1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
|
# Natural Language Toolkit: Discourse Representation Theory (DRT)
#
# Author: Dan Garrette <dhgarrette@gmail.com>
#
# URL: <http://www.nltk.org/>
# For license information, see LICENSE.TXT
import operator
from logic import *
import drt_resolve_anaphora as RA
# Import Tkinter-based modules if they are available
try:
from Tkinter import Canvas
from Tkinter import Tk
from tkFont import Font
from nltk import in_idle
except ImportError:
# No need to print a warning here, nltk.draw has already printed one.
pass
class DrtTokens(Tokens):
DRS = 'DRS'
DRS_CONC = '+'
PRONOUN = 'PRO'
OPEN_BRACKET = '['
CLOSE_BRACKET = ']'
PUNCT = [DRS_CONC, OPEN_BRACKET, CLOSE_BRACKET]
SYMBOLS = Tokens.SYMBOLS + PUNCT
TOKENS = Tokens.TOKENS + [DRS] + PUNCT
class AbstractDrs(object):
"""
This is the base abstract abstract DRT Expression from which every DRT
Expression extends.
"""
def applyto(self, other):
return DrtApplicationExpression(self, other)
def __neg__(self):
return DrtNegatedExpression(self)
def __and__(self, other):
raise NotImplementedError()
def __or__(self, other):
assert isinstance(other, AbstractDrs)
return DrtOrExpression(self, other)
def __gt__(self, other):
assert isinstance(other, AbstractDrs)
return DrtImpExpression(self, other)
def __lt__(self, other):
assert isinstance(other, AbstractDrs)
return DrtIffExpression(self, other)
def tp_equals(self, other, prover=None):
"""Pass the expression (self <-> other) to the theorem prover.
If the prover says it is valid, then the self and other are equal."""
assert isinstance(other, AbstractDrs)
f1 = self.simplify().toFol();
f2 = other.simplify().toFol();
return f1.tp_equals(f2, prover)
def _get_type(self):
raise AttributeError("'%s' object has no attribute 'type'" %
self.__class__.__name__)
type = property(_get_type)
def typecheck(self, signature=None):
raise NotImplementedError()
def __add__(self, other):
return ConcatenationDRS(self, other)
def get_refs(self, recursive=False):
"""
Return the set of discourse referents in this DRS.
@param recursive: C{boolean} Also find discourse referents in subterms?
@return: C{list} of C{Variable}s
"""
raise NotImplementedError()
def is_pronoun_function(self):
""" Is self of the form "PRO(x)"? """
return isinstance(self, DrtApplicationExpression) and \
isinstance(self.function, DrtAbstractVariableExpression) and \
self.function.variable.name == DrtTokens.PRONOUN and \
isinstance(self.argument, DrtIndividualVariableExpression)
def make_EqualityExpression(self, first, second):
return DrtEqualityExpression(first, second)
def make_VariableExpression(self, variable):
return DrtVariableExpression(variable)
def draw(self):
DrsDrawer(self).draw()
class DRS(AbstractDrs, Expression, RA.DRS):
"""A Discourse Representation Structure."""
def __init__(self, refs, conds):
"""
@param refs: C{list} of C{DrtIndividualVariableExpression} for the
discourse referents
@param conds: C{list} of C{Expression} for the conditions
"""
self.refs = refs
self.conds = conds
def replace(self, variable, expression, replace_bound=False):
"""Replace all instances of variable v with expression E in self,
where v is free in self."""
try:
#if a bound variable is the thing being replaced
i = self.refs.index(variable)
if not replace_bound:
return self
else:
return DRS(self.refs[:i]+[expression.variable]+self.refs[i+1:],
[cond.replace(variable, expression, True) for cond in self.conds])
except ValueError:
#variable not bound by this DRS
# any bound variable that appears in the expression must
# be alpha converted to avoid a conflict
for ref in (set(self.refs) & expression.free()):
newvar = unique_variable(ref)
newvarex = DrtVariableExpression(newvar)
i = self.refs.index(ref)
self = DRS(self.refs[:i]+[newvar]+self.refs[i+1:],
[cond.replace(ref, newvarex, True)
for cond in self.conds])
#replace in the conditions
return DRS(self.refs,
[cond.replace(variable, expression, replace_bound)
for cond in self.conds])
def variables(self):
"""@see: Expression.variables()"""
conds_vars = reduce(operator.or_,
[c.variables() for c in self.conds], set())
return conds_vars - set(self.refs)
def free(self, indvar_only=True):
"""@see: Expression.free()"""
conds_free = reduce(operator.or_,
[c.free(indvar_only) for c in self.conds], set())
return conds_free - set(self.refs)
def get_refs(self, recursive=False):
"""@see: AbstractExpression.get_refs()"""
if recursive:
cond_refs = reduce(operator.add,
[c.get_refs(True) for c in self.conds], [])
return self.refs + cond_refs
else:
return self.refs
def visit(self, function, combinator, default):
"""@see: Expression.visit()"""
return reduce(combinator,
[function(e) for e in self.refs + self.conds], default)
def simplify(self):
return DRS(self.refs, [cond.simplify() for cond in self.conds])
def toFol(self):
if not self.conds:
raise Exception("Cannot convert DRS with no conditions to FOL.")
