1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
# Natural Language Toolkit: Ngram Association Measures
#
# Copyright (C) 2001-2009 NLTK Project
# Author: Joel Nothman <jnothman@student.usyd.edu.au>
# URL: <http://nltk.org>
# For license information, see LICENSE.TXT
"""
Provides scoring functions for a number of association measures through a
generic, abstract implementation in L{NgramAssocMeasures}, and n-specific
L{BigramAssocMeasures} and L{TrigramAssocMeasures}.
"""
import math as _math
_log2 = lambda x: _math.log(x, 2.0)
_ln = _math.log
_product = lambda s: reduce(lambda x, y: x * y, s)
_SMALL = 1e-20
### Indices to marginals arguments:
NGRAM = 0
"""Marginals index for the ngram count"""
UNIGRAMS = -2
"""Marginals index for a tuple of each unigram count"""
TOTAL = -1
"""Marginals index for the number of words in the data"""
class NgramAssocMeasures(object):
"""
An abstract class defining a collection of generic association measures.
Each public method returns a score, taking the following arguments:
score_fn(count_of_ngram,
(count_of_n-1gram_1, ..., count_of_n-1gram_j),
(count_of_n-2gram_1, ..., count_of_n-2gram_k),
...,
(count_of_1gram_1, ..., count_of_1gram_n),
count_of_total_words)
See L{BigramAssocMeasures} and L{TrigramAssocMeasures}
Inheriting classes should define a property _n, and a method _contingency
which calculates contingency values from marginals in order for all
association measures defined here to be usable.
"""
@staticmethod
def _contingency(*marginals):
"""Calculates values of a contingency table from marginal values."""
raise NotImplementedError, ("The contingency table is not available"
"in the general ngram case")
@staticmethod
def _marginals(*contingency):
"""Calculates values of contingency table marginals from its values."""
raise NotImplementedError, ("The contingency table is not available"
"in the general ngram case")
@classmethod
def _expected_values(cls, cont):
"""Calculates expected values for a contingency table."""
n_all = sum(cont)
bits = [1 << i for i in range(cls._n)]
# For each contingency table cell
for i in range(len(cont)):
# Yield the expected value
yield (_product(cont[i] + cont[i ^ j] for j in bits) /
float(n_all ** 2))
@staticmethod
def raw_freq(*marginals):
"""Scores ngrams by their frequency"""
return float(marginals[NGRAM]) / marginals[TOTAL]
@classmethod
def student_t(cls, *marginals):
"""Scores ngrams using Student's t test with independence hypothesis
for unigrams, as in Manning and Schutze 5.3.2.
"""
return ((marginals[NGRAM] * marginals[TOTAL] -
_product(marginals[UNIGRAMS])) /
(marginals[TOTAL] ** (cls._n - 1) *
(marginals[NGRAM] + _SMALL) ** .5))
@classmethod
def chi_sq(cls, *marginals):
"""Scores ngrams using Pearson's chi-square as in Manning and Schutze
5.3.3.
"""
cont = cls._contingency(*marginals)
exps = cls._expected_values(cont)
return sum((obs - exp) ** 2 / (exp + _SMALL)
for obs, exp in zip(cont, exps))
@staticmethod
def mi_like(*marginals, **kwargs):
"""Scores ngrams using a variant of mutual information. The keyword
argument power sets an exponent (default 3) for the numerator. No
logarithm of the result is calculated.
"""
return (marginals[NGRAM] ** kwargs.get('power', 3) /
float(_product(marginals[UNIGRAMS])))
@classmethod
def pmi(cls, *marginals):
"""Scores ngrams by pointwise mutual information, as in Manning and
Schutze 5.4.
"""
return (_log2(marginals[NGRAM] * marginals[TOTAL] ** (cls._n - 1)) -
_log2(_product(marginals[UNIGRAMS])))
@classmethod
def likelihood_ratio(cls, *marginals):
"""Scores ngrams using likelihood ratios as in Manning and Schutze 5.3.4.
"""
cont = cls._contingency(*marginals)
# I don't understand why this negation is needed
return ((-1) ** cls._n * 2 *
sum(obs * _ln(float(obs) / (exp + _SMALL) + _SMALL)
for obs, exp in zip(cont, cls._expected_values(cont))))
@classmethod
def poisson_stirling(cls, *marginals):
"""Scores ngrams using the Poisson-Stirling measure."""
exp = (_product(marginals[UNIGRAMS]) /
float(marginals[TOTAL] ** (cls._n - 1)))
return marginals[NGRAM] * (_log2(marginals[NGRAM] / exp) - 1)
@classmethod
def jaccard(cls, *marginals):
"""Scores ngrams using the Jaccard index."""
