1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
|
# Natural Language Toolkit: Agreement Metrics
#
# Copyright (C) 2001-2009 NLTK Project
# Author: Tom Lippincott <tom@cs.columbia.edu>
# URL: <http://www.nltk.org/>
# For license information, see LICENSE.TXT
#
"""
Implementations of inter-annotator agreement coefficients surveyed by Artstein
and Poesio (2007), Inter-Coder Agreement for Computational Linguistics.
An agreement coefficient calculates the amount that annotators agreed on label
assignments beyond what is expected by chance.
In defining the AnnotationTask class, we use naming conventions similar to the
paper's terminology. There are three types of objects in an annotation task:
the coders (variables "c" and "C")
the items to be annotated (variables "i" and "I")
the potential categories to be assigned (variables "k" and "K")
Additionally, it is often the case that we don't want to treat two different
labels as complete disagreement, and so the AnnotationTask constructor can also
take a distance metric as a final argument. Distance metrics are simply
functions that take two arguments, and return a value between 0.0 and 1.0
indicating the distance between them. If not supplied, the default is binary
comparison between the arguments.
The simplest way to initialize an AnnotationTask is with a list of equal-length
lists, each containing a coder's assignments for all objects in the task:
task = AnnotationTask([],[],[])
Alpha (Krippendorff 1980)
Kappa (Cohen 1960)
S (Bennet, Albert and Goldstein 1954)
Pi (Scott 1955)
TODO: Describe handling of multiple coders and missing data
Expected results from the Artstein and Poesio survey paper:
>>> t = AnnotationTask(data=[x.split() for x in open("%sartstein_poesio_example.txt" % (__file__.replace("__init__.py", "")))])
>>> t.avg_Ao()
0.88
>>> t.pi()
0.7995322418977614
>>> t.S()
0.81999999999999984
"""
import logging
from distance import *
class AnnotationTask:
"""Represents an annotation task, i.e. people assign labels to items.
Notation tries to match notation in Artstein and Poesio (2007).
In general, coders and items can be represented as any hashable object.
Integers, for example, are fine, though strings are more readable.
Labels must support the distance functions applied to them, so e.g.
a string-edit-distance makes no sense if your labels are integers,
whereas interval distance needs numeric values. A notable case of this
is the MASI metric, which requires Python sets.
"""
def __init__(self, data=None, distance=binary_distance):
"""Initialize an empty annotation task.
"""
self.distance = distance
self.I = set()
self.K = set()
self.C = set()
self.data = []
if data != None:
self.load_array(data)
def __str__(self):
return "\r\n".join(map(lambda x:"%s\t%s\t%s" %
(x['coder'], x['item'].replace('_', "\t"),
",".join(x['labels'])), self.data))
def load_array(self, array):
"""Load the results of annotation.
The argument is a list of 3-tuples, each representing a coder's labeling of an item:
(coder,item,label)
"""
for coder, item, labels in array:
self.C.add(coder)
self.K.add(labels)
self.I.add(item)
self.data.append({'coder':coder, 'labels':labels, 'item':item})
def agr(self, cA, cB, i):
"""Agreement between two coders on a given item
"""
kA = filter(lambda x:x['coder']==cA and x['item']==i, self.data)[0]
kB = filter(lambda x:x['coder']==cB and x['item']==i, self.data)[0]
ret = 1.0 - float(self.distance(kA['labels'], kB['labels']))
logging.debug("Observed agreement between %s and %s on %s: %f",
cA, cB, i, ret)
logging.debug("Distance between \"%s\" and \"%s\": %f",
",".join(kA['labels']), ",".join(kB['labels']), 1.0 - ret)
return ret
def N(self, k=None, i=None, c=None):
"""Implements the "n-notation" used in Artstein and Poesio (2007)
"""
if k != None and i == None and c == None:
ret = len(filter(lambda x:k == x['labels'], self.data))
elif k != None and i != None and c == None:
ret = len(filter(lambda x:k == x['labels'] and i == x['item'], self.data))
elif k != None and c != None and i==None:
ret = len(filter(lambda x:k == x['labels'] and c == x['coder'], self.data))
else:
print "You must pass either i or c, not both!"
logging.debug("Count on N[%s,%s,%s]: %d", k, i, c, ret)
return float(ret)
def Ao(self, cA, cB):
"""Observed agreement between two coders on all items.
"""
ret = float(sum(map(lambda x:self.agr(cA, cB, x), self.I))) / float(len(self.I))
logging.debug("Observed agreement between %s and %s: %f", cA, cB, ret)
return ret
def avg_Ao(self):
"""Average observed agreement across all coders and items.
"""
s = self.C.copy()
counter = 0.0
total = 0.0
for cA in self.C:
s.remove(cA)
for cB in s:
total += self.Ao(cA, cB)
counter += 1.0
ret = total / counter
logging.debug("Average observed agreement: %f", ret)
return ret
#TODO: VERY slow, speed this up!
def Do_alpha(self):
"""The observed disagreement for the alpha coefficient.
The alpha coefficient, unlike the other metrics, uses this rather than
observed agreement.
"""
total = 0.0
for i in self.I:
for j in self.K:
for l in self.K:
total += float(self.N(i = i, k = j) * self.N(i = i, k = l)) * self.distance(l, j)
ret = (1.0 / float((len(self.I) * len(self.C) * (len(self.C) - 1)))) * total
logging.debug("Observed disagreement: %f", ret)
return ret
def Do_Kw_pairwise(self,cA,cB,max_distance=1.0):
"""The observed disagreement for the weighted kappa coefficient.