accum = reduce(AndExpression, [c.toFol() for c in self.conds])
for ref in self.refs[::-1]:
accum = ExistsExpression(ref, accum)
return accum
def __eq__(self, other):
r"""Defines equality modulo alphabetic variance.
If we are comparing \x.M and \y.N, then check equality of M and N[x/y]."""
if isinstance(other, DRS):
if len(self.refs) == len(other.refs):
converted_other = other
for (r1, r2) in zip(self.refs, converted_other.refs):
varex = self.make_VariableExpression(r1)
converted_other = converted_other.replace(r2, varex, True)
return self.conds == converted_other.conds
return False
def str(self, syntax=DrtTokens.NLTK):
if syntax == DrtTokens.PROVER9:
return self.toFol().str(syntax)
else:
return '([%s],[%s])' % (','.join([str(r) for r in self.refs]),
', '.join([c.str(syntax) for c in self.conds]))
def DrtVariableExpression(variable):
"""
This is a factory method that instantiates and returns a subtype of
C{DrtAbstractVariableExpression} appropriate for the given variable.
"""
if is_indvar(variable.name):
return DrtIndividualVariableExpression(variable)
elif is_funcvar(variable.name):
return DrtFunctionVariableExpression(variable)
elif is_eventvar(variable.name):
return DrtEventVariableExpression(variable)
else:
return DrtConstantExpression(variable)
class DrtAbstractVariableExpression(AbstractDrs,
AbstractVariableExpression,
RA.AbstractVariableExpression):
def toFol(self):
return self
def get_refs(self, recursive=False):
"""@see: AbstractExpression.get_refs()"""
return []
class DrtIndividualVariableExpression(DrtAbstractVariableExpression,
IndividualVariableExpression,
RA.AbstractVariableExpression):
pass
class DrtFunctionVariableExpression(DrtAbstractVariableExpression,
FunctionVariableExpression,
RA.AbstractVariableExpression):
pass
class DrtEventVariableExpression(DrtIndividualVariableExpression,
EventVariableExpression,
RA.AbstractVariableExpression):
pass
class DrtConstantExpression(DrtAbstractVariableExpression,
ConstantExpression,
RA.AbstractVariableExpression):
pass
class DrtNegatedExpression(AbstractDrs, NegatedExpression,
RA.NegatedExpression):
def toFol(self):
return NegatedExpression(self.term.toFol())
class DrtLambdaExpression(AbstractDrs, LambdaExpression,
RA.LambdaExpression):
def alpha_convert(self, newvar):
"""Rename all occurrences of the variable introduced by this variable
binder in the expression to @C{newvar}.
@param newvar: C{Variable}, for the new variable
"""
return self.__class__(newvar, self.term.replace(self.variable,
DrtVariableExpression(newvar), True))
def toFol(self):
return LambdaExpression(self.variable, self.term.toFol())
class DrtBooleanExpression(AbstractDrs, BooleanExpression):
def get_refs(self, recursive=False):
"""@see: AbstractExpression.get_refs()"""
if recursive:
return self.first.get_refs(True) + self.second.get_refs(True)
else:
return []
class DrtOrExpression(DrtBooleanExpression, OrExpression, RA.OrExpression):
def toFol(self):
return OrExpression(self.first.toFol(), self.second.toFol())
class DrtImpExpression(DrtBooleanExpression, ImpExpression, RA.ImpExpression):
def toFol(self):
first_drs = self.first
second_drs = self.second
accum = None
if first_drs.conds:
accum = reduce(AndExpression,
[c.toFol() for c in first_drs.conds])
if accum:
accum = ImpExpression(accum, second_drs.toFol())
else:
accum = second_drs.toFol()
for ref in first_drs.refs[::-1]:
accum = AllExpression(ref, accum)
return accum
class DrtIffExpression(DrtBooleanExpression, IffExpression,
RA.IffExpression):
def toFol(self):
return IffExpression(self.first.toFol(), self.second.toFol())
class DrtEqualityExpression(AbstractDrs, EqualityExpression,
RA.EqualityExpression):
def toFol(self):
return EqualityExpression(self.first.toFol(), self.second.toFol())
def get_refs(self, recursive=False):
"""@see: AbstractExpression.get_refs()"""
if recursive:
return self.first.get_refs(True) + self.second.get_refs(True)
else:
return []
class ConcatenationDRS(DrtBooleanExpression, RA.ConcatenationDRS):
"""DRS of the form '(DRS + DRS)'"""
def replace(self, variable, expression, replace_bound=False):
"""Replace all instances of variable v with expression E in self,
where v is free in self."""
