1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
|
# Natural Language Toolkit: Chunk format conversions
#
# Copyright (C) 2001-2009 NLTK Project
# Author: Edward Loper <edloper@gradient.cis.upenn.edu>
# Steven Bird <sb@csse.unimelb.edu.au> (minor additions)
# URL: <http://www.nltk.org/>
# For license information, see LICENSE.TXT
import re
import string
from nltk import Tree
import nltk.tag.util
from api import *
##//////////////////////////////////////////////////////
## EVALUATION
##//////////////////////////////////////////////////////
from nltk.metrics import accuracy as _accuracy
def accuracy(chunker, gold):
"""
Score the accuracy of the chunker against the gold standard.
Strip the chunk information from the gold standard and rechunk it using
the chunker, then compute the accuracy score.
@type chunker: C{ChunkParserI}
@param chunker: The chunker being evaluated.
@type gold: C{tree}
@param gold: The chunk structures to score the chunker on.
@rtype: C{float}
"""
gold_tags = []
test_tags = []
for gold_tree in gold:
test_tree = chunker.parse(gold_tree.flatten())
gold_tags += tree2conlltags(gold_tree)
test_tags += tree2conlltags(test_tree)
# print 'GOLD:', gold_tags[:50]
# print 'TEST:', test_tags[:50]
return _accuracy(gold_tags, test_tags)
# Patched for increased performance by Yoav Goldberg <yoavg@cs.bgu.ac.il>, 2006-01-13
# -- statistics are evaluated only on demand, instead of at every sentence evaluation
#
# SB: use nltk.metrics for precision/recall scoring?
#
class ChunkScore(object):
"""
A utility class for scoring chunk parsers. C{ChunkScore} can
evaluate a chunk parser's output, based on a number of statistics
(precision, recall, f-measure, misssed chunks, incorrect chunks).
It can also combine the scores from the parsing of multiple texts;
this makes it signifigantly easier to evaluate a chunk parser that
operates one sentence at a time.
Texts are evaluated with the C{score} method. The results of
evaluation can be accessed via a number of accessor methods, such
as C{precision} and C{f_measure}. A typical use of the
C{ChunkScore} class is::
>>> chunkscore = ChunkScore()
>>> for correct in correct_sentences:
... guess = chunkparser.parse(correct.leaves())
... chunkscore.score(correct, guess)
>>> print 'F Measure:', chunkscore.f_measure()
F Measure: 0.823
@ivar kwargs: Keyword arguments:
- max_tp_examples: The maximum number actual examples of true
positives to record. This affects the C{correct} member
function: C{correct} will not return more than this number
of true positive examples. This does *not* affect any of
the numerical metrics (precision, recall, or f-measure)
- max_fp_examples: The maximum number actual examples of false
positives to record. This affects the C{incorrect} member
function and the C{guessed} member function: C{incorrect}
will not return more than this number of examples, and
C{guessed} will not return more than this number of true
positive examples. This does *not* affect any of the
numerical metrics (precision, recall, or f-measure)
- max_fn_examples: The maximum number actual examples of false
negatives to record. This affects the C{missed} member
function and the C{correct} member function: C{missed}
will not return more than this number of examples, and
C{correct} will not return more than this number of true
negative examples. This does *not* affect any of the
numerical metrics (precision, recall, or f-measure)
- chunk_node: A regular expression indicating which chunks
should be compared. Defaults to C{'.*'} (i.e., all chunks).
@type _tp: C{list} of C{Token}
@ivar _tp: List of true positives
@type _fp: C{list} of C{Token}
@ivar _fp: List of false positives
@type _fn: C{list} of C{Token}
@ivar _fn: List of false negatives
@type _tp_num: C{int}
@ivar _tp_num: Number of true positives
@type _fp_num: C{int}
@ivar _fp_num: Number of false positives
@type _fn_num: C{int}
@ivar _fn_num: Number of false negatives.
