributes
unchanged within <em>base</em>. (See <a href="chapter3-d.html#presm.scriptlevel">Section 3.1.6 Displaystyle and Scriptlevel</a>.)
</p>
</div>
<div class="div4">
<h4><a name="id.3.4.1.2" id="id.3.4.1.2"></a>3.4.1.2 Attributes
</h4>
<p><code>msub</code> elements accept the attributes listed
below in addition to those specified in <a href="chapter3-d.html#presm.presatt">Section 3.1.10 Mathematics style attributes common to presentation elements</a>.
</p>
<table border="1" class="attributes">
<thead>
<tr>
<th>Name</th>
<th>values</th>
<th>default</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="2" class="attname">subscriptshift</td>
<td><a href="chapter2-d.html#type.length"><em>length</em></a></td>
<td><em>automatic</em></td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies the minimum amount to shift the baseline of <em>subscript</em> down;
the default is for the rendering agent to use its own positioning rules.
</td>
</tr>
</tbody>
</table>
</div>
</div>
<div class="div3">
<h3><a name="presm.msup" id="presm.msup"></a>3.4.2 Superscript <code><msup></code></h3>
<div class="div4">
<h4><a name="id.3.4.2.1" id="id.3.4.2.1"></a>3.4.2.1 Description
</h4>
<p>The <code>msup</code> element attaches a superscript to a base using the syntax
</p><pre>
<msup> <em>base</em> <em>superscript</em> </msup>
</pre><p>
It increments <code>scriptlevel</code> by 1, and sets <code>displaystyle</code> to "false", within
<em>superscript</em>, but leaves both attributes unchanged within
<em>base</em>. (See <a href="chapter3-d.html#presm.scriptlevel">Section 3.1.6 Displaystyle and Scriptlevel</a>.)
</p>
</div>
<div class="div4">
<h4><a name="id.3.4.2.2" id="id.3.4.2.2"></a>3.4.2.2 Attributes
</h4>
<p><code>msup</code> elements accept the attributes listed
below in addition to those specified in <a href="chapter3-d.html#presm.presatt">Section 3.1.10 Mathematics style attributes common to presentation elements</a>.
</p>
<table border="1" class="attributes">
<thead>
<tr>
<th>Name</th>
<th>values</th>
<th>default</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="2" class="attname">superscriptshift</td>
<td><a href="chapter2-d.html#type.length"><em>length</em></a></td>
<td><em>automatic</em></td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies the minimum amount to shift the baseline of <em>superscript</em> up;
the default is for the rendering agent to use its own positioning rules.
</td>
</tr>
</tbody>
</table>
</div>
</div>
<div class="div3">
<h3><a name="presm.msubsup" id="presm.msubsup"></a>3.4.3 Subscript-superscript Pair <code><msubsup></code></h3>
<div class="div4">
<h4><a name="id.3.4.3.1" id="id.3.4.3.1"></a>3.4.3.1 Description
</h4>
<p>The <code>msubsup</code> element is used to attach both a subscript and
superscript to a base expression.
</p><pre>
<msubsup> <em>base</em> <em>subscript</em> <em>superscript</em> </msubsup>
</pre><p>
It increments <code>scriptlevel</code> by 1, and sets <code>displaystyle</code> to
"false", within <em>subscript</em> and <em>superscript</em>,
but leaves both attributes unchanged within <em>base</em>.
(See <a href="chapter3-d.html#presm.scriptlevel">Section 3.1.6 Displaystyle and Scriptlevel</a>.)
</p>
<p> Note that both scripts are positioned tight against the base as shown here
<img src="image/f3014.gif" alt="x_1^2" align="middle">
versus the staggered positioning of nested scripts as shown here
<img src="image/f3013.gif" alt="x_1{}^2" align="middle">;
the latter can be achieved by nesting an <code>msub</code> inside an <code>msup</code>.
</p>
</div>
<div class="div4">
<h4><a name="presm.subsupatt" id="presm.subsupatt"></a>3.4.3.2 Attributes
</h4>
<p><code>msubsup</code> elements accept the attributes listed
below in addition to those specified in <a href="chapter3-d.html#presm.presatt">Section 3.1.10 Mathematics style attributes common to presentation elements</a>.
</p>
<table border="1" class="attributes">
<thead>
<tr>
<th>Name</th>
<th>values</th>
<th>default</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="2" class="attname">subscriptshift</td>
<td><a href="chapter2-d.html#type.length"><em>length</em></a></td>
<td><em>automatic</em></td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies the minimum amount to shift the baseline of <em>subscript</em> down;
the default is for the rendering agent to use its own positioning rules.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">superscriptshift</td>
<td><a href="chapter2-d.html#type.length"><em>length</em></a></td>
<td><em>automatic</em></td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies the minimum amount to shift the baseline of <em>superscript</em> up;
the default is for the rendering agent to use its own positioning rules.
</td>
</tr>
</tbody>
</table>
</div>
<div class="div4">
<h4><a name="id.3.4.3.3" id="id.3.4.3.3"></a>3.4.3.3 Examples
</h4>
<p>The <code>msubsup</code> is most commonly used for adding
sub/superscript pairs to identifiers as illustrated above. However,
another important use is placing limits on certain large operators
whose limits are traditionally displayed in the script positions even
when rendered in display style. The most common of these is the
integral. For example,
</p>
<blockquote>
<p><img src="image/f3015.gif" alt="\int\nolimits_0^1 \eulere^x \,\diffd x"></p>
</blockquote>
<p>
would be represented as
</p><pre class="mathml">
<mrow>
<msubsup>
<mo> &#x222B;<span style="color:#999900"><!--INTEGRAL--></span> </mo>
<mn> 0 </mn>
<mn> 1 </mn>
</msubsup>
<mrow>
<msup>
<mi> &#x2147;<span style="color:#999900"><!--DOUBLE-STRUCK ITALIC SMALL E--></span> </mi>
<mi> x </mi>
</msup>
<mo> &#x2062;<span style="color:#999900"><!--INVISIBLE TIMES--></span> </mo>
<mrow>
<mo> &#x2146;<span style="color:#999900"><!--DOUBLE-STRUCK ITALIC SMALL D--></span> </mo>
<mi> x </mi>
</mrow>
</mrow>
</mrow>
</pre></div>
</div>
<div class="div3">
<h3><a name="presm.munder" id="presm.munder"></a>3.4.4 Underscript <code><munder></code></h3>
<div class="div4">
<h4><a name="id.3.4.4.1" id="id.3.4.4.1"></a>3.4.4.1 Description
</h4>
<p>The <code>munder</code> element attaches an accent or limit placed under a base using the syntax
</p><pre>
<munder> <em>base</em> <em>underscript</em> </munder>
</pre><p>
It always sets <code>displaystyle</code> to "false" within the underscript,
but increments <code>scriptlevel</code> by 1 only when <code>accentunder</code> is "false".
Within <em>base</em>, it always leaves both attributes unchanged.
(See <a href="chapter3-d.html#presm.scriptlevel">Section 3.1.6 Displaystyle and Scriptlevel</a>.)
</p>
<p>If <em>base</em> is an operator with <code>movablelimits</code>="true"
(or an embellished operator whose <code>mo</code> element core has <code>movablelimits</code>="true"),
and <code>displaystyle</code>="false",
then <em>underscript</em> is drawn in a subscript position.
In this case, the <code>accentunder</code> attribute is ignored.
This is often used for limits on symbols such as <code>&sum;</code>.
</p>
</div>
<div class="div4">
<h4><a name="id.3.4.4.2" id="id.3.4.4.2"></a>3.4.4.2 Attributes
</h4>
<p><code>munder</code> elements accept the attributes listed
below in addition to those specified in <a href="chapter3-d.html#presm.presatt">Section 3.1.10 Mathematics style attributes common to presentation elements</a>.
</p>
<table border="1" class="attributes">
<thead>
<tr>
<th>Name</th>
<th>values</th>
<th>default</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="2" class="attname">accentunder</td>
<td>"true" | "false"</td>
<td><em>automatic</em></td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies whether <em>underscript</em> is drawn as an "accent" or as a limit.
An accent is drawn the same size as the base (without incrementing <code>scriptlevel</code>)
and is drawn closer to the base.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">align</td>
<td>"left" | "right" | "center"</td>
<td>center</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies whether the script is aligned left, center, or right under/over the base.
As specfied in <a href="chapter3-d.html#presm.horiz.stretch.rules">Section 3.2.5.8.3 Horizontal Stretching Rules</a>, the core of underscripts that are embellished operators should stretch to cover the base, but the alignment is based on
the entire underscript.
</td>
</tr>
</tbody>
</table>
<p>The default value of <code>accentunder</code> is false, unless
<em>underscript</em> is an <code>mo</code> element or an
embellished operator (see <a href="chapter3-d.html#presm.mo">Section 3.2.5 Operator, Fence, Separator or Accent
<code><mo></code></a>). If
<em>underscript</em> is an <code>mo</code> element, the
value of its <code>accent</code> attribute is used as the default
value of <code>accentunder</code>. If <em>underscript</em> is an
embellished operator, the <code>accent</code> attribute of the
<code>mo</code> element at its core is used as the default
value. As with all attributes, an explicitly given value overrides
the default.
</p>
<p>Here is an example (accent versus underscript):
<img src="image/f3016.gif" alt="\underbrace{x+y+z}" align="middle"> versus
<img src="image/f3017.gif" alt="\underbrace{\strut x+y+z}" align="middle">.
The MathML representation for this example is shown below.
</p>
</div>
<div class="div4">
<h4><a name="id.3.4.4.3" id="id.3.4.4.3"></a>3.4.4.3 Examples
</h4>
<p>The MathML representation for the example shown above is:
</p><pre class="mathml">
<mrow>
<munder accentunder="true">
<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
<mo> + </mo>
<mi> z </mi>
</mrow>
<mo> &#x23DF;<span style="color:#999900"><!--BOTTOM CURLY BRACKET--></span> </mo>
</munder>
<mtext>&#xA0;<span style="color:#999900"><!--NO-BREAK SPACE--></span>versus&#xA0;<span style="color:#999900"><!--NO-BREAK SPACE--></span></mtext>
<munder accentunder="false">
<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
<mo> + </mo>
<mi> z </mi>
</mrow>
<mo> &#x23DF;<span style="color:#999900"><!--BOTTOM CURLY BRACKET--></span> </mo>
</munder>
</mrow>
</pre></div>
</div>
<div class="div3">
<h3><a name="presm.mover" id="presm.mover"></a>3.4.5 Overscript <code><mover></code></h3>
<div class="div4">
<h4><a name="id.3.4.5.1" id="id.3.4.5.1"></a>3.4.5.1 Description
</h4>
<p>The <code>mover</code> element attaches an accent or limit placed over a base using the syntax
</p><pre>
<mover> <em>base</em> <em>overscript</em> </mover>
</pre><p>
It always sets <code>displaystyle</code> to "false" within overscript,
but increments <code>scriptlevel</code> by 1 only when <code>accent</code> is "false".
Within <em>base</em>, it always leaves both attributes unchanged.
(See <a href="chapter3-d.html#presm.scriptlevel">Section 3.1.6 Displaystyle and Scriptlevel</a>.)
</p>
<p>If <em>base</em> is an operator with <code>movablelimits</code>="true"
(or an embellished operator whose <code>mo</code> element core has <code>movablelimits</code>="true"),
and <code>displaystyle</code>="false",
then <em>overscript</em> is drawn in a superscript position.
In this case, the <code>accent</code> attribute is ignored.
This is often used for limits on symbols such as <code>&sum;</code>.
</p>
</div>
<div class="div4">
<h4><a name="id.3.4.5.2" id="id.3.4.5.2"></a>3.4.5.2 Attributes
</h4>
<p><code>mover</code> elements accept the attributes listed
below in addition to those specified in <a href="chapter3-d.html#presm.presatt">Section 3.1.10 Mathematics style attributes common to presentation elements</a>.
</p>
<table border="1" class="attributes">
<thead>
<tr>
<th>Name</th>
<th>values</th>
<th>default</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="2" class="attname">accent</td>
<td>"true" | "false"</td>
<td><em>automatic</em></td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies whether <em>overscript</em> is drawn as an "accent" or as a limit.
An accent is drawn the same size as the base (without incrementing <code>scriptlevel</code>)
and is drawn closer to the base.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">align</td>
<td>"left" | "right" | "center"</td>
<td>center</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies whether the script is aligned left, center, or right under/over the base.
As specfied in <a href="chapter3-d.html#presm.horiz.stretch.rules">Section 3.2.5.8.3 Horizontal Stretching Rules</a>, the core of overscripts that are embellished operators should stretch to cover the base, but the alignment is based on the
entire overscript.
</td>
</tr>
</tbody>
</table>
<p>The difference between an accent versus limit is shown here:
<img src="image/f3018.gif" alt="\hat{x}" align="middle"> versus
<img src="image/f3019.gif" alt="\hat{\strut x}" align="middle">.
These differences also apply to "mathematical accents" such as
bars or braces over expressions:
<img src="image/f3020.gif" alt="\overbrace{x+y+z}" align="middle"> versus
<img src="image/f3021.gif" alt="\overbrace{\strut x+y+z}" align="middle">.
The MathML representation for each of these examples is shown below.
</p>
<p>The default value of <em>accent</em> is false, unless
<em>overscript</em> is an <code>mo</code> element or an
embellished operator (see <a href="chapter3-d.html#presm.mo">Section 3.2.5 Operator, Fence, Separator or Accent
<code><mo></code></a>). If
<em>overscript</em> is an <code>mo</code> element, the value
of its <code>accent</code> attribute is used as the default value
of <code>accent</code> for <code>mover</code>. If
<em>overscript</em> is an embellished operator, the <code>accent</code> attribute of the <code>mo</code>
element at its core is used as the default value.
</p>
</div>
<div class="div4">
<h4><a name="id.3.4.5.3" id="id.3.4.5.3"></a>3.4.5.3 Examples
</h4>
<p>The MathML representation for the examples shown above is:
</p><pre class="mathml">
<mrow>
<mover accent="true">
<mi> x </mi>
<mo> &#x5E;<span style="color:#999900"><!--CIRCUMFLEX ACCENT--></span> </mo>
</mover>
<mtext>&#xA0;<span style="color:#999900"><!--NO-BREAK SPACE--></span>versus&#xA0;<span style="color:#999900"><!--NO-BREAK SPACE--></span></mtext>
<mover accent="false">
<mi> x </mi>
<mo> &#x5E;<span style="color:#999900"><!--CIRCUMFLEX ACCENT--></span> </mo>
</mover>
</mrow>
</pre><pre class="mathml">
<mrow>
<mover accent="true">
<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
<mo> + </mo>
<mi> z </mi>
</mrow>
<mo> &#x23DE;<span style="color:#999900"><!--TOP CURLY BRACKET--></span> </mo>
</mover>
<mtext>&#xA0;<span style="color:#999900"><!--NO-BREAK SPACE--></span>versus&#xA0;<span style="color:#999900"><!--NO-BREAK SPACE--></span></mtext>
<mover accent="false">
<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
<mo> + </mo>
<mi> z </mi>
</mrow>
<mo> &#x23DE;<span style="color:#999900"><!--TOP CURLY BRACKET--></span> </mo>
</mover>
</mrow>
</pre></div>
</div>
<div class="div3">
<h3><a name="presm.munderover" id="presm.munderover"></a>3.4.6 Underscript-overscript Pair
<code><munderover></code></h3>
<div class="div4">
<h4><a name="id.3.4.6.1" id="id.3.4.6.1"></a>3.4.6.1 Description
</h4>
<p>The <code>munderover</code> element attaches accents or limits placed both over and under a base using the syntax
</p><pre>
<munderover> <em>base</em> <em>underscript</em> <em>overscript</em> </munderover>
</pre><p>
It always sets <code>displaystyle</code> to "false"
within <em>underscript</em> and <em>overscript</em>,
but increments <code>scriptlevel</code> by 1 only when
<code>accentunder</code> or <code>accent</code>, respectively, are "false".
Within <em>base</em>, it always leaves both attributes unchanged.
(see <a href="chapter3-d.html#presm.scriptlevel">Section 3.1.6 Displaystyle and Scriptlevel</a>).