cont = cls._contingency(*marginals)
return float(cont[0]) / sum(cont[:-1])
class BigramAssocMeasures(NgramAssocMeasures):
"""
A collection of trigram association measures. Each association measure
is provided as a function with three arguments:
bigram_score_fn(n_ii, (n_ix, n_xi), n_xx)
The arguments constitute the marginals of a contingency table, counting
the occurrences of particular events in a corpus. The letter i in the
suffix refers to the appearance of the word in question, while x indicates
the appearance of any word. Thus, for example:
n_ii counts (w1, w2), i.e. the bigram being scored
n_ix counts (w1, *)
n_xi counts (*, w2)
n_xx counts (*, *), i.e. any bigram
This may be shown with respect to a contingency table:
w1 ~w1
------ ------
w2 | n_ii | n_oi | = n_xi
------ ------
~w2 | n_io | n_oo |
------ ------
= n_ix TOTAL = n_xx
"""
_n = 2
@staticmethod
def _contingency(n_ii, (n_ix, n_xi), n_xx):
"""Calculates values of a bigram contingency table from marginal values."""
n_oi = n_xi - n_ii
n_io = n_ix - n_ii
return (n_ii, n_oi, n_io, n_xx - n_ii - n_oi - n_io)
@staticmethod
def _marginals(n_ii, n_oi, n_io, n_oo):
"""Calculates values of contingency table marginals from its values."""
return (n_ii, (n_oi + n_ii, n_io + n_ii), n_oo + n_oi + n_io + n_ii)
@staticmethod
def _expected_values(cont):
"""Calculates expected values for a contingency table."""
n_xx = sum(cont)
# For each contingency table cell
for i in range(4):
yield (cont[i] + cont[i ^ 1]) * (cont[i] + cont[i ^ 2]) / float(n_xx)
@classmethod
def phi_sq(cls, *marginals):
"""Scores bigrams using phi-square, the square of the Pearson correlation
coefficient.
"""
n_ii, n_io, n_oi, n_oo = cls._contingency(*marginals)
return (float((n_ii*n_oo - n_io*n_oi)**2) /
((n_ii + n_io) * (n_ii + n_oi) * (n_io + n_oo) * (n_oi + n_oo)))
@classmethod
def chi_sq(cls, n_ii, (n_ix, n_xi), n_xx):
"""Scores bigrams using chi-square, i.e. phi-sq multiplied by the number
of bigrams, as in Manning and Schutze 5.3.3.
"""
return n_xx * cls.phi_sq(n_ii, (n_ix, n_xi), n_xx)
@staticmethod
def dice(n_ii, (n_ix, n_xi), n_xx):
"""Scores bigrams using Dice's coefficient."""
return 2 * float(n_ii) / (n_ix + n_xi)
class TrigramAssocMeasures(NgramAssocMeasures):
"""
A collection of trigram association measures. Each association measure
is provided as a function with four arguments:
trigram_score_fn(n_iii,
(n_iix, n_ixi, n_xii),
(n_ixx, n_xix, n_xxi),
n_xxx)
The arguments constitute the marginals of a contingency table, counting
the occurrences of particular events in a corpus. The letter i in the
suffix refers to the appearance of the word in question, while x indicates
the appearance of any word. Thus, for example:
n_iii counts (w1, w2, w3), i.e. the trigram being scored
n_ixx counts (w1, *, *)
n_xxx counts (*, *, *), i.e. any trigram
"""
_n = 3
@staticmethod
def _contingency(n_iii,
(n_iix, n_ixi, n_xii),
(n_ixx, n_xix, n_xxi),
n_xxx):
"""Calculates values of a trigram contingency table (or cube) from marginal
values.
"""
n_oii = n_xii - n_iii
n_ioi = n_ixi - n_iii
n_iio = n_iix - n_iii
n_ooi = n_xxi - n_iii - n_oii - n_ioi
n_oio = n_xix - n_iii - n_oii - n_iio
n_ioo = n_ixx - n_iii - n_ioi - n_iio
n_ooo = n_xxx - n_iii - n_oii - n_ioi - n_iio - n_ooi - n_oio - n_ioo
return (n_iii, n_oii, n_ioi, n_ooi,
n_iio, n_oio, n_ioo, n_ooo)
@staticmethod
def _marginals(*contingency):
"""Calculates values of contingency table marginals from its values."""
n_iii, n_oii, n_ioi, n_ooi, n_iio, n_oio, n_ioo, n_ooo = contingency
return (n_iii,
(n_iii + n_iio, n_iii + n_ioi, n_iii + n_oii),
(n_iii + n_ioi + n_iio + n_ioo,
n_iii + n_oii + n_iio + n_oio,
n_iii + n_oii + n_ioi + n_ooi),
sum(contingency))
class ContingencyMeasures(object):
"""Wraps NgramAssocMeasures classes such that the arguments of association
measures are contingency table values rather than marginals.
"""
def __init__(self, measures):
"""Constructs a ContingencyMeasures given a NgramAssocMeasures class"""
self.__class__.__name__ = 'Contingency' + measures.__class__.__name__
for k in dir(measures):
if k.startswith('__'):
continue
v = getattr(measures, k)
if not k.startswith('_'):
v = self._make_contingency_fn(measures, v)
setattr(self, k, v)
@staticmethod
def _make_contingency_fn(measures, old_fn):
"""From an association measure function, produces a new function which
accepts contingency table values as its arguments.
"""
def res(*contingency):
return old_fn(*measures._marginals(*contingency))
res.__doc__ = old_fn.__doc__
res.__name__ = old_fn.__name__
return res
|