1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
|
# Natural Language Toolkit: Chunk parsing API
#
# Copyright (C) 2001-2009 NLTK Project
# Author: Edward Loper <edloper@gradient.cis.upenn.edu>
# URL: <http://www.nltk.org/>
# For license information, see LICENSE.TXT
"""
Named entity chunker
"""
import os, re, pickle
from nltk.etree import ElementTree as ET
from nltk.chunk.api import *
from nltk.chunk.util import *
import nltk
# This really shouldn't be loaded at import time. But it's used by a
# static method. Do a lazy loading?
_short_en_wordlist = set(nltk.corpus.words.words('en-basic'))
class NEChunkParserTagger(nltk.tag.ClassifierBasedTagger):
"""
The IOB tagger used by the chunk parser.
"""
def __init__(self, train):
nltk.tag.ClassifierBasedTagger.__init__(
self, train=train,
classifier_builder=self._classifier_builder)
def _classifier_builder(self, train):
return nltk.MaxentClassifier.train(train, algorithm='megam',
gaussian_prior_sigma=1)
def _feature_detector(self, tokens, index, history):
word = tokens[index][0]
pos = simplify_pos(tokens[index][1])
if index == 0:
prevword = prevprevword = None
prevpos = prevprevpos = None
prevtag = prevprevtag = None
elif index == 1:
prevword = tokens[index-1][0].lower()
prevprevword = None
prevpos = simplify_pos(tokens[index-1][1])
prevprevpos = None
prevtag = history[index-1][0]
prevprevtag = None
else:
prevword = tokens[index-1][0].lower()
prevprevword = tokens[index-2][0].lower()
prevpos = simplify_pos(tokens[index-1][1])
prevprevpos = simplify_pos(tokens[index-2][1])
prevtag = history[index-1]
prevprevtag = history[index-2]
if index == len(tokens)-1:
nextword = nextnextword = None
nextpos = nextnextpos = None
elif index == len(tokens)-2:
nextword = tokens[index+1][0].lower()
nextpos = tokens[index+1][1].lower()
nextnextword = None
nextnextpos = None
else:
nextword = tokens[index+1][0].lower()
nextpos = tokens[index+1][1].lower()
nextnextword = tokens[index+2][0].lower()
nextnextpos = tokens[index+2][1].lower()
# 89.6
features = {
'bias': True,
'shape': shape(word),
'wordlen': len(word),
'prefix3': word[:3].lower(),
'suffix3': word[-3:].lower(),
'pos': pos,
'word': word,
'en-wordlist': (word in _short_en_wordlist), # xx!
'prevtag': prevtag,
'prevpos': prevpos,
'nextpos': nextpos,
'prevword': prevword,
'nextword': nextword,
'word+nextpos': '%s+%s' % (word.lower(), nextpos),
'pos+prevtag': '%s+%s' % (pos, prevtag),
'shape+prevtag': '%s+%s' % (shape, prevtag),
}
return features
class NEChunkParser(ChunkParserI):
"""
Expected input: list of pos-tagged words
"""
def __init__(self, train):
self._train(train)
def parse(self, tokens):
"""
Each token should be a pos-tagged word
"""
tagged = self._tagger.tag(tokens)
tree = self._tagged_to_parse(tagged)
return tree
def _train(self, corpus):
# Convert to tagged sequence
corpus = [self._parse_to_tagged(s) for s in corpus]
self._tagger = NEChunkParserTagger(train=corpus)
def _tagged_to_parse(self, tagged_tokens):
"""
Convert a list of tagged tokens to a chunk-parse tree.
"""
sent = nltk.Tree('S', [])
for (tok,tag) in tagged_tokens:
if tag == 'O':
sent.append(tok)
elif tag.startswith('B-'):
sent.append(nltk.Tree(tag[2:], [tok]))
elif tag.startswith('I-'):
if (sent and isinstance(sent[-1], Tree) and
sent[-1].node == tag[2:]):
sent[-1].append(tok)
else:
sent.append(nltk.Tree(tag[2:], [tok]))
return sent
def _parse_to_tagged(self, sent):
"""
Convert a chunk-parse tree to a list of tagged tokens.