</p>
<p>If <em>base</em> is an operator with <code>movablelimits</code>="true"
(or an embellished operator whose <code>mo</code> element core has <code>movablelimits</code>="true"),
and <code>displaystyle</code>="false",
then <em>underscript</em> and <em>overscript</em> are drawn in a subscript and superscript position,
respectively. In this case, the <code>accentunder</code> and <code>accent</code> attributes are ignored.
This is often used for limits on symbols such as <code>&sum;</code>.
</p>
</div>
<div class="div4">
<h4><a name="id.3.4.6.2" id="id.3.4.6.2"></a>3.4.6.2 Attributes
</h4>
<p><code>munderover</code> elements accept the attributes listed
below in addition to those specified in <a href="chapter3-d.html#presm.presatt">Section 3.1.10 Mathematics style attributes common to presentation elements</a>.
</p>
<table border="1" class="attributes">
<thead>
<tr>
<th>Name</th>
<th>values</th>
<th>default</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="2" class="attname">accent</td>
<td>"true" | "false"</td>
<td><em>automatic</em></td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies whether <em>overscript</em> is drawn as an "accent" or as a limit.
An accent is drawn the same size as the base (without incrementing <code>scriptlevel</code>)
and is drawn closer to the base.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">accentunder</td>
<td>"true" | "false"</td>
<td><em>automatic</em></td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies whether <em>underscript</em> is drawn as an "accent" or as a limit.
An accent is drawn the same size as the base (without incrementing <code>scriptlevel</code>)
and is drawn closer to the base.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">align</td>
<td>"left" | "right" | "center"</td>
<td>center</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies whether the scripts are aligned left, center, or right under/over the base.
As specfied in <a href="chapter3-d.html#presm.horiz.stretch.rules">Section 3.2.5.8.3 Horizontal Stretching Rules</a>, the core of underscripts and overscripts that are embellished operators should stretch to cover the base, but the alignment
is based on the entire underscript or overscript.
</td>
</tr>
</tbody>
</table>
<p>The <code>munderover</code> element is used instead of separate
<code>munder</code> and <code>mover</code> elements so that the
underscript and overscript are vertically spaced equally in relation
to the base and so that they follow the slant of the base as in the
second expression shown below:
</p>
<p><img src="image/f3022.gif" alt="\int_0^{\!\!\!\infty}" align="middle">
versus
<img src="image/f3023.gif" alt="\int_0^{\infty}" align="middle">.
The MathML representation for this example is shown below.
</p>
<p>The difference in the vertical spacing is too small to be noticed on a
low resolution display at a normal font size, but is noticeable on a higher
resolution device such as a printer and when using large font sizes. In
addition to the visual differences, attaching both the underscript and
overscript to the same base more accurately reflects the semantics of the
expression.
</p>
<p>The defaults for <code>accent</code> and <code>accentunder</code>
are computed in the same way as for
<a href="chapter3-d.html#presm.munder"><code>munder</code></a> and
<a href="chapter3-d.html#presm.mover"><code>mover</code></a>, respectively.
</p>
</div>
<div class="div4">
<h4><a name="id.3.4.6.3" id="id.3.4.6.3"></a>3.4.6.3 Examples
</h4>
<p>The MathML representation for the example shown above with the first
expression made using separate <code>munder</code> and
<code>mover</code> elements, and the second one using an
<code>munderover</code> element, is:
</p><pre class="mathml">
<mrow>
<mover>
<munder>
<mo> &#x222B;<span style="color:#999900"><!--INTEGRAL--></span> </mo>
<mn> 0 </mn>
</munder>
<mi> &#x221E;<span style="color:#999900"><!--INFINITY--></span> </mi>
</mover>
<mtext>&#xA0;<span style="color:#999900"><!--NO-BREAK SPACE--></span>versus&#xA0;<span style="color:#999900"><!--NO-BREAK SPACE--></span></mtext>
<munderover>
<mo> &#x222B;<span style="color:#999900"><!--INTEGRAL--></span> </mo>
<mn> 0 </mn>
<mi> &#x221E;<span style="color:#999900"><!--INFINITY--></span> </mi>
</munderover>
</mrow>
</pre></div>
</div>
<div class="div3">
<h3><a name="presm.mmultiscripts" id="presm.mmultiscripts"></a>3.4.7 Prescripts and Tensor Indices
<code><mmultiscripts></code></h3>
<div class="div4">
<h4><a name="id.3.4.7.1" id="id.3.4.7.1"></a>3.4.7.1 Description
</h4>
<p>Presubscripts and tensor notations are represented by a single
element, <code>mmultiscripts</code>, using the syntax:
</p><pre>
<mmultiscripts>
<em>base</em>
(<em>subscript superscript</em>)*
[ <mprescripts/> (<em>presubscript presuperscript</em>)* ]
</mmultiscripts>
</pre><p>This element allows the representation of any number of vertically-aligned pairs of subscripts
and superscripts, attached to one base expression. It supports both
postscripts and
prescripts.
Missing scripts can be represented by the empty element
<code>none</code>.
</p>
<p>The prescripts are optional, and when present are given
<em>after</em> the postscripts, because prescripts are relatively
rare compared to tensor notation.
</p>
<p>The argument sequence consists of the base followed by zero or more
pairs of vertically-aligned subscripts and superscripts (in that
order) that represent all of the postscripts. This list is optionally
followed by an empty element <code>mprescripts</code> and a
list of zero or more pairs of vertically-aligned presubscripts and
presuperscripts that represent all of the prescripts. The pair lists
for postscripts and prescripts are displayed in the same order as the
directional context (ie. left-to-right order in LTR context). If
no subscript or superscript should be rendered in a given position,
then the empty element <code>none</code> should be used in
that position.
</p>
<p>The base, subscripts, superscripts, the optional separator element
<code>mprescripts</code>, the presubscripts, and the
presuperscripts, are all direct sub-expressions of the
<code>mmultiscripts</code> element, i.e. they are all at the
same level of the expression tree. Whether a script argument is a
subscript or a superscript, or whether it is a presubscript or a
presuperscript is determined by whether it occurs in an even-numbered
or odd-numbered argument position, respectively, ignoring the empty
element <code>mprescripts</code> itself when determining the
position. The first argument, the base, is considered to be in
position 1. The total number of arguments must be odd, if
<code>mprescripts</code> is not given, or even, if it is.
</p>
<p>The empty element <code>mprescripts</code> is only allowed as direct sub-expression
of <code>mmultiscripts</code>.
</p>
</div>
<div class="div4">
<h4><a name="id.3.4.7.2" id="id.3.4.7.2"></a>3.4.7.2 Attributes
</h4>
<p>Same as the attributes of <code>msubsup</code>. See
<a href="chapter3-d.html#presm.subsupatt">Section 3.4.3.2 Attributes</a>.
</p>
<p>The <code>mmultiscripts</code> element increments <code>scriptlevel</code> by 1, and sets <code>displaystyle</code> to "false", within
each of its arguments except <em>base</em>, but leaves both attributes
unchanged within <em>base</em>. (See <a href="chapter3-d.html#presm.scriptlevel">Section 3.1.6 Displaystyle and Scriptlevel</a>.)
</p>
</div>
<div class="div4">
<h4><a name="id.3.4.7.3" id="id.3.4.7.3"></a>3.4.7.3 Examples
</h4>
<p>Two examples of the use of <code>mmultiscripts</code> are:
</p>
<p><sub>0</sub><var>F</var><sub>1</sub>(;<var>a</var>;<var>z</var>).
</p><pre class="mathml">
<mrow>
<mmultiscripts>
<mi> F </mi>
<mn> 1 </mn>
<none/>
<mprescripts/>
<mn> 0 </mn>
<none/>
</mmultiscripts>
<mo> &#x2061;<span style="color:#999900"><!--FUNCTION APPLICATION--></span> </mo>
<mrow>
<mo> ( </mo>
<mrow>
<mo> ; </mo>
<mi> a </mi>
<mo> ; </mo>
<mi> z </mi>
</mrow>
<mo> ) </mo>
</mrow>
</mrow>
</pre><p><img src="image/tensorindices.png" alt="R_i{}^j{}_k{}_l" align="middle">
(where <var>k</var> and <var>l</var> are different indices)
</p><pre class="mathml">
<mmultiscripts>
<mi> R </mi>
<mi> i </mi>
<none/>
<none/>
<mi> j </mi>
<mi> k </mi>
<none/>
<mi> l </mi>
<none/>
</mmultiscripts>
</pre><p>An additional example of <code>mmultiscripts</code> shows how the binomial
coefficient
</p>
<blockquote>
<p><img src="image/binom5-12.png" alt="[binomial(5,12) in english style]"></p>
</blockquote>
<p>
can be displayed in Arabic style
</p>
<blockquote>
<p><img src="image/arbinom5-12.png" alt="[binomial(5,12) in Arabic style]"></p>
</blockquote><pre class="mathml">
<mstyle dir="rtl">
<mmultiscripts><mo>&#x0644;<!--ARABIC LETTER LAM--></mo>
<mn>12</mn><none/>
<mprescripts/>
<none/><mn>5</mn>
</mmultiscripts>
</mstyle>
</pre></div>
</div>
</div>
<div class="div2">
<h2><a name="presm.tabmat" id="presm.tabmat"></a>3.5 Tabular Math
</h2>
<p>Matrices, arrays and other table-like mathematical notation are marked
up using <code>mtable</code>,
<code>mtr</code>, <code>mlabeledtr</code> and
<code>mtd</code> elements. These elements are similar to the
<code>table</code>, <code>tr</code> and <code>td</code> elements of HTML, except that they provide
specialized attributes for the fine layout control
necessary for commutative diagrams, block matrices and so on.
</p>
<p>While the two-dimensional layouts used for elementary math such as addition and multiplication
are somewhat similar to tables, they differ in important ways.
For layout and for accessibility reasons, the <code>mstack</code> and <code>mlongdiv</code> elements discussed
in <a href="chapter3-d.html#presm.elementary">Section 3.6 Elementary Math</a> should be used for elementary math notations.
</p>
<p>In addition to the table elements mentioned above, the <code>mlabeledtr</code> element is used for labeling rows
of a table. This is useful for numbered equations.
The first child of <code>mlabeledtr</code> is the label.
A label is somewhat special in that it is not considered an expression
in the matrix and is not counted when determining the number of columns
in that row.
</p>
<div class="div3">
<h3><a name="presm.mtable" id="presm.mtable"></a>3.5.1 Table or Matrix
<code><mtable></code></h3>
<div class="div4">
<h4><a name="id.3.5.1.1" id="id.3.5.1.1"></a>3.5.1.1 Description
</h4>
<p>A matrix or table is specified using the <code>mtable</code> element. Inside of the <code>mtable</code> element, only <code>mtr</code>
or <code>mlabeledtr</code> elements may appear.
(In MathML 1.x, the <code>mtable</code> was allowed to ‘infer’ <code>mtr</code> elements around its arguments,
and the <code>mtr</code> element could infer <code>mtd</code> elements.
This behaviour is <a href="chapter2-d.html#interf.deprec">deprecated</a>.)
</p>
<p>Table rows that have fewer columns than other rows of the same
table (whether the other rows precede or follow them) are effectively
padded on the right (or left in RTL context) with empty <code>mtd</code> elements so
that the number of columns in each row equals the maximum number of
columns in any row of the table. Note that the use of
<code>mtd</code> elements with non-default values of the
<code>rowspan</code> or <code>columnspan</code>
attributes may affect
the number of <code>mtd</code> elements that should be given
in subsequent <code>mtr</code> elements to cover a given
number of columns.
Note also that the label in an <code>mlabeledtr</code> element
is not considered a column in the table.
</p>
<p>MathML does not specify a table layout algorithm. In
particular, it is the responsibility of a MathML renderer to resolve
conflicts between the <code>width</code> attribute and other
constraints on the width of a table, such as explicit values for <code>columnwidth</code> attributes,
and minimum sizes for table cell contents. For a discussion of table layout algorithms, see
<a href="http://www.w3.org/TR/CSS2/tables.html#width-layout">Cascading
Style Sheets, level 2</a>.
</p>
</div>
<div class="div4">
<h4><a name="presm.mtable.attrs" id="presm.mtable.attrs"></a>3.5.1.2 Attributes
</h4>
<p><code>mtable</code> elements accept the attributes listed
below in addition to those specified in <a href="chapter3-d.html#presm.presatt">Section 3.1.10 Mathematics style attributes common to presentation elements</a>.
Any rules drawn as part of the <code>mtable</code> should be drawn using the color
specified by <code>mathcolor</code>.
</p>
<table border="1" class="attributes">
<thead>
<tr>
<th>Name</th>
<th>values</th>
<th>default</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="2" class="attname">align</td>
<td>("top" | "bottom" | "center" | "baseline" | "axis"), <em>rownumber</em>?
</td>
<td>axis</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
specifies the vertical alignment of the table with respect to its environment.
"axis" means to align the vertical center of the table on
the environment's <a class="termref" title="" href="appendixd-d.html#dt-axis">axis</a>.
(The <a class="termref" title="" href="appendixd-d.html#dt-axis">axis</a> of an equation is an alignment line used by typesetters.
It is the line on which a minus sign typically lies.)
"center" and "baseline" both mean to align the center of the table
on the environment's baseline.
"top" or "bottom" aligns the top or bottom of the table on the environment's baseline.
If the <code>align</code> attribute value ends with a <em>rownumber</em>,
the specified row (counting from 1 for the top row), rather than the table as a whole, is aligned in the way described above
with the exceptions noted below.
If <em>rownumber</em> is negative, it counts rows from the bottom.
When the value of <em>rownumber</em> is out of range or not an integer, it is ignored.
If a row number is specified and the alignment value is "baseline" or "axis",
the row's baseline or axis is used for alignment. Note this is only well defined when the <code>rowalign</code>
value is "baseline" or "axis"; MathML does not specify how
"baseline" or "axis" alignment should occur for other values of <code>rowalign</code>.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">rowalign</td>
<td>("top" | "bottom" | "center" | "baseline" | "axis") +</td>
<td>baseline</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
specifies the vertical alignment of the cells with respect to other cells within the same row:
"top" aligns the tops of each entry across the row;
"bottom" aligns the bottoms of the cells,
"center" centers the cells;
"baseline" aligns the baselines of the cells;
"axis" aligns the axis of each cells.
(See the note below about multiple values).
</td>
</tr>
<tr>
<td rowspan="2" class="attname">columnalign</td>
<td>("left" | "center" | "right") +</td>
<td>center</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
specifies the horizontal alignment of the cells with respect to other cells within the same column:
"left" aligns the left side of the cells;
"center" centers each cells;
"right" aligns the right side of the cells.
(See the note below about multiple values).
</td>
</tr>
<tr>
<td rowspan="2" class="attname">groupalign</td>
<td><a href="chapter3-d.html#type.group-align"><em>group-alignment-list-list</em></a></td>
<td>{left}</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
[this attribute is described with the alignment elements, <code>maligngroup</code> and <code>malignmark</code>,
in <a href="chapter3-d.html#presm.malign">Section 3.5.5 Alignment Markers
<code><maligngroup/></code>, <code><malignmark/></code></a>.]
</td>
</tr>
<tr>
<td rowspan="2" class="attname">alignmentscope</td>
<td>("true" | "false") +</td>
<td>true</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
[this attribute is described with the alignment elements, <code>maligngroup</code> and <code>malignmark</code>,
in <a href="chapter3-d.html#presm.malign">Section 3.5.5 Alignment Markers
<code><maligngroup/></code>, <code><malignmark/></code></a>.]
</td>
</tr>
<tr>
<td rowspan="2" class="attname">columnwidth</td>
<td>("auto" | <a href="chapter2-d.html#type.length"><em>length</em></a> | "fit") +
</td>
<td>auto</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
specifies how wide a column should be:
"auto" means that the column should be as wide as needed;
an explicit length means that the column is exactly that wide and the contents of that column are made to fit
by linewrapping or clipping at the discretion of the renderer;
"fit" means that the page width
remaining after subtracting the "auto" or fixed width columns
is divided equally among the "fit" columns.
If insufficient room remains to hold the
contents of the "fit" columns, renderers may
linewrap or clip the contents of the "fit" columns.
Note that when the <code>columnwidth</code> is specified as
a percentage, the value is relative to the width of the table, not
as a percentage of the default (which is "auto"). That
is, a renderer should try to adjust the width of the column so that it
covers the specified percentage of the entire table width.
