1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
|
# Natural Language Toolkit: Confusion Matrices
#
# Copyright (C) 2001-2009 NLTK Project
# Author: Edward Loper <edloper@gradient.cis.upenn.edu>
# Steven Bird <sb@csse.unimelb.edu.au>
# URL: <http://www.nltk.org/>
# For license information, see LICENSE.TXT
class ConfusionMatrix(object):
"""
The confusion matrix between a list of reference values and a
corresponding list of test values. Entry [M{r},M{t}] of this
matrix is a count of the number of times that the reference value
M{r} corresponds to the test value M{t}. E.g.:
>>> ref = 'DET NN VB DET JJ NN NN IN DET NN'.split()
>>> test = 'DET VB VB DET NN NN NN IN DET NN'.split()
>>> cm = ConfusionMatrix(ref, test)
>>> print cm['NN', 'NN']
3
Note that the diagonal entries (M{Ri}=M{Tj}) of this matrix
corresponds to correct values; and the off-diagonal entries
correspond to incorrect values.
"""
def __init__(self, reference, test, sort_by_count=False):
"""
Construct a new confusion matrix from a list of reference
values and a corresponding list of test values.
@type reference: C{list}
@param reference: An ordered list of reference values.
@type test: C{list}
@param test: A list of values to compare against the
corresponding reference values.
@raise ValueError: If C{reference} and C{length} do not have
the same length.
"""
if len(reference) != len(test):
raise ValueError('Lists must have the same length.')
# Get a list of all values.
if sort_by_count:
ref_fdist = FreqDist(reference)
test_fdist = FreqDist(test)
def key(v): return -(ref_fdist[v]+test_fdist[v])
values = sorted(set(reference+test), key=key)
else:
values = sorted(set(reference+test))
# Construct a value->index dictionary
indices = dict((val,i) for (i,val) in enumerate(values))
# Make a confusion matrix table.
confusion = [[0 for val in values] for val in values]
max_conf = 0 # Maximum confusion
for w,g in zip(reference, test):
confusion[indices[w]][indices[g]] += 1
max_conf = max(max_conf, confusion[indices[w]][indices[g]])
#: A list of all values in C{reference} or C{test}.
self._values = values
#: A dictionary mapping values in L{self._values} to their indices.
self._indices = indices
#: The confusion matrix itself (as a list of lists of counts).
self._confusion = confusion
#: The greatest count in L{self._confusion} (used for printing).
self._max_conf = max_conf
#: The total number of values in the confusion matrix.
self._total = len(reference)
#: The number of correct (on-diagonal) values in the matrix.
self._correct = sum(confusion[i][i] for i in range(len(values)))
def __getitem__(self, (li,lj)):
"""
@return: The number of times that value C{li} was expected and
value C{lj} was given.
@rtype: C{int}
"""
i = self._indices[li]
j = self._indices[lj]
return self._confusion[i][j]
def __repr__(self):
return '<ConfusionMatrix: %s/%s correct>' % (self._correct,
self._total)
def __str__(self):
return self.pp()
def pp(self, show_percents=False, values_in_chart=True):
"""
@return: A multi-line string representation of this confusion
matrix.
@todo: add marginals?
"""
confusion = self._confusion
if values_in_chart:
values = self._values
else:
values = range(len(self._values))
# Construct a format string for row values
valuelen = max(len(str(val)) for val in values)
value_format = '%' + `valuelen` + 's | '
# Construct a format string for matrix entries
if show_percents:
entrylen = 6
entry_format = '%5.1f%%'
zerostr = ' .'
else:
entrylen = len(`self._max_conf`)
entry_format = '%' + `entrylen` + 'd'
zerostr = ' '*(entrylen-1) + '.'
# Write the column values.
value_strings = [str(val) for val in values]
s = ''
for i in range(valuelen):
s += (' '*valuelen)+' |'
for val in value_strings:
if i >= valuelen-len(val):
s += val[i-valuelen+len(val)].rjust(entrylen+1)
else:
s += ' '*(entrylen+1)
s += ' |\n'
# Write a dividing line
s += '%s-+-%s+\n' % ('-'*valuelen, '-'*((entrylen+1)*len(values)))
# Write the entries.
for i in range(len(values)):
s += value_format % values[i]
for j in range(len(values)):
if confusion[i][j] == 0:
s += zerostr
elif show_percents:
s += entry_format % (100.0*confusion[i][j]/self._total)
else:
s += entry_format % confusion[i][j]
if i == j:
prevspace = s.rfind(' ')
s = s[:prevspace] + '<' + s[prevspace+1:] + '>'
else: s += ' '
s += '|\n'
# Write a dividing line
s += '%s-+-%s+\n' % ('-'*valuelen, '-'*((entrylen+1)*len(values)))
# Write a key
s += '(row = reference; col = test)\n'
if not values_in_chart:
s += 'Value key:\n'
for i, value in enumerate(self._values):
s += '%6d: %s\n' % (i, value)
return s
def key(self):
values = self._values
str = 'Value key:\n'
indexlen = len(`len(values)-1`)
key_format = ' %'+`indexlen`+'d: %s\n'
for i in range(len(values)):
str += key_format % (i, values[i])
return str
def demo():
reference = 'DET NN VB DET JJ NN NN IN DET NN'.split()
test = 'DET VB VB DET NN NN NN IN DET NN'.split()
print 'Reference =', reference
print 'Test =', test
print 'Confusion matrix:'
print ConfusionMatrix(reference, test)
if __name__ == '__main__':
demo()
|