first = self.first
second = self.second
# If variable is bound by both first and second
if isinstance(first, DRS) and isinstance(second, DRS) and \
variable in (set(first.get_refs(True)) & set(second.get_refs(True))):
first = first.replace(variable, expression, True)
second = second.replace(variable, expression, True)
# If variable is bound by first
elif isinstance(first, DRS) and variable in first.refs:
if replace_bound:
first = first.replace(variable, expression, replace_bound)
second = second.replace(variable, expression, replace_bound)
# If variable is bound by second
elif isinstance(second, DRS) and variable in second.refs:
if replace_bound:
first = first.replace(variable, expression, replace_bound)
second = second.replace(variable, expression, replace_bound)
else:
# alpha convert every ref that is free in 'expression'
for ref in (set(self.get_refs(True)) & expression.free()):
v = DrtVariableExpression(unique_variable(ref))
first = first.replace(ref, v, True)
second = second.replace(ref, v, True)
first = first.replace(variable, expression, replace_bound)
second = second.replace(variable, expression, replace_bound)
return self.__class__(first, second)
def simplify(self):
first = self.first.simplify()
second = self.second.simplify()
if isinstance(first, DRS) and isinstance(second, DRS):
# For any ref that is in both 'first' and 'second'
for ref in (set(first.get_refs(True)) & set(second.get_refs(True))):
# alpha convert the ref in 'second' to prevent collision
newvar = DrtVariableExpression(unique_variable(ref))
second = second.replace(ref, newvar, True)
return DRS(first.refs + second.refs, first.conds + second.conds)
else:
return self.__class__(first,second)
def get_refs(self, recursive=False):
"""@see: AbstractExpression.get_refs()"""
return self.first.get_refs(recursive) + self.second.get_refs(recursive)
def getOp(self, syntax=DrtTokens.NLTK):
return DrtTokens.DRS_CONC
def __eq__(self, other):
r"""Defines equality modulo alphabetic variance.
If we are comparing \x.M and \y.N, then check equality of M and N[x/y]."""
if isinstance(other, ConcatenationDRS):
self_refs = self.get_refs()
other_refs = other.get_refs()
if len(self_refs) == len(other_refs):
converted_other = other
for (r1,r2) in zip(self_refs, other_refs):
varex = self.make_VariableExpression(r1)
converted_other = converted_other.replace(r2, varex, True)
return self.first == converted_other.first and \
self.second == converted_other.second
return False
def toFol(self):
return AndExpression(self.first.toFol(), self.second.toFol())
class DrtApplicationExpression(AbstractDrs, ApplicationExpression,
RA.ApplicationExpression):
def toFol(self):
return ApplicationExpression(self.function.toFol(),
self.argument.toFol())
def get_refs(self, recursive=False):
"""@see: AbstractExpression.get_refs()"""
if recursive:
return self.function.get_refs(True) + self.argument.get_refs(True)
else:
return []
class DrsDrawer(object):
BUFFER = 3 #Space between elements
TOPSPACE = 10 #Space above whole DRS
OUTERSPACE = 6 #Space to the left, right, and bottom of the whle DRS
def __init__(self, drs, size_canvas=True, canvas=None):
"""
@param drs: C{AbstractDrs}, The DRS to be drawn
@param size_canvas: C{boolean}, True if the canvas size should be the exact size of the DRS
@param canvas: C{Canvas} The canvas on which to draw the DRS. If none is given, create a new canvas.
