File: logic.py

package info (click to toggle)
w3af 1.0-rc3svn3489-1
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd, squeeze, wheezy
  • size: 59,908 kB
  • ctags: 16,916
  • sloc: python: 136,990; xml: 63,472; sh: 153; ruby: 94; makefile: 40; asm: 35; jsp: 32; perl: 18; php: 5
file content (1542 lines) | stat: -rw-r--r-- 55,327 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
# Natural Language Toolkit: Logic
#
# Author: Dan Garrette <dhgarrette@gmail.com>
#
# URL: <http://www.nltk.org>
# For license information, see LICENSE.TXT

"""
A version of first order predicate logic, built on 
top of the typed lambda calculus.
"""

import re
import operator

from nltk import defaultdict
from nltk.internals import Counter

_counter = Counter()

class Tokens(object):
    # Syntaxes
    OLD_NLTK = 0
    NLTK = 1
    PROVER9  = 2
    
    
    LAMBDA = ['\\', '\\', '\\']
    
    #Quantifiers
    EXISTS = ['some', 'exists', 'exists']
    ALL = ['all', 'all', 'all']
    
    #Punctuation
    DOT = ['.', '.', ' ']
    OPEN = '('
    CLOSE = ')'
    COMMA = ','
    
    #Operations
    NOT = ['not', '-', '-']
    AND = ['and', '&', '&']
    OR = ['or', '|', '|']
    IMP = ['implies', '->', '->']
    IFF = ['iff', '<->', '<->']
    EQ = ['=', '=', '=']
    NEQ = ['!=', '!=', '!=']
    
    #Collection of tokens
    BINOPS = AND + OR + IMP + IFF
    QUANTS = EXISTS + ALL
    PUNCT = [DOT[NLTK], OPEN, CLOSE, COMMA]
    
    TOKENS = BINOPS + EQ + NEQ + QUANTS + LAMBDA + PUNCT + NOT
    
    #Special
    SYMBOLS = LAMBDA + PUNCT + EQ + NEQ + \
              [AND[NLTK], OR[NLTK], NOT[NLTK], IMP[NLTK], IFF[NLTK]]
               

def boolean_ops():
    """
    Boolean operators
    """
    names =  ["negation", "conjunction", "disjunction", "implication", "equivalence"]
    for pair in zip(names, [Tokens.NOT[Tokens.NLTK], 
                            Tokens.AND[Tokens.NLTK], 
                            Tokens.OR[Tokens.NLTK], 
                            Tokens.IMP[Tokens.NLTK], 
                            Tokens.IFF[Tokens.NLTK]]):
        print "%-15s\t%s" %  pair
        
def equality_preds():
    """
    Equality predicates
    """
    names =  ["equality", "inequality"]
    for pair in zip(names, [Tokens.EQ[Tokens.NLTK], 
                            Tokens.NEQ[Tokens.NLTK]]):
        print "%-15s\t%s" %  pair        
                    
def binding_ops():
    """
    Binding operators
    """
    names =  ["existential", "universal", "lambda"]
    for pair in zip(names, [Tokens.EXISTS[Tokens.NLTK], 
                            Tokens.ALL[Tokens.NLTK],
                            Tokens.LAMBDA[Tokens.NLTK]]):
        print "%-15s\t%s" %  pair


class Variable(object):
    def __init__(self, name):
        """
        @param name: the name of the variable
        """
        assert isinstance(name, str), "%s is not a string" % name
        self.name = name

    def __eq__(self, other):
        return isinstance(other, Variable) and self.name == other.name
    
    def __neq__(self, other):
        return not (self == other)

    def __cmp__(self, other):
        assert isinstance(other, Variable), "%s is not a Variable" % other
        if self.name == other.name:
            return 0
        elif self.name < other.name:
            return -1
        else:
            return 1

    def substitute_bindings(self, bindings):
        return bindings.get(self, self)

    def __hash__(self):
        return hash(self.name)

    def __str__(self):
        return self.name

    def __repr__(self):
        return 'Variable(\'' + self.name + '\')'


def unique_variable(pattern=None):
    """
    param pattern: C{Variable} that is being replaced.  The new variable must
    be the same type.
    """
    if pattern is not None and is_eventvar(pattern.name):
        prefix = 'e0'
    else:
        prefix = 'z'
    return Variable(prefix + str(_counter.get()))

def skolem_function(univ_scope=None):
    """
    Return a skolem function over the variables in univ_scope
    param univ_scope
    """
    skolem = VariableExpression(Variable('F%s' % _counter.get()))
    if univ_scope:
        for v in list(univ_scope):
            skolem = skolem(VariableExpression(v))
    return skolem