"""
toks = []
for child in sent:
if isinstance(child, nltk.Tree):
toks.append((child[0], 'B-%s' % child.node))
for tok in child[1:]:
toks.append((tok, 'I-%s' % child.node))
else:
toks.append((child, 'O'))
return toks
def shape(word):
if re.match('[0-9]+(\.[0-9]*)?|[0-9]*\.[0-9]+$', word):
return 'number'
elif re.match('\W+$', word):
return 'punct'
elif re.match('[A-Z][a-z]+$', word):
return 'upcase'
elif re.match('[a-z]+$', word):
return 'downcase'
elif re.match('\w+$', word):
return 'mixedcase'
else:
return 'other'
def simplify_pos(s):
if s.startswith('V'): return "V"
else: return s.split('-')[0]
def postag_tree(tree):
# Part-of-speech tagging.
words = tree.leaves()
tag_iter = (pos for (word, pos) in nltk.pos_tag(words))
newtree = Tree('S', [])
for child in tree:
if isinstance(child, nltk.Tree):
newtree.append(Tree(child.node, []))
for subchild in child:
newtree[-1].append( (subchild, tag_iter.next()) )
else:
newtree.append( (child, tag_iter.next()) )
return newtree
def load_ace_data(root, fmt='binary'):
for f in os.listdir(root):
if not f.endswith('.sgm'): continue
print f
f = os.path.join(root, f)
g = f+'.tmx.rdc.xml'
# Read the xml file, and get a list of entities
entities = []
xml = ET.parse(open(g)).getroot()
for entity in xml.findall('document/entity'):
typ = entity.find('entity_type').text
for mention in entity.findall('entity_mention'):
if mention.get('TYPE') != 'NAME': continue # only NEs
s = int(mention.find('head/charseq/start').text)
e = int(mention.find('head/charseq/end').text)+1
entities.append( (s, e, typ) )
# Read the text file, and mark the entities.
text = open(f).read()
# Strip XML tags, since they don't count towards the indices
text = re.sub('<(?!/?TEXT)[^>]+>', '', text)
# Blank out anything before/after <TEXT>
def subfunc(m): return ' '*(m.end()-m.start()-6)
text = re.sub('[\s\S]*<TEXT>', subfunc, text)
text = re.sub('</TEXT>[\s\S]*', '', text)
# Simplify quotes
text = re.sub("``", ' "', text)
text = re.sub("''", '" ', text)
entity_types = set(typ for (s,e,typ) in entities)
# Binary distinction (NE or not NE)
if fmt == 'binary':
i = 0
toks = nltk.Tree('S', [])
for (s,e,typ) in sorted(entities):
if s < i: s = i # Overlapping! Deal with this better?
if e <= s: continue
toks.extend(nltk.word_tokenize(text[i:s]))
toks.append(nltk.Tree('NE', text[s:e].split()))
i = e
toks.extend(nltk.word_tokenize(text[i:]))
yield toks
# Multiclass distinction (NE type)
elif fmt == 'multiclass':
i = 0
toks = nltk.Tree('S', [])
for (s,e,typ) in sorted(entities):
if s < i: s = i # Overlapping! Deal with this better?
if e <= s: continue
toks.extend(nltk.word_tokenize(text[i:s]))
toks.append(nltk.Tree(typ, text[s:e].split()))
i = e
toks.extend(nltk.word_tokenize(text[i:]))
yield toks
else:
raise ValueError('bad fmt value')
def train(root):
print 'Loading data...'
trees = load_ace_data(root)
train = [postag_tree(t) for t in trees]
print 'Training chunk parser...'
cp = NEChunkParser(train[10:])
print 'Evaluating...'
chunkscore = ChunkScore()
for correct in train[:10]:
guess = cp.parse(correct.leaves())
chunkscore.score(correct, guess)
print chunkscore
return cp
def build_model():
# Make sure that the pickled object has the right class name:
from nltk.chunk.named_entity import train
cp = train('/tmp/ace.old/data/ace.dev/text/')
out = open('/tmp/ne_chunker.pickle', 'wb')
pickle.dump(cp, out, -1)
out.close()
|