"""
self.syntax = DrtTokens.NLTK
master = None
if not canvas:
master = Tk()
master.title("DRT")
font = Font(family='helvetica', size=12)
if size_canvas:
canvas = Canvas(master, width=0, height=0)
canvas.font = font
self.canvas = canvas
(right, bottom) = self._visit(drs, self.OUTERSPACE, self.TOPSPACE)
width = max(right+self.OUTERSPACE, 100)
height = bottom+self.OUTERSPACE
canvas = Canvas(master, width=width, height=height)#, bg='white')
else:
canvas = Canvas(master, width=300, height=300)
canvas.pack()
canvas.font = font
self.canvas = canvas
self.drs = drs
self.master = master
def _get_text_height(self):
"""Get the height of a line of text"""
return self.canvas.font.metrics("linespace")
def draw(self, x=OUTERSPACE, y=TOPSPACE):
"""Draw the DRS"""
self._handle(self.drs, self._draw_command, x, y)
if self.master and not in_idle():
self.master.mainloop()
else:
return self._visit(self.drs, x, y)
def _visit(self, expression, x, y):
"""
Return the bottom-rightmost point without actually drawing the item
@param expression: the item to visit
@param x: the top of the current drawing area
@param y: the left side of the current drawing area
@return: the bottom-rightmost point
"""
return self._handle(expression, self._visit_command, x, y)
def _draw_command(self, item, x, y):
"""
Draw the given item at the given location
@param item: the item to draw
@param x: the top of the current drawing area
@param y: the left side of the current drawing area
@return: the bottom-rightmost point
"""
if isinstance(item, str):
self.canvas.create_text(x, y, anchor='nw', font=self.canvas.font, text=item)
elif isinstance(item, tuple):
# item is the lower-right of a box
(right, bottom) = item
self.canvas.create_rectangle(x, y, right, bottom)
horiz_line_y = y + self._get_text_height() + (self.BUFFER * 2) #the line separating refs from conds
self.canvas.create_line(x, horiz_line_y, right, horiz_line_y)
return self._visit_command(item, x, y)
def _visit_command(self, item, x, y):
"""
Return the bottom-rightmost point without actually drawing the item
@param item: the item to visit
@param x: the top of the current drawing area
@param y: the left side of the current drawing area
@return: the bottom-rightmost point
"""
if isinstance(item, str):
return (x + self.canvas.font.measure(item), y + self._get_text_height())
elif isinstance(item, tuple):
return item
def _handle(self, expression, command, x=0, y=0):
"""
@param expression: the expression to handle
@param command: the function to apply, either _draw_command or _visit_command
@param x: the top of the current drawing area
@param y: the left side of the current drawing area
@return: the bottom-rightmost point
"""
if command == self._visit_command:
#if we don't need to draw the item, then we can use the cached values
try:
#attempt to retrieve cached values
right = expression._drawing_width + x
bottom = expression._drawing_height + y
return (right, bottom)
except AttributeError:
#the values have not been cached yet, so compute them
pass
if isinstance(expression, DrtAbstractVariableExpression):
factory = self._handle_VariableExpression
elif isinstance(expression, DRS):
factory = self._handle_DRS
elif isinstance(expression, DrtNegatedExpression):
factory = self._handle_NegatedExpression
elif isinstance(expression, DrtLambdaExpression):
factory = self._handle_LambdaExpression
elif isinstance(expression, BinaryExpression):
factory = self._handle_BinaryExpression
elif isinstance(expression, DrtApplicationExpression):
factory = self._handle_ApplicationExpression
elif isinstance(expression, RA.PossibleAntecedents):
factory = self._handle_VariableExpression
else:
raise Exception, expression.__class__.__name__
(right, bottom) = factory(expression, command, x, y)
#cache the values
expression._drawing_width = right - x
expression._drawing_height = bottom - y
return (right, bottom)
def _handle_VariableExpression(self, expression, command, x, y):
return command(expression.str(self.syntax), x, y)
def _handle_NegatedExpression(self, expression, command, x, y):
# Find the width of the negation symbol
right = self._visit_command(DrtTokens.NOT[self.syntax], x, y)[0]