"""
def __init__(self, **kwargs):
self._correct = set()
self._guessed = set()
self._tp = set()
self._fp = set()
self._fn = set()
self._max_tp = kwargs.get('max_tp_examples', 100)
self._max_fp = kwargs.get('max_fp_examples', 100)
self._max_fn = kwargs.get('max_fn_examples', 100)
self._chunk_node = kwargs.get('chunk_node', '.*')
self._tp_num = 0
self._fp_num = 0
self._fn_num = 0
self._count = 0
self._measuresNeedUpdate = False
def _updateMeasures(self):
if (self._measuresNeedUpdate):
self._tp = self._guessed & self._correct
self._fn = self._correct - self._guessed
self._fp = self._guessed - self._correct
self._tp_num = len(self._tp)
self._fp_num = len(self._fp)
self._fn_num = len(self._fn)
self._measuresNeedUpdate = False
def score(self, correct, guessed):
"""
Given a correctly chunked sentence, score another chunked
version of the same sentence.
@type correct: chunk structure
@param correct: The known-correct ("gold standard") chunked
sentence.
@type guessed: chunk structure
@param guessed: The chunked sentence to be scored.
"""
self._correct |= _chunksets(correct, self._count, self._chunk_node)
self._guessed |= _chunksets(guessed, self._count, self._chunk_node)
self._count += 1
self._measuresNeedUpdate = True
def precision(self):
"""
@return: the overall precision for all texts that have been
scored by this C{ChunkScore}.
@rtype: C{float}
"""
self._updateMeasures()
div = self._tp_num + self._fp_num
if div == 0: return 0
else: return float(self._tp_num) / div
def recall(self):
"""
@return: the overall recall for all texts that have been
scored by this C{ChunkScore}.
@rtype: C{float}
"""
self._updateMeasures()
div = self._tp_num + self._fn_num
if div == 0: return 0
else: return float(self._tp_num) / div
def f_measure(self, alpha=0.5):
"""
@return: the overall F measure for all texts that have been
scored by this C{ChunkScore}.
@rtype: C{float}
@param alpha: the relative weighting of precision and recall.
Larger alpha biases the score towards the precision value,
while smaller alpha biases the score towards the recall
value. C{alpha} should have a value in the range [0,1].
@type alpha: C{float}
"""
self._updateMeasures()
p = self.precision()
r = self.recall()
if p == 0 or r == 0: # what if alpha is 0 or 1?
return 0
return 1/(alpha/p + (1-alpha)/r)
def missed(self):
"""
@rtype: C{list} of chunks
@return: the chunks which were included in the
correct chunk structures, but not in the guessed chunk
structures, listed in input order.
"""
self._updateMeasures()
chunks = list(self._fn)
return [c[1] for c in chunks] # discard position information
def incorrect(self):
"""
@rtype: C{list} of chunks
@return: the chunks which were included in the
guessed chunk structures, but not in the correct chunk
structures, listed in input order.
"""
self._updateMeasures()
chunks = list(self._fp)
return [c[1] for c in chunks] # discard position information
def correct(self):
"""
@rtype: C{list} of chunks
@return: the chunks which were included in the correct
chunk structures, listed in input order.
"""
chunks = list(self._correct)
return [c[1] for c in chunks] # discard position information
def guessed(self):
"""
@rtype: C{list} of chunks
@return: the chunks which were included in the guessed
chunk structures, listed in input order.
"""
chunks = list(self._guessed)
return [c[1] for c in chunks] # discard position information
def __len__(self):
self._updateMeasures()
return self._tp_num + self._fn_num
def __repr__(self):
"""
@rtype: C{String}
@return: a concise representation of this C{ChunkScoring}.
"""
return '<ChunkScoring of '+`len(self)`+' chunks>'
def __str__(self):
"""
@rtype: C{String}
@return: a verbose representation of this C{ChunkScoring}.
This representation includes the precision, recall, and
f-measure scores. For other information about the score,
use the accessor methods (e.g., C{missed()} and
C{incorrect()}).
"""
return ("ChunkParse score:\n" +
(" Precision: %5.1f%%\n" % (self.precision()*100)) +
(" Recall: %5.1f%%\n" % (self.recall()*100))+
(" F-Measure: %5.1f%%" % (self.f_measure()*100)))
# extract chunks, and assign unique id, the absolute position of
# the first word of the chunk
def _chunksets(t, count, chunk_node):
pos = 0
chunks = []
for child in t:
if isinstance(child, Tree):
if re.match(chunk_node, child.node):
chunks.append(((count, pos), tuple(child.freeze())))
pos += len(child.leaves())
else:
pos += 1
return set(chunks)
def tagstr2tree(s, chunk_node="NP", top_node="S", sep='/'):
"""
Divide a string of bracketted tagged text into
chunks and unchunked tokens, and produce a C{Tree}.