"""
total = 0.0
for i in self.I:
total += self.distance(filter(lambda x:x['coder']==cA and x['item']==i, self.data)[0]['labels'],
filter(lambda x:x['coder']==cB and x['item']==i, self.data)[0]['labels'])
ret = total / (len(self.I) * max_distance)
logging.debug("Observed disagreement between %s and %s: %f", cA, cB, ret)
return ret
def Do_Kw(self, max_distance=1.0):
"""Averaged over all labelers
"""
vals = {}
for cA in self.C:
for cB in self.C:
if (not frozenset([cA,cB]) in vals.keys() and not cA == cB):
vals[frozenset([cA, cB])] = self.Do_Kw_pairwise(cA, cB, max_distance)
ret = sum(vals.values()) / len(vals)
logging.debug("Observed disagreement: %f", ret)
return ret
# Agreement Coefficients
def S(self):
"""Bennett, Albert and Goldstein 1954
"""
Ae = 1.0 / float(len(self.K))
ret = (self.avg_Ao() - Ae) / (1.0 - Ae)
return ret
def pi(self):
"""Scott 1955
"""
total = 0.0
for k in self.K:
total += self.N(k=k) ** 2
Ae = (1.0 / (4.0 * float(len(self.I) ** 2))) * total
ret = (self.avg_Ao() - Ae) / (1 - Ae)
return ret
def pi_avg(self):
pass
def kappa_pairwise(self, cA, cB):
"""
"""
Ae = 0.0
for k in self.K:
Ae += (float(self.N(c=cA, k=k)) / float(len(self.I))) * (float(self.N(c=cB, k=k)) / float(len(self.I)))
ret = (self.Ao(cA, cB) - Ae) / (1.0 - Ae)
logging.debug("Expected agreement between %s and %s: %f", cA, cB, Ae)
logging.info("Kappa between %s and %s: %f", cA, cB, ret)
return ret
def kappa(self):
"""Cohen 1960
"""
vals = {}
for a in self.C:
for b in self.C:
if a == b or "%s%s" % (b, a) in vals:
continue
vals["%s%s" % (a, b)] = self.kappa_pairwise(a, b)
ret = sum(vals.values()) / float(len(vals))
return ret
def alpha(self):
"""Krippendorff 1980
"""
De = 0.0
for j in self.K:
for l in self.K:
De += float(self.N(k=j) * self.N(k=l)) * self.distance(j, l)
De = (1.0 / (len(self.I) * len(self.C) * (len(self.I) * len(self.C) - 1))) * De
logging.debug("Expected disagreement: %f", De)
ret = 1.0 - (self.Do_alpha() / De)
return ret
def weighted_kappa_pairwise(self, cA, cB, max_distance=1.0):
"""Cohen 1968
"""
total = 0.0
for j in self.K:
for l in self.K:
total += self.N(c=cA, k=j) * self.N(c=cB, k=l) * self.distance(j, l)
De = total / (max_distance * pow(len(self.I), 2))
logging.debug("Expected disagreement between %s and %s: %f", cA, cB, De)
Do = self.Do_Kw_pairwise(cA, cB)
ret = 1.0 - (Do / De)
logging.warning("Weighted kappa between %s and %s: %f", cA, cB, ret)
return ret
def weighted_kappa(self):
"""Cohen 1968
"""
vals = {}
for a in self.C:
for b in self.C:
if a == b or frozenset([a, b]) in vals:
continue
vals[frozenset([a, b])] = self.weighted_kappa_pairwise(a, b)
ret = sum(vals.values()) / float(len(vals))
return ret
if __name__ == '__main__':
import re
import optparse
import distance
# process command-line arguments
parser = optparse.OptionParser()
parser.add_option("-d", "--distance", dest="distance", default="binary_distance",
help="distance metric to use")
parser.add_option("-a", "--agreement", dest="agreement", default="kappa",
help="agreement coefficient to calculate")
parser.add_option("-e", "--exclude", dest="exclude", action="append",
default=[], help="coder names to exclude (may be specified multiple times)")
parser.add_option("-i", "--include", dest="include", action="append", default=[],
help="coder names to include, same format as exclude")
parser.add_option("-f", "--file", dest="file",
help="file to read labelings from, each line with three columns: 'labeler item labels'")
parser.add_option("-v", "--verbose", dest="verbose", default='0',
help="how much debugging to print on stderr (0-4)")
parser.add_option("-c", "--columnsep", dest="columnsep", default="\t",
help="char/string that separates the three columns in the file, defaults to tab")
parser.add_option("-l", "--labelsep", dest="labelsep", default=",",
help="char/string that separates labels (if labelers can assign more than one), defaults to comma")
parser.add_option("-p", "--presence", dest="presence", default=None,
help="convert each labeling into 1 or 0, based on presence of LABEL")
parser.add_option("-T", "--thorough", dest="thorough", default=False, action="store_true",
help="calculate agreement for every subset of the annotators")
(options, remainder) = parser.parse_args()
if not options.file:
parser.print_help()
exit()
logging.basicConfig(level=50 - 10 * int(options.verbose))
# read in data from the specified file
data = []
for l in open(options.file):
toks = l.split(options.columnsep)
coder, object, labels = toks[0], str(toks[1:-1]), frozenset(toks[-1].strip().split(options.labelsep))
if ((options.include == options.exclude) or
(len(options.include) > 0 and coder in options.include) or
(len(options.exclude) > 0 and coder not in options.exclude)):
data.append((coder, object, labels))
if options.presence:
task = AnnotationTask(data, getattr(distance, options.distance)(options.presence))
else:
task = AnnotationTask(data, getattr(distance, options.distance))
if options.thorough:
pass
else:
print getattr(task, options.agreement)()
logging.shutdown()
|