# Handle term
(right, bottom) = self._handle(expression.term, command, right, y)
# Handle variables now that we know the y-coordinate
command(DrtTokens.NOT[self.syntax], x, self._get_centered_top(y, bottom - y, self._get_text_height()))
return (right, bottom)
def _handle_DRS(self, expression, command, x, y):
left = x + self.BUFFER #indent the left side
bottom = y + self.BUFFER #indent the top
# Handle Discourse Referents
if expression.refs:
refs = ' '.join([str(ref) for ref in expression.refs])
else:
refs = ' '
(max_right, bottom) = command(refs, left, bottom)
bottom += (self.BUFFER * 2)
# Handle Conditions
if expression.conds:
for cond in expression.conds:
(right, bottom) = self._handle(cond, command, left, bottom)
max_right = max(max_right, right)
bottom += self.BUFFER
else:
bottom += self._get_text_height() + self.BUFFER
# Handle Box
max_right += self.BUFFER
return command((max_right, bottom), x, y)
def _handle_ApplicationExpression(self, expression, command, x, y):
function, args = expression.uncurry()
if not isinstance(function, DrtAbstractVariableExpression):
#It's not a predicate expression ("P(x,y)"), so leave arguments curried
function = expression.function
args = [expression.argument]
# Get the max bottom of any element on the line
function_bottom = self._visit(function, x, y)[1]
max_bottom = max([function_bottom] + [self._visit(arg, x, y)[1] for arg in args])
line_height = max_bottom - y
# Handle 'function'
function_drawing_top = self._get_centered_top(y, line_height, function._drawing_height)
right = self._handle(function, command, x, function_drawing_top)[0]
# Handle open paren
centred_string_top = self._get_centered_top(y, line_height, self._get_text_height())
right = command(DrtTokens.OPEN, right, centred_string_top)[0]
# Handle each arg
for (i,arg) in enumerate(args):
arg_drawing_top = self._get_centered_top(y, line_height, arg._drawing_height)
right = self._handle(arg, command, right, arg_drawing_top)[0]
if i+1 < len(args):
#since it's not the last arg, add a comma
right = command(DrtTokens.COMMA + ' ', right, centred_string_top)[0]
# Handle close paren
right = command(DrtTokens.CLOSE, right, centred_string_top)[0]
return (right, max_bottom)
def _handle_LambdaExpression(self, expression, command, x, y):
# Find the width of the lambda symbol and abstracted variables
variables = DrtTokens.LAMBDA[self.syntax] + str(expression.variable) + DrtTokens.DOT[self.syntax]
right = self._visit_command(variables, x, y)[0]
# Handle term
(right, bottom) = self._handle(expression.term, command, right, y)
# Handle variables now that we know the y-coordinate
command(variables, x, self._get_centered_top(y, bottom - y, self._get_text_height()))
return (right, bottom)
def _handle_BinaryExpression(self, expression, command, x, y):
# Get the full height of the line, based on the operands
first_height = self._visit(expression.first, 0, 0)[1]
second_height = self._visit(expression.second, 0, 0)[1]
line_height = max(first_height, second_height)
# Handle open paren
centred_string_top = self._get_centered_top(y, line_height, self._get_text_height())
right = command(DrtTokens.OPEN, x, centred_string_top)[0]
# Handle the first operand
first_height = expression.first._drawing_height
(right, first_bottom) = self._handle(expression.first, command, right, self._get_centered_top(y, line_height, first_height))
# Handle the operator
right = command(' %s ' % expression.getOp(self.syntax), right, centred_string_top)[0]
# Handle the second operand
second_height = expression.second._drawing_height
(right, second_bottom) = self._handle(expression.second, command, right, self._get_centered_top(y, line_height, second_height))
# Handle close paren
right = command(DrtTokens.CLOSE, right, centred_string_top)[0]
return (right, max(first_bottom, second_bottom))
def _get_centered_top(self, top, full_height, item_height):
"""Get the y-coordinate of the point that a figure should start at if
its height is 'item_height' and it needs to be centered in an area that
starts at 'top' and is 'full_height' tall."""
return top + (full_height - item_height) / 2
class DrtParser(LogicParser):
"""A lambda calculus expression parser."""