Chunks are marked by square brackets (C{[...]}). Words are
delimited by whitespace, and each word should have the form
C{I{text}/I{tag}}. Words that do not contain a slash are
assigned a C{tag} of C{None}.
@return: A tree corresponding to the string representation.
@rtype: C{tree}
@param s: The string to be converted
@type s: C{string}
@param chunk_node: The label to use for chunk nodes
@type chunk_node: C{string}
@param top_node: The label to use for the root of the tree
@type top_node: C{string}
"""
WORD_OR_BRACKET = re.compile(r'\[|\]|[^\[\]\s]+')
stack = [Tree(top_node, [])]
for match in WORD_OR_BRACKET.finditer(s):
text = match.group()
if text[0] == '[':
if len(stack) != 1:
raise ValueError('Unexpected [ at char %d' % match.start())
chunk = Tree(chunk_node, [])
stack[-1].append(chunk)
stack.append(chunk)
elif text[0] == ']':
if len(stack) != 2:
raise ValueError('Unexpected ] at char %d' % match.start())
stack.pop()
else:
if sep is None:
stack[-1].append(text)
else:
stack[-1].append(nltk.tag.util.str2tuple(text, sep))
if len(stack) != 1:
raise ValueError('Expected ] at char %d' % len(s))
return stack[0]
### CONLL
_LINE_RE = re.compile('(\S+)\s+(\S+)\s+([IOB])-?(\S+)?')
def conllstr2tree(s, chunk_types=('NP', 'PP', 'VP'), top_node="S"):
"""
Convert a CoNLL IOB string into a tree. Uses the specified chunk types
(defaults to NP, PP and VP), and creates a tree rooted at a node
labeled S (by default).
@param s: The CoNLL string to be converted.
@type s: C{string}
@param chunk_types: The chunk types to be converted.
@type chunk_types: C{tuple}
@param top_node: The node label to use for the root.
@type top_node: C{string}
@return: A chunk structure for a single sentence
encoded in the given CONLL 2000 style string.
@rtype: L{Tree}
"""
stack = [Tree(top_node, [])]
for lineno, line in enumerate(s.split('\n')):
if not line.strip(): continue
# Decode the line.
match = _LINE_RE.match(line)
if match is None:
raise ValueError, 'Error on line %d' % lineno
(word, tag, state, chunk_type) = match.groups()
# If it's a chunk type we don't care about, treat it as O.
if (chunk_types is not None and
chunk_type not in chunk_types):
state = 'O'
# For "Begin"/"Outside", finish any completed chunks -
# also do so for "Inside" which don't match the previous token.
mismatch_I = state == 'I' and chunk_type != stack[-1].node
if state in 'BO' or mismatch_I:
if len(stack) == 2: stack.pop()
# For "Begin", start a new chunk.
if state == 'B' or mismatch_I:
chunk = Tree(chunk_type, [])
stack[-1].append(chunk)
stack.append(chunk)
# Add the new word token.
stack[-1].append((word, tag))
return stack[0]
def tree2conlltags(t):
"""
Convert a tree to the CoNLL IOB tag format
@param t: The tree to be converted.
@type t: C{Tree}
@return: A list of 3-tuples containing word, tag and IOB tag.
@rtype: C{list} of C{tuple}
"""
tags = []
for child in t:
try:
category = child.node
prefix = "B-"
for contents in child:
if isinstance(contents, Tree):
raise ValueError, "Tree is too deeply nested to be printed in CoNLL format"
tags.append((contents[0], contents[1], prefix+category))
prefix = "I-"
except AttributeError:
tags.append((child[0], child[1], "O"))
return tags
def tree2conllstr(t):
"""
Convert a tree to the CoNLL IOB string format
@param t: The tree to be converted.
@type t: C{Tree}
@return: A multiline string where each line contains a word, tag and IOB tag.