(See the note below about multiple values).
</td>
</tr>
<tr>
<td rowspan="2" class="attname">width</td>
<td>"auto" | <a href="chapter2-d.html#type.length"><em>length</em></a></td>
<td>auto</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
specifies the desired width of the entire table and is intended for visual user agents.
When the value is a percentage value, the value is relative to the
horizontal space a MathML renderer has available for the <code>math</code> element.
When the value is "auto", the MathML
renderer should calculate the table width from its contents using
whatever layout algorithm it chooses.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">rowspacing</td>
<td>(<a href="chapter2-d.html#type.length"><em>length</em></a>) +
</td>
<td>1.0ex</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
specifies how much space to add between rows.
(See the note below about multiple values).
</td>
</tr>
<tr>
<td rowspan="2" class="attname">columnspacing</td>
<td>(<a href="chapter2-d.html#type.length"><em>length</em></a>) +
</td>
<td>0.8em</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
specifies how much space to add between <span class="diff-chg">columns</span>.
(See the note below about multiple values).
</td>
</tr>
<tr>
<td rowspan="2" class="attname">rowlines</td>
<td>("none" | "solid" | "dashed") +</td>
<td>none</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
specifies whether and what kind of lines should be added between each row:
"none" means no lines;
"solid" means solid lines;
"dashed" means dashed lines (how the dashes are spaced is implementation dependent).
(See the note below about multiple values).
</td>
</tr>
<tr>
<td rowspan="2" class="attname">columnlines</td>
<td>("none" | "solid" | "dashed") +</td>
<td>none</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
specifies whether and what kind of lines should be added between each column:
"none" means no lines;
"solid" means solid lines;
"dashed" means dashed lines (how the dashes are spaced is implementation dependent).
(See the note below about multiple values).
</td>
</tr>
<tr>
<td rowspan="2" class="attname">frame</td>
<td>"none" | "solid" | "dashed"</td>
<td>none</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
specifies whether and what kind of lines should be drawn around the table.
"none" means no lines;
"solid" means solid lines;
"dashed" means dashed lines (how the dashes are spaced is implementation dependent).
</td>
</tr>
<tr>
<td rowspan="2" class="attname">framespacing</td>
<td><a href="chapter2-d.html#type.length"><em>length</em></a>, <a href="chapter2-d.html#type.length"><em>length</em></a></td>
<td>0.4em 0.5ex</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
specifies the additional spacing added between the table and frame,
if <code>frame</code> is not "none".
The first value specifies the spacing on the right and left;
the second value specifies the spacing above and below.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">equalrows</td>
<td>"true" | "false"</td>
<td>false</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
specifies whether to force all rows to have the same total height.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">equalcolumns</td>
<td>"true" | "false"</td>
<td>false</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
specifies whether to force all columns to have the same total width.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">displaystyle</td>
<td>"true" | "false"</td>
<td><em>inherited (false)</em></td>
</tr>
<tr>
<td colspan="2" class="attdesc">
specifies the value of <code>displaystyle</code> within each cell,
(<code>scriptlevel</code> is not changed);
see <a href="chapter3-d.html#presm.scriptlevel">Section 3.1.6 Displaystyle and Scriptlevel</a>.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">side</td>
<td>"left" | "right" | "leftoverlap" | "rightoverlap"</td>
<td>right</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
specifies on what side of the table labels from enclosed <code>mlabeledtr</code> (if any) should be placed.
The variants "leftoverlap" and "rightoverlap"
are useful when the table fits with the allowed width
when the labels are omitted, but not when they are included:
in such cases, the labels will overlap the row placed above it
if the <code>rowalign</code> for that row is "top",
otherwise it is placed below it.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">minlabelspacing</td>
<td><a href="chapter2-d.html#type.length"><em>length</em></a></td>
<td>0.8em</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
specifies the minimum space allowed between a label and the adjacent cell in the row.
</td>
</tr>
</tbody>
</table>
<p>In the above specifications for attributes affecting rows
(respectively, columns, or the gaps between rows or columns),
the notation <code>(...)+</code> means that multiple values can be given for the attribute
as a space separated list (see <a href="chapter2-d.html#fund.attval">Section 2.1.5 MathML Attribute Values</a>).
In this context, a single value specifies the value to be used for all rows (resp., columns or gaps).
A list of values are taken to apply to corresponding rows (resp., columns or gaps)
in order, that is starting from the top row for rows or first column (left or right,
depending on directionality) for columns.
If there are more rows (resp., columns or gaps) than supplied values, the last value is repeated as needed.
If there are too many values supplied, the excess are ignored.
</p>
<p>Note that none of the areas occupied by lines
<code>frame</code>, <code>rowlines</code> and <code>columnlines</code>,
nor the spacing <code>framespacing</code>, <code>rowspacing</code> or <code>columnspacing</code>,
nor the label in <code>mlabeledtr</code> are counted as rows or columns.
</p>
<p>The <code>displaystyle</code> attribute is allowed on the <code>mtable</code>
element to set the inherited value of the attribute. If the attribute is
not present, the <code>mtable</code> element sets <code>displaystyle</code> to
"false" within the table elements.
(See <a href="chapter3-d.html#presm.scriptlevel">Section 3.1.6 Displaystyle and Scriptlevel</a>.)
</p>
</div>
<div class="div4">
<h4><a name="id.3.5.1.3" id="id.3.5.1.3"></a>3.5.1.3 Examples
</h4>
<p>A 3 by 3 identity matrix could be represented as follows:
</p><pre class="mathml">
<mrow>
<mo> ( </mo>
<mtable>
<mtr>
<mtd> <mn>1</mn> </mtd>
<mtd> <mn>0</mn> </mtd>
<mtd> <mn>0</mn> </mtd>
</mtr>
<mtr>
<mtd> <mn>0</mn> </mtd>
<mtd> <mn>1</mn> </mtd>
<mtd> <mn>0</mn> </mtd>
</mtr>
<mtr>
<mtd> <mn>0</mn> </mtd>
<mtd> <mn>0</mn> </mtd>
<mtd> <mn>1</mn> </mtd>
</mtr>
</mtable>
<mo> ) </mo>
</mrow>
</pre><p>This might be rendered as:
</p>
<blockquote>
<p><img src="image/f3025.gif" alt="\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)"></p>
</blockquote>
<p>
Note that the parentheses must be represented explicitly; they are not
part of the <code>mtable</code> element's rendering. This allows
use of other surrounding fences, such as brackets, or none at all.
</p>
</div>
</div>
<div class="div3">
<h3><a name="presm.mtr" id="presm.mtr"></a>3.5.2 Row in Table or Matrix <code><mtr></code></h3>
<div class="div4">
<h4><a name="id.3.5.2.1" id="id.3.5.2.1"></a>3.5.2.1 Description
</h4>
<p>An <code>mtr</code> element represents one row in a table
or matrix. An <code>mtr</code> element is only allowed as a
direct sub-expression of an <code>mtable</code> element, and
specifies that its contents should form one row of the table. Each
argument of <code>mtr</code> is placed in a different column
of the table, starting at the leftmost column in a LTR context or rightmost
column in a RTL context.
</p>
<p>As described in <a href="chapter3-d.html#presm.mtable">Section 3.5.1 Table or Matrix
<code><mtable></code></a>,
<code>mtr</code> elements are
effectively padded with <code>mtd</code>
elements when they are shorter than other rows in a table.
</p>
</div>
<div class="div4">
<h4><a name="id.3.5.2.2" id="id.3.5.2.2"></a>3.5.2.2 Attributes
</h4>
<p><code>mtr</code> elements accept the attributes listed
below in addition to those specified in <a href="chapter3-d.html#presm.presatt">Section 3.1.10 Mathematics style attributes common to presentation elements</a>.
</p>
<table border="1" class="attributes">
<thead>
<tr>
<th>Name</th>
<th>values</th>
<th>default</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="2" class="attname">rowalign</td>
<td>"top" | "bottom" | "center" | "baseline" | "axis"</td>
<td><em>inherited</em></td>
</tr>
<tr>
<td colspan="2" class="attdesc">
overrides, for this row, the vertical alignment of cells specified
by the <a href="chapter3-d.html#presm.mtable.attrs"><code>rowalign</code></a> attribute on the <code>mtable</code>.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">columnalign</td>
<td>("left" | "center" | "right") +</td>
<td><em>inherited</em></td>
</tr>
<tr>
<td colspan="2" class="attdesc">
overrides, for this row, the horizontal alignment of cells specified
by the <a href="chapter3-d.html#presm.mtable.attrs"><code>columnalign</code></a> attribute on the <code>mtable</code>.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">groupalign</td>
<td><a href="chapter3-d.html#type.group-align"><em>group-alignment-list-list</em></a></td>
<td><em>inherited</em></td>
</tr>
<tr>
<td colspan="2" class="attdesc">
[this attribute is described with the alignment elements, <code>maligngroup</code> and <code>malignmark</code>,
in <a href="chapter3-d.html#presm.malign">Section 3.5.5 Alignment Markers
<code><maligngroup/></code>, <code><malignmark/></code></a>.]
</td>
</tr>
</tbody>
</table>
</div>
</div>
<div class="div3">
<h3><a name="presm.mlabeledtr" id="presm.mlabeledtr"></a>3.5.3 Labeled Row in Table or Matrix
<code><mlabeledtr></code></h3>
<div class="div4">
<h4><a name="id.3.5.3.1" id="id.3.5.3.1"></a>3.5.3.1 Description
</h4>
<p>An <code>mlabeledtr</code> element represents one row in
a table that has a label on either the left or right side, as
determined by the <code>side</code> attribute. The label is
the first child of <code>mlabeledtr</code>, and should be enclosed in an <code>mtd</code>.
The rest of the children represent the contents of the row and are treated identically
to the children of <code>mtr</code>; consequently all of the children
must be <code>mtd</code> elements.
</p>
<p>
An <code>mlabeledtr</code> element is only allowed as a
direct sub-expression of an <code>mtable</code> element.
Each argument of <code>mlabeledtr</code> except for the first
argument (the label) is placed in a different column
of the table, starting at the leftmost column.
</p>
<p>Note that the label element is not considered to be a cell in the
table row. In particular, the label element is not taken into
consideration in the table layout for purposes of width and alignment
calculations. For example, in the case of an <code>mlabeledtr</code> with a label and a single centered <code>mtd</code> child, the child is first centered in the
enclosing <code>mtable</code>, and then the label is
placed. Specifically, the child is <em>not</em> centered in the
space that remains in the table after placing the label.
</p>
<p>While MathML does not specify an algorithm for placing labels,
implementers of visual renderers may find the following formatting
model useful. To place a label, an implementor might think in terms
of creating a larger table, with an extra column on both ends. The
<code>columnwidth</code> attributes of both these border
columns would be set to "fit" so that they expand
to fill whatever space remains after the inner columns have been laid
out. Finally, depending on the values of <code>side</code>
and <code>minlabelspacing</code>, the label is placed
in whatever border column is appropriate, possibly shifted down if
necessary, and aligned according to <code>columnalignment</code>.
</p>
</div>
<div class="div4">
<h4><a name="id.3.5.3.2" id="id.3.5.3.2"></a>3.5.3.2 Attributes
</h4>
<p>
The attributes for <code>mlabeledtr</code> are the same
as for <code>mtr</code>. Unlike the attributes for the
<code>mtable</code> element, attributes of
<code>mlabeledtr</code> that apply to column elements
also apply to the label. For example, in a one column table,
</p><pre class="mathml-fragment">
<mlabeledtr rowalign='top'>
</pre><p>
means that the label and other entries in the row are vertically aligned
along their top. To force a particular alignment on the label,
the appropriate attribute would normally be set on the
<code>mtd</code> element that surrounds the label content.
</p>
</div>
<div class="div4">
<h4><a name="id.3.5.3.3" id="id.3.5.3.3"></a>3.5.3.3 Equation Numbering
</h4>
<p>One of the important uses of <code>mlabeledtr</code> is
for numbered equations. In a <code>mlabeledtr</code>, the
label represents the equation number and the elements in the row are
the equation being numbered. The <code>side</code> and <code>minlabelspacing</code> attributes of <code>mtable</code> determine the placement of the equation
number.
</p>
<p>In larger documents with many numbered equations, automatic
numbering becomes important. While automatic equation numbering and
automatically resolving references to equation numbers is outside the
scope of MathML, these problems can be addressed by the use of style
sheets or other means. The mlabeledtr construction provides support
for both of these functions in a way that is intended to facilitate
XSLT processing. The <code>mlabeledtr</code> element can be
used to indicate the presence of a numbered equation, and the first
child can be changed to the current equation number, along with
incrementing the global equation number. For cross references, an
<code>id</code> on either the mlabeledtr element or on the first element
itself could be used as a target of any link.
</p><pre class="mathml">
<mtable>
<mlabeledtr id='e-is-m-c-square'>
<mtd>
<mtext> (2.1) </mtext>
</mtd>
<mtd>
<mrow>
<mi>E</mi>
<mo>=</mo>
<mrow>
<mi>m</mi>
<mo>&#x2062;<span style="color:#999900"><!--INVISIBLE TIMES--></span></mo>
<msup>
<mi>c</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mtd>
</mlabeledtr>
</mtable>
</pre><p>This should be rendered as:
</p>
<table width="100%">
<tbody>
<tr>
<td id="eqnoc1"> </td>
<td id="eqnoc2"><var>E</var> = <var>m</var><var>c</var><sup>2</sup></td>
<td id="eqnoc3">(2.1)</td>
</tr>
</tbody>
</table>
</div>
</div>
<div class="div3">
<h3><a name="presm.mtd" id="presm.mtd"></a>3.5.4 Entry in Table or Matrix <code><mtd></code></h3>
<div class="div4">
<h4><a name="id.3.5.4.1" id="id.3.5.4.1"></a>3.5.4.1 Description
</h4>
<p>An <code>mtd</code> element represents one entry, or cell, in a
table or matrix. An <code>mtd</code> element is only
allowed as a direct sub-expression of an <code>mtr</code>
or an <code>mlabeledtr</code> element.
</p>
<p>The <code>mtd</code> element accepts
a single argument possibly being an inferred <code>mrow</code> of multiple children;
see <a href="chapter3-d.html#presm.reqarg">Section 3.1.3 Required Arguments</a>.
</p>
</div>
<div class="div4">
<h4><a name="presm.mtdatts" id="presm.mtdatts"></a>3.5.4.2 Attributes
</h4>
<p><code>mtd</code> elements accept the attributes listed
below in addition to those specified in <a href="chapter3-d.html#presm.presatt">Section 3.1.10 Mathematics style attributes common to presentation elements</a>.
</p>
<table border="1" class="attributes">
<thead>
<tr>
<th>Name</th>
<th>values</th>
<th>default</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="2" class="attname">rowspan</td>
<td><a href="chapter2-d.html#type.positive-integer"><em>positive-integer</em></a></td>
<td>1</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
causes the cell to be treated as if it occupied the number of rows specified.
The corresponding <code>mtd</code> in the following "rowspan"-1 rows must be omitted.
The interpretation corresponds with the similar attributes for HTML 4.01 tables.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">columnspan</td>
<td><a href="chapter2-d.html#type.positive-integer"><em>positive-integer</em></a></td>
<td>1</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
causes the cell to be treated as if it occupied the number of columns specified.
The following "rowspan"-1 <code>mtd</code>s must be omitted.
The interpretation corresponds with the similar attributes for HTML 4.01 tables.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">rowalign</td>
<td>"top" | "bottom" | "center" | "baseline" | "axis"</td>
<td><em>inherited</em></td>
</tr>
<tr>
<td colspan="2" class="attdesc">
specifies the vertical alignment of this cell, overriding any value
specified on the containing <code>mrow</code> and <code>mtable</code>.
See the <a href="chapter3-d.html#presm.mtable.attrs"><code>rowalign</code></a> attribute of <code>mtable</code>.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">columnalign</td>
<td>"left" | "center" | "right"</td>
<td><em>inherited</em></td>
</tr>
<tr>
<td colspan="2" class="attdesc">
specifies the horizontal alignment of this cell, overriding any value
specified on the containing <code>mrow</code> and <code>mtable</code>.