def __init__(self):
LogicParser.__init__(self)
def get_all_symbols(self):
"""This method exists to be overridden"""
return DrtTokens.SYMBOLS
def isvariable(self, tok):
return tok not in DrtTokens.TOKENS
def handle(self, tok):
"""This method is intended to be overridden for logics that
use different operators or expressions"""
if tok in DrtTokens.NOT:
return self.handle_negation()
elif tok in DrtTokens.LAMBDA:
return self.handle_lambda(tok)
elif tok == DrtTokens.OPEN:
if self.token(0) == DrtTokens.OPEN_BRACKET:
return self.handle_DRS()
else:
return self.handle_open(tok)
elif tok.upper() == DrtTokens.DRS:
self.assertToken(self.token(), DrtTokens.OPEN)
return self.handle_DRS()
elif self.isvariable(tok):
return self.handle_variable(tok)
def make_NegatedExpression(self, expression):
return DrtNegatedExpression(expression)
def handle_DRS(self):
# a DRS
self.assertToken(self.token(), DrtTokens.OPEN_BRACKET)
refs = []
while self.token(0) != DrtTokens.CLOSE_BRACKET:
# Support expressions like: DRS([x y],C) == DRS([x,y],C)
if self.token(0) == DrtTokens.COMMA:
self.token() # swallow the comma
else:
refs.append(Variable(self.token()))
self.token() # swallow the CLOSE_BRACKET token
if self.token(0) == DrtTokens.COMMA: #if there is a comma (it's optional)
self.token() # swallow the comma
self.assertToken(self.token(), DrtTokens.OPEN_BRACKET)
conds = []
while self.token(0) != DrtTokens.CLOSE_BRACKET:
# Support expressions like: DRS([x y],C) == DRS([x, y],C)
if self.token(0) == DrtTokens.COMMA:
self.token() # swallow the comma
else:
conds.append(self.parse_Expression())
self.token() # swallow the CLOSE_BRACKET token
self.assertToken(self.token(), DrtTokens.CLOSE)
return DRS(refs, conds)
def make_EqualityExpression(self, first, second):
"""This method serves as a hook for other logic parsers that
have different equality expression classes"""
return DrtEqualityExpression(first, second)
def get_BooleanExpression_factory(self, tok):
"""This method serves as a hook for other logic parsers that
have different boolean operators"""
if tok == DrtTokens.DRS_CONC:
return ConcatenationDRS
elif tok in DrtTokens.OR:
return DrtOrExpression
elif tok in DrtTokens.IMP:
return DrtImpExpression
elif tok in DrtTokens.IFF:
return DrtIffExpression
else:
return None
def make_BooleanExpression(self, factory, first, second):
return factory(first, second)
def make_ApplicationExpression(self, function, argument):
return DrtApplicationExpression(function, argument)
def make_VariableExpression(self, name):
return DrtVariableExpression(Variable(name))
def make_LambdaExpression(self, variables, term):
return DrtLambdaExpression(variables, term)
def demo():
print '='*20 + 'TEST PARSE' + '='*20
parser = DrtParser()
print parser.parse(r'([x,y],[sees(x,y)])')
print parser.parse(r'([x],[man(x), walks(x)])')
print parser.parse(r'\x.\y.([],[sees(x,y)])')
print parser.parse(r'\x.([],[walks(x)])(john)')
print parser.parse(r'(([x],[walks(x)]) + ([y],[runs(y)]))')
print parser.parse(r'(([],[walks(x)]) -> ([],[runs(x)]))')
print parser.parse(r'([x],[PRO(x), sees(John,x)])')
print parser.parse(r'([x],[man(x), -([],[walks(x)])])')
print parser.parse(r'([],[(([x],[man(x)]) -> ([],[walks(x)]))])')
print '='*20 + 'Test toFol()' + '='*20
print parser.parse(r'([x,y],[sees(x,y)])').toFol()
print '='*20 + 'Test alpha conversion and lambda expression equality' + '='*20
e1 = parser.parse(r'\x.([],[P(x)])')
print e1
e2 = e1.alpha_convert(Variable('z'))
print e2
print e1 == e2
print '='*20 + 'Test resolve_anaphora()' + '='*20
print parser.parse(r'([x,y,z],[dog(x), cat(y), walks(z), PRO(z)])').resolve_anaphora()
print parser.parse(r'([],[(([x],[dog(x)]) -> ([y],[walks(y), PRO(y)]))])').resolve_anaphora()
print parser.parse(r'(([x,y],[]) + ([],[PRO(x)]))').resolve_anaphora()
def test_draw():
expressions = [
r'x',
r'([],[])',
r'([x],[])',
r'([x],[man(x)])',
r'([x,y],[sees(x,y)])',
r'([x],[man(x), walks(x)])',
r'\x.([],[man(x), walks(x)])',
r'\x y.([],[sees(x,y)])',
r'([],[(([],[walks(x)]) + ([],[runs(x)]))])',
r'([x],[man(x), -([],[walks(x)])])',
r'([],[(([x],[man(x)]) -> ([],[walks(x)]))])'
]
for e in expressions:
d = DrtParser().parse(e)
d.draw()
if __name__ == '__main__':
demo()
|