@rtype: C{string}
"""
lines = [string.join(token) for token in tree2conlltags(t)]
return '\n'.join(lines)
### IEER
_IEER_DOC_RE = re.compile(r'<DOC>\s*'
r'(<DOCNO>\s*(?P<docno>.+?)\s*</DOCNO>\s*)?'
r'(<DOCTYPE>\s*(?P<doctype>.+?)\s*</DOCTYPE>\s*)?'
r'(<DATE_TIME>\s*(?P<date_time>.+?)\s*</DATE_TIME>\s*)?'
r'<BODY>\s*'
r'(<HEADLINE>\s*(?P<headline>.+?)\s*</HEADLINE>\s*)?'
r'<TEXT>(?P<text>.*?)</TEXT>\s*'
r'</BODY>\s*</DOC>\s*', re.DOTALL)
_IEER_TYPE_RE = re.compile('<b_\w+\s+[^>]*?type="(?P<type>\w+)"')
def _ieer_read_text(s, top_node):
stack = [Tree(top_node, [])]
# s will be None if there is no headline in the text
# return the empty list in place of a Tree
if s is None:
return []
for piece_m in re.finditer('<[^>]+>|[^\s<]+', s):
piece = piece_m.group()
try:
if piece.startswith('<b_'):
m = _IEER_TYPE_RE.match(piece)
if m is None: print 'XXXX', piece
chunk = Tree(m.group('type'), [])
stack[-1].append(chunk)
stack.append(chunk)
elif piece.startswith('<e_'):
stack.pop()
# elif piece.startswith('<'):
# print "ERROR:", piece
# raise ValueError # Unexpected HTML
else:
stack[-1].append(piece)
except (IndexError, ValueError):
raise ValueError('Bad IEER string (error at character %d)' %
piece_m.start())
if len(stack) != 1:
raise ValueError('Bad IEER string')
return stack[0]
def ieerstr2tree(s, chunk_types = ['LOCATION', 'ORGANIZATION', 'PERSON', 'DURATION',
'DATE', 'CARDINAL', 'PERCENT', 'MONEY', 'MEASURE'], top_node="S"):
"""
Convert a string of chunked tagged text in the IEER named
entity format into a chunk structure. Chunks are of several
types, LOCATION, ORGANIZATION, PERSON, DURATION, DATE, CARDINAL,
PERCENT, MONEY, and MEASURE.
@return: A chunk structure containing the chunked tagged text that is
encoded in the given IEER style string.
@rtype: L{Tree}
"""
# Try looking for a single document. If that doesn't work, then just
# treat everything as if it was within the <TEXT>...</TEXT>.
m = _IEER_DOC_RE.match(s)
if m:
return {
'text': _ieer_read_text(m.group('text'), top_node),
'docno': m.group('docno'),
'doctype': m.group('doctype'),
'date_time': m.group('date_time'),
#'headline': m.group('headline')
# we want to capture NEs in the headline too!
'headline': _ieer_read_text(m.group('headline'), top_node),
}
else:
return _ieer_read_text(s, top_node)
def demo():
s = "[ Pierre/NNP Vinken/NNP ] ,/, [ 61/CD years/NNS ] old/JJ ,/, will/MD join/VB [ the/DT board/NN ] ./."
from nltk import chunk
t = chunk.tagstr2tree(s, chunk_node='NP')
print t.pprint()
print
s = """
These DT B-NP
research NN I-NP
protocols NNS I-NP
offer VBP B-VP
to TO B-PP
the DT B-NP
patient NN I-NP
not RB O
only RB O
the DT B-NP
very RB I-NP
best JJS I-NP
therapy NN I-NP
which WDT B-NP
we PRP B-NP
have VBP B-VP
established VBN I-VP
today NN B-NP
but CC B-NP
also RB I-NP
the DT B-NP
hope NN I-NP
of IN B-PP
something NN B-NP
still RB B-ADJP
better JJR I-ADJP
. . O
"""
conll_tree = conllstr2tree(s, chunk_types=('NP', 'PP'))
print conll_tree.pprint()
# Demonstrate CoNLL output
print "CoNLL output:"
print chunk.tree2conllstr(conll_tree)
print
if __name__ == '__main__':
demo()
|