See the <a href="chapter3-d.html#presm.mtable.attrs"><code>columnalign</code></a> attribute of <code>mtable</code>.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">groupalign</td>
<td><a href="chapter3-d.html#type.group-align"><em>group-alignment-list</em></a></td>
<td><em>inherited</em></td>
</tr>
<tr>
<td colspan="2" class="attdesc">
[this attribute is described with the alignment elements, <code>maligngroup</code> and <code>malignmark</code>,
in <a href="chapter3-d.html#presm.malign">Section 3.5.5 Alignment Markers
<code><maligngroup/></code>, <code><malignmark/></code></a>.]
</td>
</tr>
</tbody>
</table>
<p>The <code>rowspan</code> and <code>columnspan</code> attributes
can be used around an <code>mtd</code> element that represents
the label in a <code>mlabeledtr</code> element.
Also, the label of a <code>mlabeledtr</code> element is not
considered to be part of a previous <code>rowspan</code> and
<code>columnspan</code>.
</p>
</div>
</div>
<div class="div3">
<h3><a name="presm.malign" id="presm.malign"></a>3.5.5 Alignment Markers
<code><maligngroup/></code>, <code><malignmark/></code></h3>
<div class="div4">
<h4><a name="id.3.5.5.1" id="id.3.5.5.1"></a>3.5.5.1 Description
</h4>
<p>Alignment markers are space-like elements (see <a href="chapter3-d.html#presm.mspace">Section 3.2.7 Space <code><mspace/></code></a>) that can be used
to vertically align specified points within a column of MathML
expressions by the automatic insertion of the necessary amount of
horizontal space between specified sub-expressions.
</p>
<p>The discussion that follows will use the example of a set of
simultaneous equations that should be rendered with vertical
alignment of the coefficients and variables of each term, by
inserting spacing somewhat like that shown here:
</p><pre>
8.44x + 55 y = 0
3.1 x - 0.7y = -1.1
</pre><p>
If the example expressions shown above were arranged in a column
but not aligned, they would appear as:
</p><pre>
8.44x + 55y = 0
3.1x - 0.7y = -1.1
</pre><p>
For audio renderers, it is suggested that the alignment elements
produce the analogous behavior of altering the rhythm of pronunciation
so that it is the same for several sub-expressions in a column, by the
insertion of the appropriate time delays in place of the extra
horizontal spacing described here.
</p>
<p>The expressions whose parts are to be aligned (each equation, in the
example above) must be given as the table elements (i.e. as the <code>mtd</code> elements) of one column of an
<code>mtable</code>. To avoid confusion, the term "table
cell" rather than "table element" will be used in the
remainder of this section.
</p>
<p>All interactions between alignment elements are limited to the
<code>mtable</code> column they arise in. That is, every
column of a table specified by an <code>mtable</code> element
acts as an "alignment scope" that contains within it all alignment
effects arising from its contents. It also excludes any interaction
between its own alignment elements and the alignment elements inside
any nested alignment scopes it might contain.
</p>
<p>The reason <code>mtable</code> columns are used as
alignment scopes is that they are the only general way in MathML to
arrange expressions into vertical columns. Future versions of MathML
may provide an <code>malignscope</code> element that allows
an alignment scope to be created around any MathML element, but even
then, table columns would still sometimes need to act as alignment
scopes, and since they are not elements themselves, but rather are
made from corresponding parts of the content of several
<code>mtr</code> elements, they could not individually be the
content of an alignment scope element.
</p>
<p>An <code>mtable</code> element can be given the attribute
<code>alignmentscope</code>="false" to cause
its columns not to act as alignment scopes. This is discussed further at
the end of this section. Otherwise, the discussion in this section assumes
that this attribute has its default value of "true".
</p>
</div>
<div class="div4">
<h4><a name="id.3.5.5.2" id="id.3.5.5.2"></a>3.5.5.2 Specifying alignment groups
</h4>
<p>To cause alignment, it is necessary to specify, within each
expression to be aligned, the points to be aligned with corresponding
points in other expressions, and the beginning of each <em>alignment
group</em> of sub-expressions that can be horizontally shifted as a
unit to effect the alignment. Each alignment group must contain one
alignment point. It is also necessary to specify which expressions in
the column have no alignment groups at all, but are affected only by
the ordinary column alignment for that column of the table, i.e. by
the <code>columnalign</code> attribute, described elsewhere.
</p>
<p>The alignment groups start at the locations of invisible
<code>maligngroup</code> elements, which are rendered with
zero width when they occur outside of an alignment scope, but within
an alignment scope are rendered with just enough horizontal space to
cause the desired alignment of the alignment group that follows
them. A simple algorithm by which a MathML application can achieve this is given
later. In the example above, each equation would have one
<code>maligngroup</code> element before each coefficient,
variable, and operator on the left-hand side, one before the
<code>=</code> sign, and one before the constant on the right-hand
side.
</p>
<p>In general, a table cell containing <var>n</var>
<code>maligngroup</code> elements contains <var>n</var>
alignment groups, with the <var>i</var>th group consisting of the
elements entirely after the <var>i</var>th
<code>maligngroup</code> element and before the
(<var>i</var>+1)-th; no element within the table cell's content
should occur entirely before its first
<code>maligngroup</code> element.
</p>
<p>Note that the division into alignment groups does <em>not</em>
necessarily fit the nested expression structure of the MathML
expression containing the groups — that is, it is permissible for one
alignment group to consist of the end of one
<code>mrow</code>, all of another one, and the beginning of a
third one, for example. This can be seen in the MathML markup for the
present example, given at the end of this section.
</p>
<p>The nested expression structure formed by <code>mrow</code>s
and other layout schemata should reflect the mathematical structure of the
expression, not the alignment-group structure, to make possible optimal
renderings and better automatic interpretations; see the discussion of
proper grouping in section <a href="chapter3-d.html#presm.mrow">Section 3.3.1 Horizontally Group Sub-Expressions
<code><mrow></code></a>. Insertion of
alignment elements (or other space-like elements) should not alter the
correspondence between the structure of a MathML expression and the
structure of the mathematical expression it represents.
</p>
<p>Although alignment groups need not
coincide with the nested expression structure of layout schemata,
there are nonetheless restrictions on where an <code>maligngroup</code>
element is allowed within a table cell. The <code>maligngroup</code>
element may only be contained within elements (directly or indirectly) of the following types
(which are themselves contained in the table cell):
</p>
<ul>
<li>
<p>an <code>mrow</code> element, including an inferred
<code>mrow</code> such as the one formed by a multi-child
<code>mtd</code> element, but excluding <code>mrow</code> which
contains a change of direction using the <code>dir</code> attribute;
</p>
</li>
<li>
<p>an <code>mstyle</code> element
, but excluding those which change direction
using the <code>dir</code> attribute;
</p>
</li>
<li>
<p>an <code>mphantom</code> element;
</p>
</li>
<li>
<p>an <code>mfenced</code> element;
</p>
</li>
<li>
<p>an <code>maction</code> element, though only its
selected sub-expression is checked;
</p>
</li>
<li>
<p>a <code>semantics</code> element.
</p>
</li>
</ul>
<p>These restrictions are intended to ensure that alignment can be
unambiguously specified, while avoiding complexities involving things
like overscripts, radical signs and fraction bars. They also ensure
that a simple algorithm suffices to accomplish the desired
alignment.
</p>
<p>Note that some positions for an <code>maligngroup</code>
element, although legal, are not useful, such as an
<code>maligngroup</code> element that is an argument of an
<code>mfenced</code> element. Similarly, when inserting an <code>maligngroup</code>
element in an element whose arguments have positional significance, it
is necessary to introduce a new <code>mrow</code> element
containing just the <code>maligngroup</code> element and the child element
it precedes in order to preserve the proper expression structure. For
example, to insert an <code>maligngroup</code> before the denominator
child of an <code>mfrac</code> element, it is necessary to enclose the
<code>maligngroup</code> and the denominator in an <code>mrow</code> to
avoid introducing an illegal third child in the
<code>mfrac</code>. In general, this will be necessary except
when the <code>maligngroup</code> element is inserted directly into an
<code>mrow</code> or into an element that can form an inferred
<code>mrow</code> from its contents. See the warning about the legal
grouping of "space-like elements" in <a href="chapter3-d.html#presm.mspace">Section 3.2.7 Space <code><mspace/></code></a> for an analogous example
involving <code>malignmark</code>.
</p>
<p>For the table cells that are divided into alignment groups, every
element in their content must be part of exactly one alignment group,
except for the elements from the above list that contain
<code>maligngroup</code> elements inside them and the
<code>maligngroup</code> elements themselves. This means
that, within any table cell containing alignment groups, the first
complete element must be an <code>maligngroup</code> element,
though this may be preceded by the start tags of other elements.
</p>
<p>This requirement removes a potential confusion about how to align
elements before the first <code>maligngroup</code> element,
and makes it easy to identify table cells that are left out of their
column's alignment process entirely.
</p>
<p>Note that it is not required that the table cells in a column that
are divided into alignment groups each contain the same number of
groups. If they don't, zero-width alignment groups are effectively
added on the right side (or left side, in a RTL context) of each table cell that has fewer groups than
other table cells in the same column.
</p>
</div>
<div class="div4">
<h4><a name="id.3.5.5.3" id="id.3.5.5.3"></a>3.5.5.3 Table cells that are not divided into alignment groups
</h4>
<p>Expressions in a column that are to have no alignment groups
should contain no <code>maligngroup</code>
elements. Expressions with no alignment groups are aligned using only
the <code>columnalign</code> attribute that applies to the table
column as a whole, and are not affected by the <code>groupalign</code>
attribute described below. If such an expression is wider than the
column width needed for the table cells containing alignment groups,
all the table cells containing alignment groups will be shifted as a
unit within the column as described by the <code>columnalign</code>
attribute for that column. For example, a column heading with no
internal alignment could be added to the column of two equations given
above by preceding them with another table row containing an
<code>mtext</code> element for the heading, and using the
default <code>columnalign</code>="center" for the table, to
produce:
</p><pre>
equations with aligned variables
8.44x + 55 y = 0
3.1 x - 0.7y = -1.1
</pre><p>
or, with a shorter heading,
</p><pre>
some equations
8.44x + 55 y = 0
3.1 x - 0.7y = -1.1
</pre></div>
<div class="div4">
<h4><a name="id.3.5.5.4" id="id.3.5.5.4"></a>3.5.5.4 Specifying alignment points using <code><malignmark/></code></h4>
<p>Each alignment group's alignment point can either be specified by
an <code>malignmark</code> element anywhere within the
alignment group (except within another alignment scope wholly
contained inside it), or it is determined automatically from the
<code>groupalign</code> attribute. The <code>groupalign</code>
attribute can be specified on the group's preceding
<code>maligngroup</code> element or on its surrounding
<code>mtd</code>, <code>mtr</code>, or
<code>mtable</code> elements. In typical cases, using the
<code>groupalign</code> attribute is sufficient to describe the
desired alignment points, so no <code>malignmark</code>
elements need to be provided.
</p>
<p>The <code>malignmark</code> element indicates that the
alignment point should occur on the right edge of the preceding
element, or the left edge of the following element or character,
depending on the <code>edge</code> attribute of
<code>malignmark</code>. Note that it may be necessary to
introduce an <code>mrow</code> to group an
<code>malignmark</code> element with a neighboring element,
in order not to alter the argument count of the containing
element. (See the warning about the legal grouping of "space-like
elements" in <a href="chapter3-d.html#presm.mspace">Section 3.2.7 Space <code><mspace/></code></a>).
</p>
<p>When an <code>malignmark</code> element is provided within an
alignment group, it can occur in an arbitrarily deeply nested element
within the group, as long as it is not within a nested alignment scope. It
is not subject to the same restrictions on location as <code>maligngroup</code> elements. However, its immediate
surroundings need to be such that the element to its immediate right or
left (depending on its <code>edge</code> attribute) can be
unambiguously identified. If no such element is present, renderers should
behave as if a zero-width element had been inserted there.
</p>
<p>For the purposes of alignment, an element X is considered to be to the
immediate left of an element Y, and Y to the immediate right of X, whenever
X and Y are successive arguments of one (possibly inferred) <code>mrow</code> element,
with X coming before Y (in a LTR context; with X coming after Y in a RTL context). In the case of
<code>mfenced</code> elements, MathML applications should evaluate this
relation as if the <code>mfenced</code> element had been
replaced by the equivalent expanded form involving <code>mrow</code>. Similarly, an <code>maction</code>
element should be treated as if it were replaced by its currently selected
sub-expression. In all other cases, no relation of "to the immediate
left or right" is defined for two elements X and Y. However, in the
case of content elements interspersed in presentation markup, MathML applications
should attempt to evaluate this relation in a sensible way. For example, if
a renderer maintains an internal presentation structure for rendering
content elements, the relation could be evaluated with respect to
that. (See <a href="chapter4-d.html">Chapter 4 Content Markup</a> and <a href="chapter5-d.html">Chapter 5 Mixing Markup Languages for Mathematical Expressions</a> for further
details about mixing presentation and content markup.)
</p>
<p>
<code>malignmark</code> elements are allowed to occur within
the content of token elements, such as <code>mn</code>,
<code>mi</code>, or <code>mtext</code>. When this
occurs, the character immediately before or after the
<code>malignmark</code> element will carry the alignment
point; in all other cases, the element to its immediate left or right
will carry the alignment point. The rationale for this is that it is
sometimes desirable to align on the edges of specific characters
within multi-character token elements.
</p>
<p>If there is more than one <code>malignmark</code> element
in an alignment group, all but the first one will be ignored. MathML
applications may wish to provide a mode in which they will warn about
this situation, but it is not an error, and should trigger no warnings
by default. The rationale for this is that it would
be inconvenient to have to remove all
unnecessary <code>malignmark</code> elements from
automatically generated data, in certain cases, such as when they are
used to specify alignment on "decimal points" other than the '.'
character.
</p>
</div>
<div class="div4">
<h4><a name="id.3.5.5.5" id="id.3.5.5.5"></a>3.5.5.5 <code><malignmark/></code> Attributes
</h4>
<p><code>malignmark</code> elements accept the attributes listed
below in addition to those specified in <a href="chapter3-d.html#presm.presatt">Section 3.1.10 Mathematics style attributes common to presentation elements</a>
(however, neither <code>mathcolor</code> nor <code>mathbackground</code> have any effect).
</p>
<table border="1" class="attributes">
<thead>
<tr>
<th>Name</th>
<th>values</th>
<th>default</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="2" class="attname">edge</td>
<td>"left" | "right"</td>
<td>left</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
see the discussion below.
</td>
</tr>
</tbody>
</table>
<p>The
<code>edge</code> attribute specifies whether the alignment point will be
found on the left or right edge of some element or character. The
precise location meant by "left edge" or "right edge" is discussed
below. If <code>edge</code>="right", the alignment point is the right
edge of the element or character to the immediate left of the
<code>malignmark</code> element. If <code>edge</code>="left",
the alignment point is the left edge of the element or character to
the immediate right of the <code>malignmark</code>
element. Note that the attribute refers to the choice of edge rather
than to the direction in which to look for the element whose edge will
be used.
</p>
<p>For <code>malignmark</code> elements that occur within
the content of MathML token elements, the preceding or following
character in the token element's content is used; if there is no such
character, a zero-width character is effectively inserted for the
purpose of carrying the alignment point on its edge. For all other
<code>malignmark</code> elements, the preceding or following
element is used; if there is no such element, a zero-width element is
effectively inserted to carry the alignment point.
</p>
<p>The precise definition of the "left edge" or "right edge" of a
character or glyph (e.g. whether it should coincide with an edge of
the character's bounding box) is not specified by MathML, but is at
the discretion of the renderer; the renderer is allowed to let the
edge position depend on the character's context as well as on the
character itself.
</p>
<p>For proper alignment of columns of numbers (using <code>groupalign</code> values of "left", "right", or "decimalpoint"), it is
likely to be desirable for the effective width (i.e. the distance between
the left and right edges) of decimal digits to be constant, even if their
bounding box widths are not constant (e.g. if "1" is narrower
than other digits). For other characters, such as letters and operators, it
may be desirable for the aligned edges to coincide with the bounding
box.
</p>
<p>The "left edge" of a MathML element or alignment group
refers to the left edge of the leftmost glyph drawn to render the element
or group, except that explicit space represented by <code>mspace</code> or <code>mtext</code> elements
should also count as "glyphs" in this context, as should
glyphs that would be drawn if not for <code>mphantom</code>
elements around them. The "right edge" of an element or
alignment group is defined similarly.
