File: named_entity.py

package info (click to toggle)
w3af 1.0-rc3svn3489-1
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd, squeeze, wheezy
  • size: 59,908 kB
  • ctags: 16,916
  • sloc: python: 136,990; xml: 63,472; sh: 153; ruby: 94; makefile: 40; asm: 35; jsp: 32; perl: 18; php: 5
file content (266 lines) | stat: -rw-r--r-- 8,851 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
# Natural Language Toolkit: Chunk parsing API
#
# Copyright (C) 2001-2009 NLTK Project
# Author: Edward Loper <edloper@gradient.cis.upenn.edu>
# URL: <http://www.nltk.org/>
# For license information, see LICENSE.TXT

"""
Named entity chunker
"""

import os, re, pickle
from nltk.etree import ElementTree as ET
from nltk.chunk.api import *
from nltk.chunk.util import *
import nltk

# This really shouldn't be loaded at import time.  But it's used by a
# static method.  Do a lazy loading?
_short_en_wordlist = set(nltk.corpus.words.words('en-basic'))


class NEChunkParserTagger(nltk.tag.ClassifierBasedTagger):
    """
    The IOB tagger used by the chunk parser.
    """
    def __init__(self, train):
        nltk.tag.ClassifierBasedTagger.__init__(
            self, train=train,
            classifier_builder=self._classifier_builder)

    def _classifier_builder(self, train):
        return nltk.MaxentClassifier.train(train, algorithm='megam',
                                           gaussian_prior_sigma=1)
    
    def _feature_detector(self, tokens, index, history):
        word = tokens[index][0]
        pos = simplify_pos(tokens[index][1])
        if index == 0:
            prevword = prevprevword = None
            prevpos = prevprevpos = None
            prevtag = prevprevtag = None
        elif index == 1:
            prevword = tokens[index-1][0].lower()
            prevprevword = None
            prevpos = simplify_pos(tokens[index-1][1])
            prevprevpos = None
            prevtag = history[index-1][0]
            prevprevtag = None
        else:
            prevword = tokens[index-1][0].lower()
            prevprevword = tokens[index-2][0].lower()
            prevpos = simplify_pos(tokens[index-1][1])
            prevprevpos = simplify_pos(tokens[index-2][1])
            prevtag = history[index-1]
            prevprevtag = history[index-2]
        if index == len(tokens)-1:
            nextword = nextnextword = None
            nextpos = nextnextpos = None
        elif index == len(tokens)-2:
            nextword = tokens[index+1][0].lower()
            nextpos = tokens[index+1][1].lower()
            nextnextword = None
            nextnextpos = None
        else:
            nextword = tokens[index+1][0].lower()
            nextpos = tokens[index+1][1].lower()
            nextnextword = tokens[index+2][0].lower()
            nextnextpos = tokens[index+2][1].lower()

        # 89.6
        features = {
            'bias': True,
            'shape': shape(word),
            'wordlen': len(word),
            'prefix3': word[:3].lower(),
            'suffix3': word[-3:].lower(),
            'pos': pos,
            'word': word,
            'en-wordlist': (word in _short_en_wordlist), # xx!
            'prevtag': prevtag,
            'prevpos': prevpos,
            'nextpos': nextpos,
            'prevword': prevword,
            'nextword': nextword,
            'word+nextpos': '%s+%s' % (word.lower(), nextpos),
            'pos+prevtag': '%s+%s' % (pos, prevtag),
            'shape+prevtag': '%s+%s' % (shape, prevtag),
            }
        
        return features

class NEChunkParser(ChunkParserI):
    """
    Expected input: list of pos-tagged words
    """
    def __init__(self, train):
        self._train(train)

    def parse(self, tokens):
        """
        Each token should be a pos-tagged word
        """
        tagged = self._tagger.tag(tokens)
        tree = self._tagged_to_parse(tagged)
        return tree

    def _train(self, corpus):
        # Convert to tagged sequence
        corpus = [self._parse_to_tagged(s) for s in corpus]

        self._tagger = NEChunkParserTagger(train=corpus)

    def _tagged_to_parse(self, tagged_tokens):
        """
        Convert a list of tagged tokens to a chunk-parse tree.
        """
        sent = nltk.Tree('S', [])
        
        for (tok,tag) in tagged_tokens:
            if tag == 'O':
                sent.append(tok)
            elif tag.startswith('B-'):
                sent.append(nltk.Tree(tag[2:], [tok]))
            elif tag.startswith('I-'):
                if (sent and isinstance(sent[-1], Tree) and
                    sent[-1].node == tag[2:]):
                    sent[-1].append(tok)
                else:
                    sent.append(nltk.Tree(tag[2:], [tok]))
        return sent