</p>
</div>
<div class="div4">
<h4><a name="id.3.5.5.6" id="id.3.5.5.6"></a>3.5.5.6 <code><maligngroup/></code> Attributes
</h4>
<p><code>maligngroup</code> elements accept the attributes listed
below in addition to those specified in <a href="chapter3-d.html#presm.presatt">Section 3.1.10 Mathematics style attributes common to presentation elements</a>
(however, neither <code>mathcolor</code> nor <code>mathbackground</code> have any effect).
</p>
<table border="1" class="attributes">
<thead>
<tr>
<th>Name</th>
<th>values</th>
<th>default</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="2" class="attname">groupalign</td>
<td>"left" | "center" | "right" | "decimalpoint"</td>
<td><em>inherited</em></td>
</tr>
<tr>
<td colspan="2" class="attdesc">
see the discussion below.
</td>
</tr>
</tbody>
</table>
<p><code>maligngroup</code> has one attribute,
<code>groupalign</code>, which is used to determine the position of
its group's alignment point when no <code>malignmark</code>
element is present. The following discussion assumes that no
<code>malignmark</code> element is found within a group.
</p>
<p>In the example given at the beginning of this section, there is one
column of 2 table cells, with 7 alignment groups in each table cell;
thus there are 7 columns of alignment groups, with 2 groups, one above
the other, in each column. These columns of alignment groups should be
given the 7 <code>groupalign</code> values "decimalpoint left left
decimalpoint left left decimalpoint", in that order. How to specify
this list of values for a table cell or table column as a whole, using
attributes on elements surrounding the
<code>maligngroup</code> element is described later.
</p>
<p>If <code>groupalign</code> is "left",
"right", or "center", the alignment point is
defined to be at the group's left edge, at its right edge, or halfway
between these edges, respectively. The meanings of "left edge"
and "right edge" are as discussed above in relation to <code>malignmark</code>.
</p>
<p>If <code>groupalign</code> is "decimalpoint",
the alignment point is the right edge of the character immediately before the
left-most 'decimal point', i.e. matching the character specified by
the <code>decimalpoint</code> attribute of <code>mstyle</code> (default ".", U+002E)
in the first <code>mn</code> element found along
the alignment group's baseline. More precisely, the alignment group is
scanned recursively, depth-first, for the first <code>mn</code>
element, descending into all arguments of each element of the types
<code>mrow</code> (including inferred
<code>mrow</code>s), <code>mstyle</code>,
<code>mpadded</code>, <code>mphantom</code>, <code>menclose</code>,
<code>mfenced</code>, or <code>msqrt</code>,
descending into only the first argument of each "scripting" element
(<code>msub</code>, <code>msup</code>,
<code>msubsup</code>, <code>munder</code>,
<code>mover</code>, <code>munderover</code>,
<code>mmultiscripts</code>) or of each
<code>mroot</code> or <code>semantics</code> element,
descending into only the selected sub-expression of each
<code>maction</code> element, and skipping the content of all
other elements. The first <code>mn</code> so found always
contains the alignment point, which is the right edge of the last
character before the first decimal point in the content of the
<code>mn</code> element. If there is no decimal point in the
<code>mn</code> element, the alignment point is the right edge
of the last character in the content. If the decimal point is the
first character of the <code>mn</code> element's content, the
right edge of a zero-width character inserted before the decimal point
is used. If no <code>mn</code> element is found, the right
edge of the entire alignment group is used (as for
<code>groupalign</code>="right").
</p>
<p>In order to permit alignment on decimal points in
<code>cn</code> elements, a MathML application can convert a
content expression into a presentation expression that renders the
same way before searching for decimal points as described above.
</p>
<p>Characters other than "." can be used as
"decimal points" for alignment by using <code>mstyle</code>;
more arbitrary alignment points can chosen by embedding <code>malignmark</code> elements
within the <code>mn</code> token's content itself.
</p>
<p>For any of the <code>groupalign</code> values, if an explicit
<code>malignmark</code> element is present anywhere within
the group, the position it specifies (described earlier) overrides the
automatic determination of alignment point from the
<code>groupalign</code> value.
</p>
</div>
<div class="div4">
<h4><a name="id.3.5.5.7" id="id.3.5.5.7"></a>3.5.5.7 Inheritance of <code>groupalign</code> values
</h4>
<p>It is not usually necessary to put a <code>groupalign</code>
attribute on every <code>maligngroup</code> element. Since
this attribute is usually the same for every group in a column of
alignment groups to be aligned, it can be inherited from an attribute
on the <code>mtable</code> that was used to set up the
alignment scope as a whole, or from the <code>mtr</code> or
<code>mtd</code> elements surrounding the alignment group. It
is inherited via an "inheritance path" that proceeds from
<code>mtable</code> through successively contained
<code>mtr</code>, <code>mtd</code>, and
<code>maligngroup</code> elements. There is exactly one
element of each of these kinds in this path from an
<code>mtable</code> to any alignment group inside it. In
general, the value of <code>groupalign</code> will be
inherited by any given alignment group from the innermost element
that surrounds the alignment group and provides an explicit
setting for this attribute. For example, if an
<code>mtable</code> element specifies values for <code>groupalign</code> and
a <code>maligngroup</code> element within the table also specifies an
explicit <code>groupalign</code> value, then then the value from the
<code>maligngroup</code> takes priority.
</p>
<p id="type.group-align">Note, however, that each <code>mtd</code> element needs, in
general, a list of <code>groupalign</code> values, one for each
<code>maligngroup</code> element inside it (from left to right, in an LTR context,
or from right to left in an RTL context), rather than just
a single value. Furthermore, an <code>mtr</code> or
<code>mtable</code> element needs, in general, a list of lists
of <code>groupalign</code> values, since it spans multiple
<code>mtable</code> columns, each potentially acting as an
alignment scope. Such lists of <em>group-alignment</em> values are specified
using the following syntax rules:
</p><pre>
group-alignment = "left" | "right" | "center" | "decimalpoint"
group-alignment-list = <em>group-alignment</em> +
group-alignment-list-list = ( "{" <em>group-alignment-list</em> "}" ) +
</pre><p>As described in <a href="chapter2-d.html#fund.attval">Section 2.1.5 MathML Attribute Values</a>, <code>|</code> separates
alternatives; <code>+</code> represents optional repetition (i.e. 1 or
more copies of what precedes it), with extra values ignored and the
last value repeated if necessary to cover additional table columns or
alignment group columns; <code>'{'</code> and <code>'}'</code>
represent literal braces; and <code>(</code> and <code>)</code> are
used for grouping, but do not literally appear in the attribute
value.
</p>
<p>The permissible values of the <code>groupalign</code> attribute of the
elements that have this attribute are specified using the above
syntax definitions as follows:
</p>
<table border="1">
<thead>
<tr>
<th>Element type</th>
<th>groupalign attribute syntax</th>
<th>default value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>mtable</code></td>
<td><a href="chapter3-d.html#type.group-align"><em>group-alignment-list-list</em></a></td>
<td>{left}</td>
</tr>
<tr>
<td><code>mtr</code></td>
<td><a href="chapter3-d.html#type.group-align"><em>group-alignment-list-list</em></a></td>
<td><em>inherited from <code>mtable</code> attribute</em></td>
</tr>
<tr>
<td><code>mlabeledtr</code></td>
<td><a href="chapter3-d.html#type.group-align"><em>group-alignment-list-list</em></a></td>
<td><em>inherited from <code>mtable</code> attribute</em></td>
</tr>
<tr>
<td><code>mtd</code></td>
<td><a href="chapter3-d.html#type.group-align"><em>group-alignment-list</em></a></td>
<td><em>inherited from within <code>mtr</code> attribute</em></td>
</tr>
<tr>
<td><code>maligngroup</code></td>
<td><a href="chapter3-d.html#type.group-align"><em>group-alignment</em></a></td>
<td><em>inherited from within <code>mtd</code> attribute</em></td>
</tr>
</tbody>
</table>
<p>In the example near the beginning of this section, the group
alignment values could be specified on every <code>mtd</code>
element using <code>groupalign</code> = "decimalpoint left left
decimalpoint left left decimalpoint", or on every
<code>mtr</code> element using <code>groupalign</code> =
"{decimalpoint left left decimalpoint left left decimalpoint}", or
(most conveniently) on the <code>mtable</code> as a whole
using <code>groupalign</code> = "{decimalpoint left left decimalpoint
left left decimalpoint}", which provides a single braced list of
<a href="chapter3-d.html#type.group-align"><em>group-alignment</em></a> values for the single column of expressions to be
aligned.
</p>
</div>
<div class="div4">
<h4><a name="id.3.5.5.8" id="id.3.5.5.8"></a>3.5.5.8 MathML representation of an alignment example
</h4>
<p>The above rules are sufficient to explain the MathML representation
of the example given near the start of this section.
To repeat the example, the desired rendering is:
</p><pre>
8.44x + 55 y = 0
3.1 x - 0.7y = -1.1
</pre><p>One way to represent that in MathML is:
</p><pre class="mathml">
<mtable groupalign="{decimalpoint left left decimalpoint left left decimalpoint}">
<mtr>
<mtd>
<mrow>
<mrow>
<mrow>
<maligngroup/>
<mn> 8.44 </mn>
<mo> &#x2062;<span style="color:#999900"><!--INVISIBLE TIMES--></span> </mo>
<maligngroup/>
<mi> x </mi>
</mrow>
<maligngroup/>
<mo> + </mo>
<mrow>
<maligngroup/>
<mn> 55 </mn>
<mo> &#x2062;<span style="color:#999900"><!--INVISIBLE TIMES--></span> </mo>
<maligngroup/>
<mi> y </mi>
</mrow>
</mrow>
<maligngroup/>
<mo> = </mo>
<maligngroup/>
<mn> 0 </mn>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mrow>
<mrow>
<maligngroup/>
<mn> 3.1 </mn>
<mo> &#x2062;<span style="color:#999900"><!--INVISIBLE TIMES--></span> </mo>
<maligngroup/>
<mi> x </mi>
</mrow>
<maligngroup/>
<mo> - </mo>
<mrow>
<maligngroup/>
<mn> 0.7 </mn>
<mo> &#x2062;<span style="color:#999900"><!--INVISIBLE TIMES--></span> </mo>
<maligngroup/>
<mi> y </mi>
</mrow>
</mrow>
<maligngroup/>
<mo> = </mo>
<maligngroup/>
<mrow>
<mo> - </mo>
<mn> 1.1 </mn>
</mrow>
</mrow>
</mtd>
</mtr>
</mtable>
</pre></div>
<div class="div4">
<h4><a name="id.3.5.5.9" id="id.3.5.5.9"></a>3.5.5.9 Further details of alignment elements
</h4>
<p>The alignment elements <code>maligngroup</code> and
<code>malignmark</code> can occur outside of alignment
scopes, where they are ignored. The rationale behind this is that in
situations in which MathML is generated, or copied from another
document, without knowing whether it will be placed inside an
alignment scope, it would be inconvenient for this to be an error.
</p>
<p>An <code>mtable</code> element can be given the attribute <code>alignmentscope</code>="false" to cause its
columns not to act as alignment scopes. In general, this attribute has the
syntax <code>("true" | "false") +</code>; if its value is a list of Boolean
values, each Boolean value applies to one column, with the last value
repeated if necessary to cover additional columns, or with extra values
ignored. Columns that are not alignment scopes are part of the alignment
scope surrounding the <code>mtable</code> element, if there is
one. Use of <code>alignmentscope</code>="false" allows nested tables to contain <code>malignmark</code> elements for aligning the inner table in the
surrounding alignment scope.
</p>
<p>As discussed above, processing of alignment for content elements is
not well-defined, since MathML does not specify how content elements
should be rendered. However, many MathML applications are likely to find it
convenient to internally convert content elements to presentation
elements that render the same way. Thus, as a general rule, even if a
renderer does not perform such conversions internally, it is
recommended that the alignment elements should be processed as if it
did perform them.
</p>
<p>A particularly important case for renderers to handle gracefully is the
interaction of alignment elements with the <code>matrix</code>
content element, since this element may or may not be internally converted
to an expression containing an <code>mtable</code> element for
rendering. To partially resolve this ambiguity, it is suggested, but not
required, that if the <code>matrix</code> element is converted
to an expression involving an <code>mtable</code> element, that
the <code>mtable</code> element be given the attribute <code>alignmentscope</code>="false", which will
make the interaction of the <code>matrix</code> element with the
alignment elements no different than that of a generic presentation element
(in particular, it will allow it to contain <code>malignmark</code> elements that operate within the alignment
scopes created by the columns of an <code>mtable</code> that
contains the <code>matrix</code> element in one of its table
cells).
</p>
<p>The effect of alignment elements within table cells that have
non-default values of the <code>columnspan</code> or <code>rowspan</code> attributes is not specified, except that such
use of alignment elements is not an error. Future versions of MathML may
specify the behavior of alignment elements in such table cells.
</p>
<p>The effect of possible linebreaking of an <code>mtable</code>
element on the alignment elements is not specified.
</p>
</div>
<div class="div4">
<h4><a name="id.3.5.5.10" id="id.3.5.5.10"></a>3.5.5.10 A simple alignment algorithm
</h4>
<p>A simple algorithm by which a MathML renderer can perform the
alignment specified in this section is given here. Since the alignment
specification is deterministic (except for the definition of the left
and right edges of a character), any correct MathML alignment
algorithm will have the same behavior as this one. Each
<code>mtable</code> column (alignment scope) can be treated
independently; the algorithm given here applies to one
<code>mtable</code> column, and takes into account the
alignment elements, the <code>groupalign</code> attribute described in
this section, and the <code>columnalign</code> attribute described
under <code>mtable</code> (<a href="chapter3-d.html#presm.mtable">Section 3.5.1 Table or Matrix
<code><mtable></code></a>).
</p>
<p>First, a rendering is computed for the contents of each table cell
in the column, using zero width for all
<code>maligngroup</code> and <code>malignmark</code>
elements. The final rendering will be identical except for horizontal
shifts applied to each alignment group and/or table cell. The
positions of alignment points specified by any
<code>malignmark</code> elements are noted, and the remaining
alignment points are determined using <code>groupalign</code>
values.
</p>
<p>For each alignment group, the horizontal positions of the left
edge, alignment point, and right edge are noted, allowing the width of
the group on each side of the alignment point (left and right) to be
determined. The sum of these two "side-widths", i.e. the sum of the
widths to the left and right of the alignment point, will equal the
width of the alignment group.
</p>
<p>Second, each column of alignment groups is
scanned. The <var>i</var>th scan covers the <var>i</var>th
alignment group in each table cell containing any alignment
groups. Table cells with no alignment groups, or with fewer than
<var>i</var> alignment groups, are ignored. Each scan computes two
maximums over the alignment groups scanned: the maximum width to the
left of the alignment point, and the maximum width to the right of the
alignment point, of any alignment group scanned.
</p>
<p>The sum of all the maximum widths computed (two for each column of
alignment groups) gives one total width, which will be the width of
each table cell containing alignment groups. Call the maximum number
of alignment groups in one cell <var>n</var>; each such cell
is divided into 2<var>n</var> horizontally adjacent sections, called
L(<var>i</var>) and R(<var>i</var>) for <var>i</var> from 1 to
<var>n</var>, using the 2<var>n</var> maximum side-widths computed
above; for each <var>i</var>, the width of all sections called
L(<var>i</var>) is the maximum width of any cell's <var>i</var>th
alignment group to the left of its alignment point, and the width of
all sections called R(<var>i</var>) is the maximum width of any
cell's <var>i</var>th alignment group to the right of its alignment
point.
</p>
<p>Each alignment group is then shifted horizontally as a block
to a unique position that places: in the section called L(<var>i</var>) that part
of the <var>i</var>th group to the left of its alignment point;
in the section called R(<var>i</var>) that part of the <var>i</var>th group
to the right of its alignment point. This results in the
alignment point of each <var>i</var>th group being on the boundary
between adjacent sections L(<var>i</var>) and R(<var>i</var>), so
that all alignment points of <var>i</var>th groups have the same
horizontal position.
</p>
<p>The widths of the table cells that contain no alignment groups
were computed as part of the initial rendering, and may be different
for each cell, and different from the single width used for cells
containing alignment groups. The maximum of all the cell widths (for
both kinds of cells) gives the width of the table column as a
whole.
</p>
<p>The position of each cell in the column is determined by the
applicable part of the value of the <code>columnalign</code> attribute
of the innermost surrounding <code>mtable</code>,
<code>mtr</code>, or <code>mtd</code> element that
has an explicit value for it, as described in the sections on those
elements. This may mean that the cells containing alignment groups
will be shifted within their column, in addition to their alignment
groups having been shifted within the cells as described above, but
since each such cell has the same width, it will be shifted the same
amount within the column, thus maintaining the vertical alignment of
the alignment points of the corresponding alignment groups in each
cell.
</p>
</div>
</div>
</div>
<div class="div2">
<h2><a name="presm.elementary" id="presm.elementary"></a>3.6 Elementary Math
</h2>
<p>Mathematics used in the lower grades such as two-dimensional addition, multiplication,
and long division tends to be tabular in nature.
However, the specific notations used varies among countries
much more than for higher level math.
Furthermore, elementary math often presents examples in some intermediate state
and MathML must be able to capture these intermediate or intentionally missing
partial forms. Indeed, these constructs represent memory aids or
procedural guides, as much as they represent ‘mathematics’.
</p>
<p>
The elements used for basic alignments in elementary math are:
</p>
<dl>
<dt class="label"><code>mstack</code></dt>
<dd>align rows of digits and operators</dd>
<dt class="label"><code>msgroup</code></dt>
<dd>groups rows with similar alignment</dd>
<dt class="label"><code>msrow</code></dt>
<dd>groups digits and operators into a row</dd>
<dt class="label"><code>msline</code></dt>
<dd>draws lines between rows of the stack</dd>
<dt class="label"><code>mscarries</code></dt>
<dd>annotates the following row with optional borrows/carries and/or crossouts</dd>
<dt class="label"><code>mscarry</code></dt>
<dd>a borrow/carry and/or crossout for a single digit</dd>
<dt class="label"><code>mlongdiv</code></dt>
<dd>specifies a divisor and a quotient for long division, along with a stack of the intermediate computations</dd>
</dl>
<p>
<code>mstack</code> and <code>mlongdiv</code> are the parent elements for all elementary
math layout.
Any children of <code>mstack</code>, <code>mlongdiv</code>, and <code>msgroup</code>,
besides <code>msrow</code>, <code>msgroup</code>, <code>mscarries</code> and <code>msline</code>,
are treated as if implicitly surrounded by an <code>msrow</code>
(See <a href="chapter3-d.html#presm.msrow">Section 3.6.4 Rows in Elementary Math <code><msrow></code></a> for more details about rows).
</p>
<p>Since the primary use of these stacking constructs is to
stack rows of numbers aligned on their digits,
and since numbers are always formatted left-to-right,
the columns of an mstack are always processed left-to-right;
the overall directionality in effect (ie. the <code>dir</code> attribute)
does not affect to the ordering of display of columns or carries in rows
and, in particular, does not affect the ordering of any operators within a row
(See <a href="chapter3-d.html#presm.bidi">Section 3.1.5 Directionality</a>).
</p>
<p>
These elements are described in this section followed by examples of their use.
In addition to two-dimensional addition, subtraction, multiplication, and long division,
these elements can be used to represent several notations used for repeating decimals.
</p>
<p>A very simple example of two-dimensional addition is shown below:</p>
<blockquote>
<p><img src="image/em-plus.png" alt="\begin{array}{r} 424 \\ +33 \\ \hline \end{array}"></p>
</blockquote>
<p>The MathML for this is:</p><pre class="mathml">
<mstack>
<mn>424</mn>
<msrow> <mo>+</mo> <mn>33</mn> </msrow>
<msline/>
</mstack>
</pre><p> Many more examples are given in <a href="chapter3-d.html#presm.elemmath.examples">Section 3.6.8 Elementary Math Examples</a>.
</p>
<div class="div3">
<h3><a name="presm.mstack" id="presm.mstack"></a>3.6.1 Stacks of Characters <code><mstack></code></h3>
<div class="div4">
<h4><a name="id.3.6.1.1" id="id.3.6.1.1"></a>3.6.1.1 Description
</h4>
<p><code>mstack</code> is used to lay out rows of numbers that are aligned on each digit.
This is common in many elementary math notations such as 2D addition, subtraction, and multiplication.
</p>
<p>The children of an <code>mstack</code> represent rows, or groups of them,
to be stacked each below the previous row; there can be any number of rows.
An <code>msrow</code> represents a row;
an <code>msgroup</code> groups a set of rows together
so that their horizontal alignment can be adjusted together;
an <code>mscarries</code> represents a set of carries to be
applied to the following row;
an <code>msline</code> represents a line separating rows.
Any other element is treated as if implicitly surrounded by <code>msrow</code>.
</p>
<p>Each row contains ‘digits’ that are placed into columns.
(see <a href="chapter3-d.html#presm.msrow">Section 3.6.4 Rows in Elementary Math <code><msrow></code></a> for further details).
The <code>stackalign</code> attribute together with
the <code>position</code> and <code>shift</code> attributes of <code>msgroup</code>,
<code>mscarries</code>, and <code>msrow</code> determine
to which column a character belongs.
</p>
<p>The width of a column is the maximum of the widths of each ‘digit’ in that
column — carries do <em>not</em> participate in the
width calculation; they are treated as having zero width.
If an element is too wide to fit into a column, it overflows into the adjacent
column(s) as determined by the <code>charalign</code> attribute.
If there is no character in a column, its width is taken to be the width of a 0
in the current language (in many fonts, all digits have the same width).
</p>
<p>The method for laying out an mstack is:
</p>
<ol type="1">
<li>
<p>The ‘digits’ in a row are determined.</p>
</li>
<li>
<p>All of the digits in a row are initially aligned according to the <code>stackalign</code> value.
</p>
</li>
<li>
<p>Each row is positioned relative to that alignment based on the <code>position</code> attribute (if any)
that controls that row.
</p>
</li>
<li>
<p>The maximum width of the digits in a column are determined and
shorter and wider entries in that column are aligned according to
the <code>charalign</code> attribute.
</p>
</li>
<li>
<p>The width and height of the mstack element are computed based on the
rows and columns.
Any overflow from a column is <em>not</em> used as part of that computation.
</p>
</li>
<li>
<p>The baseline of the mstack element is determined by the <code>align</code> attribute.
</p>
</li>
</ol>
</div>
<div class="div4">
<h4><a name="id.3.6.1.2" id="id.3.6.1.2"></a>3.6.1.2 Attributes
</h4>
<p><code>mstack</code> elements accept the attributes listed
below in addition to those specified in <a href="chapter3-d.html#presm.presatt">Section 3.1.10 Mathematics style attributes common to presentation elements</a>.
</p>
<table border="1" class="attributes">
<thead>
<tr>
<th>Name</th>
<th>values</th>
<th>default</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="2" class="attname">align</td>
<td>("top" | "bottom" | "center" | "baseline" | "axis"), <em>rownumber</em>?
</td>
<td>baseline</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
specifies the vertical alignment of the <code>mstack</code> with respect to its environment.
The legal values and their meanings are the same as that for <code>mtable</code>'s
<a href="chapter3-d.html#presm.mtable.attrs"><code>align</code></a> attribute.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">stackalign</td>
<td>"left" | "center" | "right" | "decimalpoint"</td>
<td>decimalpoint</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
specifies which column is used to horizontally align the rows.
For "left", rows are aligned flush on the left;
similarly for "right", rows are flush on the right;
for "center", the middle column (or to the right of the middle, for an even number of columns)
is used for alignment.
Rows with non-zero <code>position</code>, or affected by a <code>shift</code>,
are treated as if the
requisite number of empty columns were added on the appropriate side;
see <a href="chapter3-d.html#presm.msgroup">Section 3.6.3 Group Rows with Similiar Positions <code><msgroup></code></a> and <a href="chapter3-d.html#presm.msrow">Section 3.6.4 Rows in Elementary Math <code><msrow></code></a>.
For "decimalpoint", the column used is the left-most column in each
row that contains the decimalpoint character specified
using the <code>decimalpoint</code> attribute of <code>mstyle</code> (default ".").
If there is no decimalpoint character in the row, an implied decimal is assumed on the right of the first number in the row;
See <a href="chapter3-d.html#presm.mstyle">"decimalpoint"</a> for a discussion
of "decimalpoint".
</td>
</tr>
<tr>
<td rowspan="2" class="attname">charalign</td>
<td>"left" | "center" | "right" </td>
<td>right</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
specifies the horizontal alignment of digits within a column.
If the content is larger than the column width, then it overflows the opposite side from the alignment.
For example, for "right", the content will overflow on the left side; for center,
it overflows on both sides.
This excess does not participate in the column width calculation, nor does it participate
in the overall width of the <code>mstack</code>.
In these cases, authors should take care to avoid collisions between column overflows.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">charspacing</td>
<td><a href="chapter2-d.html#type.length"><em>length</em></a> | "loose" | "medium" | "tight"
</td>
<td>medium</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
specifies the amount of space to put between each column.
Larger spacing might be useful if carries are not placed above or are particularly wide.
The keywords "loose", "medium", and "tight" automatically adjust spacing to when carries or other entries in a column are
wide. The three values allow authors to some flexibility in choosing what the layout looks like without having to figure out
what values works well. In all cases, the spacing between columns is a fixed amount and does not vary between different columns.
</td>
</tr>
</tbody>
</table>
</div>
</div>
<div class="div3">
<h3><a name="presm.mlongdiv" id="presm.mlongdiv"></a>3.6.2 Long Division <code><mlongdiv></code></h3>
<div class="div4">
<h4><a name="id.3.6.2.1" id="id.3.6.2.1"></a>3.6.2.1 Description
</h4>
<p>Long division notation varies quite a bit around the world, although the heart of the notation is often similar.
<code>mlongdiv</code> is similar to <code>mstack</code> and used to layout long division.
The first two children of <code>mlongdiv</code> are the divisor and the result of the division, in that order.
The remaining children are treated as if they were children of <code>mstack</code>.
The placement of these and the lines and separators used to display long division are controlled
by the <code>longdivstyle</code> attribute.
</p>
<p>The result or divisor may be an elementary math element or may be <code>none</code>. In particular, if <code>msgroup</code> is used, the elements in that group may or may not form their own mstack or be part of the dividend's <code>mstack</code>, depending upon the value of the <code>longdivstyle</code> attribute.
For example, in the US style for division, the result is treated as part of the dividend's <code>mstack</code>, but divisor is not.
MathML does not specify when the result and divisor form their own <code>mstack</code>, nor does it specify what should happen if <code>msline</code> or other elementary math elements are used for the result or divisor and they do not participate in the dividend's <code>mstack</code> layout.
</p>
<p>In the remainder of this section on elementary math, anything that is said about <code>mstack</code> applies
to <code>mlongdiv</code> unless stated otherwise.
</p>
</div>
<div class="div4">
<h4><a name="presm.mlongdiv.attrs" id="presm.mlongdiv.attrs"></a>3.6.2.2 Attributes
</h4>
<p><code>mlongdiv</code> elements accept all of the attributes that <code>mstack</code> elements
accept (including those specified in <a href="chapter3-d.html#presm.presatt">Section 3.1.10 Mathematics style attributes common to presentation elements</a>), along with the attribute listed below.
</p>
<p>The values allowed for <code>longdivstyle</code> are open-ended. Conforming renderers may ignore any value they do not handle, although renderers are encouraged to render
as many of the values listed below as possible.
Any rules drawn as part of division layout should be drawn using the color specified by <code>mathcolor</code>.
</p>
<table border="1" class="attributes">
<thead>
<tr>
<th>Name</th>
<th>values</th>
<th>default</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="2" class="attname">longdivstyle</td>
<td> "lefttop" | "stackedrightright" | "mediumstackedrightright" | "shortstackedrightright" | "righttop" | "left/\right" | "left)(right"
| ":right=right" | "stackedleftleft" | "stackedleftlinetop"
</td>
<td>lefttop</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Controls the style of the long division layout. The names are meant as a rough mnemonic that describes the position of
the divisor and result in relation to the dividend.
</td>
</tr>
</tbody>
</table>
<p>See <a href="chapter3-d.html#presm.mlongdiv.ex">Section 3.6.8.3 Long Division</a> for examples of how these notations are drawn. The values listed above are used for long division notations in different
countries around the world:
</p>
<dl>
<dt class="label">"lefttop"</dt>
<dd>a notation that is commonly used in the United States, Great Britain, and elsewhere</dd>
<dt class="label">"stackedrightright"</dt>
<dd>a notation that is commonly used in France and elsewhere</dd>
<dt class="label">"mediumrightright"</dt>
<dd>a notation that is commonly used in Russia and elsewhere</dd>
<dt class="label">"shortstackedrightright"</dt>
<dd>a notation that is commonly used in Brazil and elsewhere</dd>
<dt class="label">"righttop"</dt>
<dd>a notation that is commonly used in China, Sweden, and elsewhere</dd>
<dt class="label">"left/\right"</dt>
<dd>a notation that is commonly used in Netherlands</dd>
<dt class="label">"left)(right"</dt>
<dd>a notation that is commonly used in India</dd>
<dt class="label">":right=right "</dt>
<dd>a notation that is commonly used in Germany</dd>
<dt class="label">"stackedleftleft "</dt>
<dd>a notation that is commonly used in Arabic countries</dd>
<dt class="label">"stackedleftlinetop"</dt>
<dd>a notation that is commonly used in Arabic countries</dd>
</dl>
</div>
</div>
<div class="div3">
<h3><a name="presm.msgroup" id="presm.msgroup"></a>3.6.3 Group Rows with Similiar Positions <code><msgroup></code></h3>
<div class="div4">
<h4><a name="id.3.6.3.1" id="id.3.6.3.1"></a>3.6.3.1 Description
</h4>
<p><code>msgroup</code> is used to group rows inside of the <code>mstack</code> and <code>mlongdiv</code> elements
that have a similar position relative to the alignment of stack.
If not explicitly given, the children representing the stack in <code>mstack</code> and <code>mlongdiv</code>
are treated as if they are implicitly surrounded by an <code>msgroup</code> element.
</p>
</div>
<div class="div4">
<h4><a name="id.3.6.3.2" id="id.3.6.3.2"></a>3.6.3.2 Attributes
</h4>
<p><code>msgroup</code> elements accept the attributes listed
below in addition to those specified in <a href="chapter3-d.html#presm.presatt">Section 3.1.10 Mathematics style attributes common to presentation elements</a>.
</p>
<table border="1" class="attributes">
<thead>
<tr>
<th>Name</th>
<th>values</th>
<th>default</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="2" class="attname">position</td>
<td><a href="chapter2-d.html#type.integer"><em>integer</em></a></td>
<td>0</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
specifies the horizontal position of the rows within this group relative
the position determined by the containing <code>msgroup</code> (according to its
<code>position</code> and <code>shift</code> attributes).
The resulting position value is relative to the column specified by <code>stackalign</code> of the containing <code>mstack</code> or <code>mlongdiv</code>.
Positive values move each row towards the tens digit,
like multiplying by a power of 10,
effectively padding with empty columns on the right;
negative values move towards the ones digit,
effectively padding on the left.
The decimal point is counted as a column and should be taken into account for negative values.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">shift</td>
<td><a href="chapter2-d.html#type.integer"><em>integer</em></a></td>
<td>0</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
specifies an incremental shift of position for successive children (rows or groups)
within this group. The value is interpreted as with position, but specifies the
position of each child (except the first) with respect to the previous child in the group.
</td>
</tr>
</tbody>
</table>
</div>
</div>
<div class="div3">
<h3><a name="presm.msrow" id="presm.msrow"></a>3.6.4 Rows in Elementary Math <code><msrow></code></h3>
<div class="div4">
<h4><a name="id.3.6.4.1" id="id.3.6.4.1"></a>3.6.4.1 Description
</h4>
<p>An <code>msrow</code> represents a row in an <code>mstack</code>.
In most cases it is implied by the context, but is useful
explicitly for putting multiple elements in a single row,
such as when placing an operator "+" or "-" alongside a number
within an addition or subtraction.
</p>
<p>If an <code>mn</code> element is a child of <code>msrow</code>
(whether implicit or not), then the number is split into its digits
and the digits are placed into successive columns.