    def _parse_to_tagged(self, sent):
        """
        Convert a chunk-parse tree to a list of tagged tokens.
        """
        toks = []
        for child in sent:
            if isinstance(child, nltk.Tree):
                toks.append((child[0], 'B-%s' % child.node))
                for tok in child[1:]:
                    toks.append((tok, 'I-%s' % child.node))
            else:
                toks.append((child, 'O'))
        return toks

def shape(word):
    if re.match('[0-9]+(\.[0-9]*)?|[0-9]*\.[0-9]+$', word):
        return 'number'
    elif re.match('\W+$', word):
        return 'punct'
    elif re.match('[A-Z][a-z]+$', word):
        return 'upcase'
    elif re.match('[a-z]+$', word):
        return 'downcase'
    elif re.match('\w+$', word):
        return 'mixedcase'
    else:
        return 'other'

def simplify_pos(s):
    if s.startswith('V'): return "V"
    else: return s.split('-')[0]

def postag_tree(tree):
    # Part-of-speech tagging.
    words = tree.leaves()
    tag_iter = (pos for (word, pos) in nltk.pos_tag(words))
    newtree = Tree('S', [])
    for child in tree:
        if isinstance(child, nltk.Tree):
            newtree.append(Tree(child.node, []))
            for subchild in child:
                newtree[-1].append( (subchild, tag_iter.next()) )
        else:
            newtree.append( (child, tag_iter.next()) )
    return newtree

def load_ace_data(root, fmt='binary'):
    for f in os.listdir(root):
        if not f.endswith('.sgm'): continue
        print f
        f = os.path.join(root, f)
        g = f+'.tmx.rdc.xml'
    
        # Read the xml file, and get a list of entities
        entities = []
        xml = ET.parse(open(g)).getroot()
        for entity in xml.findall('document/entity'):
            typ = entity.find('entity_type').text
            for mention in entity.findall('entity_mention'):
                if mention.get('TYPE') != 'NAME': continue # only NEs
                s = int(mention.find('head/charseq/start').text)
                e = int(mention.find('head/charseq/end').text)+1
                entities.append( (s, e, typ) )
    
        # Read the text file, and mark the entities.
        text = open(f).read()
        
        # Strip XML tags, since they don't count towards the indices
        text = re.sub('<(?!/?TEXT)[^>]+>', '', text)
    
        # Blank out anything before/after <TEXT>
        def subfunc(m): return ' '*(m.end()-m.start()-6)
        text = re.sub('[\s\S]*<TEXT>', subfunc, text)
        text = re.sub('</TEXT>[\s\S]*', '', text)
    
        # Simplify quotes
        text = re.sub("``", ' "', text)
        text = re.sub("''", '" ', text)
    
        entity_types = set(typ for (s,e,typ) in entities)
    
        # Binary distinction (NE or not NE)
        if fmt == 'binary':
            i = 0
            toks = nltk.Tree('S', [])
            for (s,e,typ) in sorted(entities):
                if s < i: s = i # Overlapping!  Deal with this better?
                if e <= s: continue
                toks.extend(nltk.word_tokenize(text[i:s]))
                toks.append(nltk.Tree('NE', text[s:e].split()))
                i = e
            toks.extend(nltk.word_tokenize(text[i:]))
            yield toks

        # Multiclass distinction (NE type)
        elif fmt == 'multiclass':
            i = 0
            toks = nltk.Tree('S', [])
            for (s,e,typ) in sorted(entities):
                if s < i: s = i # Overlapping!  Deal with this better?
                if e <= s: continue
                toks.extend(nltk.word_tokenize(text[i:s]))
                toks.append(nltk.Tree(typ, text[s:e].split()))
                i = e
            toks.extend(nltk.word_tokenize(text[i:]))
            yield toks

        else:
            raise ValueError('bad fmt value')
            

def train(root):
    print 'Loading data...'
    trees = load_ace_data(root)
    train = [postag_tree(t) for t in trees]
    print 'Training chunk parser...'
    cp = NEChunkParser(train[10:])
    print 'Evaluating...'
    chunkscore = ChunkScore()
    for correct in train[:10]:
        guess = cp.parse(correct.leaves())
        chunkscore.score(correct, guess)
    print chunkscore
    return cp

def build_model():
    # Make sure that the pickled object has the right class name:
    from nltk.chunk.named_entity import train
    
    cp = train('/tmp/ace.old/data/ace.dev/text/')
    out = open('/tmp/ne_chunker.pickle', 'wb')
    pickle.dump(cp, out, -1)
    out.close()