Any other element, with the exception of <code>mstyle</code> is treated effectively
as a single digit occupying the next column.
An <code>mstyle</code> is treated as if its children were
directly the children of the <code>msrow</code>, but with their style affected
by the attributes of the <code>mstyle</code>.
The empty element <code>none</code> may be used to create an empty column.
</p>
<p>Note that a row is considered primarily as if it were a number,
which are always displayed left-to-right,
and so the directionality used to display the columns is always left-to-right;
textual bidirectionality within token elements (other than <code>mn</code>) still applies,
as does the overall directionality <em>within</em> any children of the <code>msrow</code>
(which end up treated as single digits);
see <a href="chapter3-d.html#presm.bidi">Section 3.1.5 Directionality</a>.
</p>
</div>
<div class="div4">
<h4><a name="id.3.6.4.2" id="id.3.6.4.2"></a>3.6.4.2 Attributes
</h4>
<p><code>msrow</code> elements accept the attributes listed
below in addition to those specified in <a href="chapter3-d.html#presm.presatt">Section 3.1.10 Mathematics style attributes common to presentation elements</a>.
</p>
<table border="1" class="attributes">
<thead>
<tr>
<th>Name</th>
<th>values</th>
<th>default</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="2" class="attname">position</td>
<td><a href="chapter2-d.html#type.integer"><em>integer</em></a></td>
<td>0</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
specifies the horizontal position of the rows within this group relative
the position determined by the containing <code>msgroup</code> (according to its
<code>position</code> and <code>shift</code> attributes).
The resulting position value is relative to the column specified by <code>stackalign</code> of the containing <code>mstack</code> or <code>mlongdiv</code>.
Positive values move each row towards the tens digit,
like multiplying by a power of 10,
effectively padding with empty columns on the right;
negative values move towards the ones digit,
effectively padding on the left.
The decimal point is counted as a column and should be taken into account for negative values.
</td>
</tr>
</tbody>
</table>
</div>
</div>
<div class="div3">
<h3><a name="presm.mscarries" id="presm.mscarries"></a>3.6.5 Carries, Borrows, and Crossouts <code><mscarries></code></h3>
<div class="div4">
<h4><a name="id.3.6.5.1" id="id.3.6.5.1"></a>3.6.5.1 Description
</h4>
<p>The <code>mscarries</code> element is used for various annotations such as carries, borrows, and crossouts that occur in elementary math.
The children are associated with elements in the <em>following</em> row of the <code>mstack</code>.
It is an error for <code>mscarries</code> to be the last element of an <code>mstack</code> or <code>mlongdiv</code> element. Each child of the <code>mscarries</code> applies to the same column in the following row.
As these annotations are used to adorn what are treated as
numbers, the attachment of carries to columns proceeds from left-to-right;
The overall directionality does not apply to the ordering of the carries,
although it may apply to the contents of each carry;
see <a href="chapter3-d.html#presm.bidi">Section 3.1.5 Directionality</a>.
</p>
<p>
Each child of <code>mscarries</code> other than <code>mscarry</code> or <code>none</code> is
treated as if implicitly surrounded by <code>mscarry</code>;
the element <code>none</code> is used when no carry for a particular column is needed.
The <code>mscarries</code> element sets <code>displaystyle</code> to "false", and increments <code>scriptlevel</code> by 1, so the children are
typically displayed in a smaller font. (See <a href="chapter3-d.html#presm.scriptlevel">Section 3.1.6 Displaystyle and Scriptlevel</a>.)
It also changes the default value of <code>scriptsizemultiplier</code>.
The effect is that the inherited value of
<code>scriptsizemultiplier</code> should still override the default value,
but the default value, inside <code>mscarries</code>, should be "0.6".
<code>scriptsizemultiplier</code> can be set on the <code>mscarries</code> element,
and the value should override the inherited value as usual.
</p>
<p>
If two rows of carries are adjacent to each other, the first row of carries annotates the second (following) row as if the
second row had <code>location</code>="n". This means that the second row, even if it does not draw, visually uses some (undefined by this specification) amount
of space when displayed.
</p>
</div>
<div class="div4">
<h4><a name="id.3.6.5.2" id="id.3.6.5.2"></a>3.6.5.2 Attributes
</h4>
<p><code>mscarries</code> elements accept the attributes listed
below in addition to those specified in <a href="chapter3-d.html#presm.presatt">Section 3.1.10 Mathematics style attributes common to presentation elements</a>.
</p>
<table border="1" class="attributes">
<thead>
<tr>
<th>Name</th>
<th>values</th>
<th>default</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="2" class="attname">position</td>
<td><a href="chapter2-d.html#type.integer"><em>integer</em></a></td>
<td>0</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
specifies the horizontal position of the rows within this group relative
the position determined by the containing <code>msgroup</code> (according to its
<code>position</code> and <code>shift</code> attributes).
The resulting position value is relative to the column specified by <code>stackalign</code> of the containing <code>mstack</code> or <code>mlongdiv</code>.
The interpretation of the value is the same as <code>position</code> for <code>msgroup</code> or <code>msrow</code>,
but it alters the association of each carry with the column below.
For example, <code>position</code>=1 would cause the rightmost carry to be associated with
the second digit column from the right.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">location</td>
<td>"w" | "nw" | "n" | "ne" | "e" | "se" | "s" | "sw" </td>
<td>n</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
specifies the location of the carry or borrow relative to the character below it in the associated column.
Compass directions are used for the values; the default is to place the carry above the character.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">crossout</td>
<td>("none" | "updiagonalstrike" | "downdiagonalstrike" | "verticalstrike" | "horizontalstrike")* </td>
<td>none</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
specifies how the column content below each carry is "crossed out";
one or more values may be given and all values are drawn.
If "none" is given with other values, it is ignored.
See <a href="chapter3-d.html#presm.elemmath.examples">Section 3.6.8 Elementary Math Examples</a> for examples of the different values.
The crossout is only applied for columns which have a corresponding
<code>mscarry</code>.
The crossouts should be drawn using the color specified by <code>mathcolor</code>.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">scriptsizemultiplier</td>
<td> <a href="chapter2-d.html#type.number"><em>number</em></a></td>
<td><em>inherited (0.6)</em></td>
</tr>
<tr>
<td colspan="2" class="attdesc">
specifies the factor to change the font size by.
See <a href="chapter3-d.html#presm.scriptlevel">Section 3.1.6 Displaystyle and Scriptlevel</a> for a description of how this works with the <code>scriptsize</code> attribute.
</td>
</tr>
</tbody>
</table>
</div>
</div>
<div class="div3">
<h3><a name="presm.mscarry" id="presm.mscarry"></a>3.6.6 A Single Carry <code><mscarry></code></h3>
<div class="div4">
<h4><a name="id.3.6.6.1" id="id.3.6.6.1"></a>3.6.6.1 Description
</h4>
<p><code>mscarry</code> is used inside of <code>mscarries</code> to
represent the carry for an individual column.
A carry is treated as if its width were zero; it does not participate in
the calculation of the width of its corresponding column;
as such, it may extend beyond the column boundaries.
Although it is usually implied, the element may be used explicitly to override the
<code>location</code> and/or <code>crossout</code> attributes of
the containing <code>mscarries</code>.
It may also be useful with <code>none</code> as its content in order
to display no actual carry, but still enable a <code>crossout</code>
due to the enclosing <code>mscarries</code> to be drawn for the given column.
</p>
</div>
<div class="div4">
<h4><a name="id.3.6.6.2" id="id.3.6.6.2"></a>3.6.6.2 Attributes
</h4>
<p>The <code>mscarry</code> element accepts the attributes listed
below in addition to those specified in <a href="chapter3-d.html#presm.presatt">Section 3.1.10 Mathematics style attributes common to presentation elements</a>.
</p>
<table border="1" class="attributes">
<thead>
<tr>
<th>Name</th>
<th>values</th>
<th>default</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="2" class="attname">location</td>
<td>"w" | "nw" | "n" | "ne" | "e" | "se" | "s" | "sw"</td>
<td><em>inherited</em></td>
</tr>
<tr>
<td colspan="2" class="attdesc">
specifies the location of the carry or borrow relative to the character in the corresponding column in the row below it.
Compass directions are used for the values.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">crossout</td>
<td>("none" | "updiagonalstrike" | "downdiagonalstrike" | "verticalstrike" | "horizontalstrike")* </td>
<td><em>inherited</em></td>
</tr>
<tr>
<td colspan="2" class="attdesc">
specifies how the column content associated with the carry is "crossed out";
one or more values may be given and all values are drawn.
If "none" is given with other values, it is essentially ignored.
The crossout should be drawn using the color specified by <code>mathcolor</code>.
</td>
</tr>
</tbody>
</table>
</div>
</div>
<div class="div3">
<h3><a name="presm.msline" id="presm.msline"></a>3.6.7 Horizontal Line <code><msline/></code></h3>
<div class="div4">
<h4><a name="id.3.6.7.1" id="id.3.6.7.1"></a>3.6.7.1 Description
</h4>
<p><code>msline</code> draws a horizontal line inside of a <code>mstack</code> element.
The position, length, and thickness of the line are specified as attributes.
If the length is specified, the line is positioned and drawn as if it were a number with the given number of digits.
</p>
</div>
<div class="div4">
<h4><a name="id.3.6.7.2" id="id.3.6.7.2"></a>3.6.7.2 Attributes
</h4>
<p><code>msline</code> elements accept the attributes listed
below in addition to those specified in <a href="chapter3-d.html#presm.presatt">Section 3.1.10 Mathematics style attributes common to presentation elements</a>.
The line should be drawn using the color specified by <code>mathcolor</code>.
</p>
<table border="1" class="attributes">
<thead>
<tr>
<th>Name</th>
<th>values</th>
<th>default</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="2" class="attname">position</td>
<td><a href="chapter2-d.html#type.integer"><em>integer</em></a></td>
<td>0</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
specifies the horizontal position of the rows within this group relative
the position determined by the containing <code>msgroup</code> (according to its
<code>position</code> and <code>shift</code> attributes).
The resulting position value is relative to the column specified by <code>stackalign</code> of the containing <code>mstack</code> or <code>mlongdiv</code>.
Positive values moves towards the tens digit (like multiplying by a power of 10);
negative values moves towards the ones digit.
The decimal point is counted as a column and should be taken into account for negative values.
Note that since the default line length spans the entire <code>mstack</code>,
the position has no effect unless the <code>length</code> is specified as non-zero.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">length</td>
<td><a href="chapter2-d.html#type.unsigned-integer"><em>unsigned-integer</em></a></td>
<td>0</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies the the number of columns that should be spanned by the line.
A value of '0' (the default) means that <em>all</em> columns in
the row are spanned (in which case <code>position</code> and <code>stackalign</code> have no effect).
</td>
</tr>
<tr>
<td rowspan="2" class="attname">leftoverhang</td>
<td><a href="chapter2-d.html#type.length"><em>length</em></a></td>
<td>0</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies an extra amount that the line should overhang on the left of the leftmost column spanned by the line.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">rightoverhang</td>
<td><a href="chapter2-d.html#type.length"><em>length</em></a></td>
<td>0</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies an extra amount that the line should overhang on the right of the rightmost column spanned by the line.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">mslinethickness</td>
<td><a href="chapter2-d.html#type.length"><em>length</em></a> | "thin" | "medium" | "thick"
</td>
<td>medium</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies how thick the line should be drawn.
The line should have height=0, and depth=mslinethickness so that the top
of the <code>msline</code> is on the baseline of the surrounding context (if any).
(See <a href="chapter3-d.html#presm.mfrac">Section 3.3.2 Fractions <code><mfrac></code></a> for discussion of the thickness keywords
"medium", "thin" and "thick".)
</td>
</tr>
</tbody>
</table>
</div>
</div>
<div class="div3">
<h3><a name="presm.elemmath.examples" id="presm.elemmath.examples"></a>3.6.8 Elementary Math Examples
</h3>
<div class="div4">
<h4><a name="presm.addsub" id="presm.addsub"></a>3.6.8.1 Addition and Subtraction
</h4>
<p>Two-dimensional addition, subtraction, and multiplication typically
involve numbers, carrries/borrows, lines, and the sign of the
operation.
</p>
<p>Notice that the <code>msline</code> spans all of the columns and that <code>none</code> is used to make the "+" appear to the left of all of the operands.
</p>
<blockquote>
<p><img src="image/em-plus-shift.png" alt="\begin{array}{@{}r@{}} 424 \\ +\phantom0 33 \\ \hline \end{array}"></p>
</blockquote>
<p>The MathML for this is:</p><pre class="mathml">
<mstack>
<mn>424</mn>
<msrow> <mo>+</mo> <none/> <mn>33</mn> </msrow>
<msline/>
</mstack>
</pre><p>Here is an example with the operator on the right. Placing the
operator on the right is standard in the Netherlands and some other countries.
Notice that although there are a total of four columns in the example,
because the default alignment in on the implied decimal point to the right of the numbers,
it is not necessary to pad any row.
</p>
<blockquote>
<p><img src="image/em-plus-right.png" alt="\begin{array}{l} 123 \\ 456+ \\ \hline 579 \end{array}"></p>
</blockquote><pre class="mathml">
<mstack>
<mn>123</mn>
<msrow> <mn>456</mn> <mo>+</mo> </msrow>
<msline/>
<mn>579</mn>
</mstack>
</pre><p>Because the default alignment is placed to the right of number, the
numbers align properly and none of the rows need to be shifted.
</p>
<p>The following two examples illustrate the use of <code>mscarries</code>,
<code>mscarry</code> and using <code>none</code> to fill in a column.
The examples illustrate two different ways of displaying a borrow.
</p>
<table>
<tbody>
<tr>
<td>
<blockquote>
<p><img src="image/em-sub-borrow-above.png" alt=""></p>
</blockquote>
</td>
<td>
<blockquote>
<p><img src="image/em-sub-borrow-aboveleft.png" alt=""></p>
</blockquote>
</td>
</tr>
</tbody>
</table>
<p>The MathML for the first example is:</p><pre class="mathml">
<mstack>
<mscarries crossout='updiagonalstrike'>
<mn>2</mn> <mn>12</mn> <mscarry crossout='none'> <none/> </mscarry>
</mscarries>
<mn>2,327</mn>
<msrow> <mo>-</mo> <mn> 1,156</mn> </msrow>
<msline/>
<mn>1,171</mn>
</mstack>
</pre><p>The MathML for the second example uses <code>mscarry</code> because a crossout should only happen on a single column:
</p><pre class="mathml">
<mstack>
<mscarries location='nw'>
<none/>
<mscarry crossout='updiagonalstrike' location='n'> <mn>2</mn> </mscarry>
<mn>1</mn>
<none/>
</mscarries>
<mn>2,327</mn>
<msrow> <mo>-</mo> <mn> 1,156</mn> </msrow>
<msline/>
<mn>1,171</mn>
</mstack>
</pre><p>Here is an example of subtraction where there is a borrow with
multiple digits in a single column and a cross out. The borrowed
amount is underlined (the example is from a <a href="http://www.fritext.se/matte/grunder/posi2.html">Swedish
source</a>):
</p>
<blockquote>
<p><img src="image/em-sub-borrow-swedish.png" alt="\begin{array}{r} \underbar{\scriptsize 10}\!\\ 5\llap{$/$}2\\ {}-{}7\\ \hline 45 \end{array}"></p>
</blockquote>
<p>There are two things to notice.
The first is that <code>menclose</code> is used in the carry and that <code>none</code> is used for
the empty element so that <code>mscarry</code> can be used to create a crossout.
</p><pre class="mathml">
<mstack>
<mscarries>
<mscarry crossout='updiagonalstrike'><none/></mscarry>
<menclose notation='bottom'> <mn>10</mn> </menclose>
</mscarries>
<mn>52</mn>
<msrow> <mo>-</mo> <mn> 7</mn> </msrow>
<msline/>
<mn>45</mn>
</mstack>
</pre></div>
<div class="div4">
<h4><a name="presm.mult" id="presm.mult"></a>3.6.8.2 Multiplication
</h4>
<p>Below is a simple multiplication example that illustrates the use of <code>msgroup</code> and
the <code>shift</code> attribute. The first <code>msgroup</code> does nothing.
The second <code>msgroup</code> could also be removed, but <code>msrow</code> would be needed for its second and third children.
They would set the <code>position</code> or <code>shift</code> attributes, or would add <code>none</code> elements.
</p>
<blockquote>
<p><img src="image/em-mult-simple.png" alt=""></p>
</blockquote><pre class="mathml">
<mstack>
<msgroup>
<mn>123</mn>
<msrow><mo>&#xD7;<!--MULTIPLICATION SIGN--></mo><mn>321</mn></msrow>
</msgroup>
<msline/>
<msgroup shift="1">
<mn>123</mn>
<mn>246</mn>
<mn>369</mn>
</msgroup>
<msline/>
</mstack>
</pre><p>This example has multiple rows of carries. It also (somewhat
artificially) includes commas (",") as digit separators. The encoding includes
these separators in the spacing attribute value, along non-ASCII
values.
</p>
<blockquote>
<p><img src="image/em-mult-carries.png" alt="\begin{array}{r} {}_1 {\hspace{0.05em}}_1\phantom{0} \\ {}_1 {\hspace{0.05em}}_1\phantom{0} \\ 1,234 \\ \times 4,321 \\ \hline {}_1 \phantom{,} {\hspace{0.05em \,}}_1 {\hspace{0.05em}}_1 {\hspace{0.05em}}_1 \phantom{,} {\hspace{0.05em \,}}_1 \phantom{00} \\ 1,234 \\ 24,68\phantom{0} \\ 370,2\phantom{00} \\ 4,936\phantom{,000} \\ \hline 5,332,114 \end{array}"></p>
</blockquote><pre class="mathml">
<mstack>
<mscarries><mn>1</mn><mn>1</mn><none/></mscarries>
<mscarries><mn>1</mn><mn>1</mn><none/></mscarries>
<mn>1,234</mn>
<msrow><mo>&#xD7;<!--MULTIPLICATION SIGN--></mo><mn>4,321</mn></msrow>
<msline/>
<mscarries position='2'>
<mn>1</mn>
<none/>
<mn>1</mn>
<mn>1</mn>
<mn>1</mn>
<none/>
<mn>1</mn>
</mscarries>
<msgroup shift="1">
<mn>1,234</mn>
<mn>24,68</mn>
<mn>370,2</mn>
<msrow position="1"> <mn>4,936</mn> </msrow>
</msgroup>
<msline/>
<mn>5,332,114</mn>
</mstack>
</pre></div>
<div class="div4">
<h4><a name="presm.mlongdiv.ex" id="presm.mlongdiv.ex"></a>3.6.8.3 Long Division
</h4>
<p>
The notation used for long division varies considerably among
countries. Most notations share the common characteristics of
aligning intermediate results and drawing lines for the operands to be
subtracted. Minus signs are sometimes shown for the intermediate calculations, and sometimes they are not. The line that is
drawn varies in length depending upon the notation.
The most apparently difference among the notations is that the position of the divisor varies, as does the location of the
quotient, remainder, and intermediate terms.
</p>
<p>
The layout used is controlled by the <code>longdivstyle</code> attribute. Below are examples for the values listed in <a href="chapter3-d.html#presm.mlongdiv.attrs">Section 3.6.2.2 Attributes</a>
</p>
<table>
<thead>
<tr>
<th>"lefttop"</th>
<th>"stackedrightright"</th>
<th>"mediumstackedrightright"</th>
<th>"shortstackedrightright"</th>
<th>"righttop"</th>
</tr>
</thead>
<tbody>
<tr>
<td>
<blockquote>
<p><img src="image/em-longdiv-us.png" alt=""></p>
</blockquote>
</td>
<td>
<blockquote>
<p><img src="image/em-longdiv-french.png" alt=""></p>
</blockquote>
</td>
<td>
<blockquote>
<p><img src="image/em-longdiv-medium-stacked-rightright.png" alt=""></p>
</blockquote>
</td>
<td>
<blockquote>
<p><img src="image/em-longdiv-short-stacked-rightright.png" alt=""></p>
</blockquote>
</td>
<td>
<blockquote>
<p><img src="image/em-longdiv-righttop.png" alt=""></p>
</blockquote>
</td>
</tr>
</tbody>
</table>
<table>
<thead>
<tr>
<th>"left/\right"</th>
<th>"left)(right"</th>
<th>":right=right"</th>
<th>"stackedleftleft"</th>
<th>"stackedleftlinetop"</th>
</tr>
</thead>
<tbody>
<tr>
<td>
<blockquote>
<p><img src="image/em-longdiv-leftright.png" alt=""></p>
</blockquote>
</td>
<td>
<blockquote>
<p><img src="image/em-longdiv-indian.png" alt=""></p>
</blockquote>
</td>
<td>
<blockquote>
<p><img src="image/em-longdiv-colonrightright.png" alt=""></p>
</blockquote>
</td>
<td>
<blockquote>
<p><img src="image/em-longdiv-mirrored-french.png" alt=""></p>
</blockquote>
</td>
<td>
<blockquote>
<p><img src="image/em-longdiv-arabic-lefttop.png" alt=""></p>
</blockquote>
</td>
</tr>
</tbody>
</table>
<p>
The MathML for the first example is shown below. It illustrates the use of nested <code>msgroup</code>s and how the <code>position</code> is calculated in those usages.
</p><pre class="mathml">
<mlongdiv longdivstyle="lefttop">
<mn> 3 </mn>
<mn> 435.3</mn>
<mn> 1306</mn>
<msgroup position="2" shift="-1">
<msgroup>
<mn> 12</mn>
<msline length="2"/>
</msgroup>
<msgroup>
<mn> 10</mn>
<mn> 9</mn>
<msline length="2"/>
</msgroup>
<msgroup>
<mn> 16</mn>
<mn> 15</mn>
<msline length="2"/>
<mn> 1.0</mn> <!-- aligns on '.', not the right edge ('0') -->
</msgroup>
<msgroup position='-1'> <!-- extra shift to move to the right of the "." -->
<mn> 9</mn>
<msline length="3"/>
<mn> 1</mn>
</msgroup>
</msgroup>
</mlongdiv>
</pre><p>
With the exception of the last example, the encodings for the other examples are the same except that the values for <code>longdivstyle</code> differ and that a "," is used instead of a "." for the decimal point.
For the last example, the only difference from the other examples besides a different value for <code>longdivstyle</code> is that Arabic numerals have been used in place of Latin numerals,
as shown below.
</p><pre class="mathml">
<mstyle decimalpoint="&#x066B;">
<mlongdiv longdivstyle="stackedleftlinetop">
<mn> &#x0663; </mn>
<mn> &#x0664;&#x0663;&#x0665;&#x066B;&#x0663;</mn>
<mn> &#x0661;&#x0663;&#x0660;&#x0666;</mn>
<msgroup position="2" shift="-1">
<msgroup>
<mn> &#x0661;&#x0662;</mn>
<msline length="2"/>
</msgroup>
<msgroup>
<mn> &#x0661;&#x0660;</mn>
<mn> &#x0669;</mn>
<msline length="2"/>
</msgroup>
<msgroup>
<mn> &#x0661;&#x0666;</mn>
<mn> &#x0661;&#x0665;</mn>
<msline length="2"/>
<mn> &#x0661;&#x066B;&#x0660;</mn>
</msgroup>
<msgroup position='-1'>
<mn> &#x0669;</mn>
<msline length="3"/>
<mn> &#x0661;</mn>
</msgroup>
</msgroup>
</mlongdiv>
</mstyle></pre></div>
<div class="div4">
<h4><a name="presm.repeatdec" id="presm.repeatdec"></a>3.6.8.4 Repeating decimal
</h4>
<p>
Decimal numbers that have digits that repeat infinitely such as 1/3
(.3333...) are represented using several notations. One common notation
is to put a horizontal line over the digits that repeat (in Portugal an underline is used).
Another notation involves putting dots over the digits that repeat. These notations are shown below:
</p>
<blockquote>
<p><img src="image/repeat1.png" alt="0.33333 \overline{3}"></p>
</blockquote>
<blockquote>
<p><img src="image/repeat2.png" alt="0.\overline{142857}"></p>
</blockquote>
<blockquote>
<p><img src="image/repeat3.png" alt="0.\underline{142857}"></p>
</blockquote>
<blockquote>
<p><img src="image/repeat4.png" alt="0.\dot{1}4285\dot{7}"></p>
</blockquote>
<p>The MathML for these involves using <code>mstack</code>, <code>msrow</code>, and <code>msline</code>
in a straightforward manner. The MathML for the preceding examples above is given below.
</p><pre class="mathml-fragment">
<mstack stackalign="right">
<msline length="1"/>
<mn> 0.3333 </mn>
</mstack>
</pre><pre class="mathml-fragment">
<mstack stackalign="right">
<msline length="6"/>
<mn> 0.142857 </mn>
</mstack>
</pre><pre class="mathml-fragment">
<mstack stackalign="right">
<mn> 0.142857 </mn>
<msline length="6"/>
</mstack>
</pre><pre class="mathml-fragment">
<mstack stackalign="right">
<msrow> <mo>.</mo> <none/><none/><none/><none/> <mo>.</mo> </msrow>
<mn> 0.142857 </mn>
</mstack>
</pre></div>
</div>
</div>
<div class="div2">
<h2><a name="presm.enliven" id="presm.enliven"></a>3.7 Enlivening Expressions
</h2>
<div class="div3">
<h3><a name="presm.maction" id="presm.maction"></a>3.7.1 Bind Action to Sub-Expression
<code><maction></code></h3>
<p>To provide a mechanism for binding actions to expressions, MathML
provides the <code>maction</code> element. This element accepts any
number of sub-expressions as arguments and the type of action that should happen
is controlled by the <code>actiontype</code> attribute. Only three actions are predefined by MathML, but the list of possible actions is open. Additional predefined
actions may be added in future versions of MathML.
</p>
<p>Linking to other elements, either locally within the <code>math</code> element or to some URL, is not handled by <code>maction</code>. Instead, it is handled by adding a link directly on a MathML element as specified in <a href="chapter6-d.html#interf.link">Section 6.4.3 Linking</a>.
</p>
<div class="div4">
<h4><a name="id.3.7.1.1" id="id.3.7.1.1"></a>3.7.1.1 Attributes
</h4>
<p><code>maction</code> elements accept the attributes listed
below in addition to those specified in <a href="chapter3-d.html#presm.presatt">Section 3.1.10 Mathematics style attributes common to presentation elements</a>.
</p>
<p>By default, MathML applications that do not recognize the specified
<code>actiontype</code> should render the selected sub-expression as
defined below. If no selected sub-expression exists, it is a MathML
error; the appropriate rendering in that case is as described in
<a href="chapter2-d.html#interf.error">Section 2.3.2 Handling of Errors</a>.
</p>
<table border="1" class="attributes">
<thead>
<tr>
<th>Name</th>
<th>values</th>
<th>default</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="2" class="attname">actiontype</td>
<td><a href="chapter2-d.html#type.string"><em>string</em></a></td>
<td><em>required</em></td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies what should happen for this element. The values allowed are open-ended. Conforming renderers may ignore any value
they do not handle, although renderers are encouraged to render the values listed below.
</td>
</tr>
<tr>
<td rowspan="2" class="attname">selection</td>
<td><a href="chapter2-d.html#type.positive-integer"><em>positive-integer</em></a></td>
<td>1</td>
</tr>
<tr>
<td colspan="2" class="attdesc">
Specifies which child should be used for viewing. Its value should be between 1 and the number of
children of the element. The specified child is referred to as the "selected sub-expression" of the
<code>maction</code> element. If the value specified is out of range, it is an error. When the
<code>selection</code> attribute is not specified (including for
action types for which it makes no sense), its default value is 1, so
the selected sub-expression will be the first sub-expression.
</td>
</tr>
</tbody>
</table>
<p>If a MathML application responds to a user command to copy a MathML sub-expression to
the environment's "clipboard" (see <a href="chapter6-d.html#world-int-transfers">Section 6.3 Transferring MathML</a>), any <code>maction</code> elements present in what is copied should
be given <code>selection</code> values that correspond to their selection
state in the MathML rendering at the time of the copy command.
</p>
<p>When a MathML application receives a mouse event that may be
processed by two or more nested maction elements, the innermost
maction element of each action type should respond to the event.
</p>
<p>The meanings of the various <code>actiontype</code> values is given below.
Note that not all renderers support all of the <code>actiontype</code> values, and that the allowed values are open-ended.
</p>
<dl>
<dt class="label"><maction actiontype="toggle" selection="positive-integer" > (first expression) (second expression)... </maction></dt>
<dd>The renderer alternately display the
selected subexpression, cycling through them when there is a click on the selected subexpression. Each click increments the
<code>selection</code> value, wrapping back to 1 when it reaches the last child.
Typical uses would be for exercises in education, ellipses in long
computer algebra output, or to illustrate alternate notations. Note
that the expressions may be of significantly different size, so that
size negotiation with the browser may be desirable. If size
negotiation is not available, scrolling, elision, panning, or some
other method may be necessary to allow full viewing.
</dd>
<dt class="label"><maction actiontype="statusline"> (expression) (message) </maction></dt>
<dd>The renderer displays the first child.
When a reader clicks on the expression or
moves the pointer over it, the renderer sends a rendering of the
message to the browser statusline. Because most browsers in the
foreseeable future are likely to be limited to displaying text on their
statusline, the second child should be an
<code>mtext</code> element in most circumstances.
For non-<code>mtext</code> messages, renderers might provide a
natural language translation of the markup, but this is not
required.
</dd>
<dt class="label"><maction actiontype="tooltip"> (expression) (message) </maction></dt>
<dd>The renderer displays the first child.
When the pointer pauses over the expression for a long
enough delay time, the renderer displays a rendering of the message in
a pop-up "tooltip" box near the expression. Many systems may limit
the popup to be text, so the second child should be an
<code>mtext</code> element in most circumstances.
For non-<code>mtext</code> messages,
renderers may provide a natural language translation of the markup if
full MathML rendering is not practical, but this is not
required.
</dd>
<dt class="label"><maction actiontype="input"> (expression) </maction></dt>
<dd>The renderer displays the expression. For renderers that allow editing, when focus is passed to this element, the <code>maction</code> is replaced by what is entered, pasted, etc. MathML does not restrict what is allowed as input, nor does it require an editor
to allow arbitrary input. Some renderers/editors may restrict the input to simple (linear) text.
</dd>
</dl>
<p>The <code>actiontype</code> values are open-ended. If another value is given and it requires additional attributes, the attributes must be in a different
namespace. This is shown below:
</p>
<dl>
<dt class="label"><maction actiontype="highlight" my:color="red" my:background="yellow"> expression </maction></dt>
<dd>In the example,
non-standard attributes from another namespace are being used to pass
additional information to renderers that support them,
without violating the MathML Schema (see <a href="chapter2-d.html#interf.unspecified">Section 2.3.3 Attributes for unspecified data</a>).
The <code>my:color</code> attributes
might change the color of the characters in the presentation, while the
<code>my:background</code> attribute might change the color of the background
behind the characters.
</dd>
</dl>
</div>
</div>
</div>
<div class="div2">
<h2><a name="presm.semantics" id="presm.semantics"></a>3.8 Semantics and Presentation
</h2>
<p>MathML uses the <code>semantics</code> element to allow specifying semantic annotations to
presentation MathML elements; these can be content MathML or other notations. As such,
<code>semantics</code> should be considered part of both presentation MathML and content
MathML. All MathML processors should process the <code>semantics</code> element, even if they
only process one of those subsets.
</p>
<p>In semantic annotations a presentation MathML expression is typically the first child
of the <code>semantics</code> element. However, it can also be given inside of an
<code>annotation-xml</code> element inside the <code>semantics</code> element. If it is part of an
<code>annotation-xml</code> element, then
<code>encoding</code>="application/mathml-presentation+xml" or
<code>encoding</code>="MathML-Presentation" may be used and presentation
MathML processors should use this value for the presentation.
</p>
<p>See <a href="chapter5-d.html#mixing.semantic.annotations">Section 5.1 Annotation Framework</a> for more details about the
<code>semantics</code> and <code>annotation-xml</code> elements.
</p>
</div>
</div>
<div class="minitoc">
Overview: <a href="Overview-d.html">Mathematical Markup Language (MathML) Version 3.0</a><br>
Previous: 2 <a href="chapter2-d.html">MathML Fundamentals</a><br>
Next: 4 <a href="chapter4-d.html">Content Markup</a></div>
</body>
</html>
|