class Type:
    def __repr__(self):
        return str(self)
    
    def __hash__(self):
        return hash(str(self))
    
class ComplexType(Type):
    def __init__(self, first, second):
        assert(isinstance(first, Type)), "%s is not a Type" % first
        assert(isinstance(second, Type)), "%s is not a Type" % second
        self.first = first
        self.second = second
    
    def __eq__(self, other):
        return isinstance(other, ComplexType) and \
               self.first == other.first and \
               self.second == other.second
    
    def matches(self, other):
        if isinstance(other, ComplexType):
            return self.first.matches(other.first) and \
                   self.second.matches(other.second)
        else:
            return self == ANY_TYPE
               
    def resolve(self, other):
        if other == ANY_TYPE:
           return self
        elif isinstance(other, ComplexType):
            f = self.first.resolve(other.first)
            s = self.second.resolve(other.second)
            if f and s:
                return ComplexType(f,s)
            else:
                return None
        elif self == ANY_TYPE:
            return other
        else:
            return None

    def __str__(self):
        if self == ANY_TYPE:
            return str(ANY_TYPE)
        else:
            return '<%s,%s>' % (self.first, self.second)

    def str(self):
        if self == ANY_TYPE:
            return ANY_TYPE.str()
        else:
            return '(%s -> %s)' % (self.first.str(), self.second.str())
    
class BasicType(Type):
    def __eq__(self, other):
        return isinstance(other, BasicType) and str(self) == str(other)
    
    def matches(self, other):
        return other == ANY_TYPE or self == other
    
    def resolve(self, other):
        if self.matches(other):
            return self
        else:
            return None

class EntityType(BasicType):
    def __str__(self):
        return 'e'
    
    def str(self):
        return 'IND'
    
class TruthValueType(BasicType):
    def __str__(self):
        return 't'

    def str(self):
        return 'BOOL'
    
class EventType(BasicType):
    def __str__(self):
        return 'v'

    def str(self):
        return 'EVENT'
    
class AnyType(BasicType, ComplexType):
    def __init__(self):
        pass
    
    first = property(lambda self: self)
    second = property(lambda self: self)
    
    def __eq__(self, other):
        return isinstance(other, AnyType) or other == self
    
    def matches(self, other):
        return True
    
    def resolve(self, other):
        return other

    def __str__(self):
        return '?'

    def str(self):
        return 'ANY'
    

TRUTH_TYPE = TruthValueType()
ENTITY_TYPE = EntityType()
EVENT_TYPE = EventType()
ANY_TYPE = AnyType()


def parse_type(type_string):
    assert isinstance(type_string, str)
    type_string = type_string.replace(' ', '') #remove spaces
    
    if type_string[0] == '<':
        assert type_string[-1] == '>'
        paren_count = 0
        for i,char in enumerate(type_string):
            if char == '<':
                paren_count += 1
            elif char == '>':
                paren_count -= 1
                assert paren_count > 0
            elif char == ',':
                if paren_count == 1:
                    break
        return ComplexType(parse_type(type_string[1  :i ]),
                           parse_type(type_string[i+1:-1]))
    elif type_string[0] == str(ENTITY_TYPE):
        return ENTITY_TYPE
    elif type_string[0] == str(TRUTH_TYPE):
        return TRUTH_TYPE
    elif type_string[0] == str(ANY_TYPE):
        return ANY_TYPE
    else:
        raise ParseException("Unexpected character: '%s'." % type_string[0])


class TypeException(Exception):
    def __init__(self, msg):
        Exception.__init__(self, msg)
    
class InconsistentTypeHierarchyException(TypeException):
    def __init__(self, variable, expression=None):
        if expression:
            msg = "The variable \'%s\' was found in multiple places with different"\
                " types in \'%s\'." % (variable, expression)
        else:
            msg = "The variable \'%s\' was found in multiple places with different"\
                " types." % (variable)
        Exception.__init__(self, msg)

class TypeResolutionException(TypeException):
    def __init__(self, expression, other_type):
        Exception.__init__(self, "The type of '%s', '%s', cannot be "
                           "resolved with type '%s'" % \
                           (expression, expression.type, other_type))

class IllegalTypeException(TypeException):
    def __init__(self, expression, other_type, allowed_type):
        Exception.__init__(self, "Cannot set type of %s '%s' to '%s'; "
                           "must match type '%s'." % 
                           (expression.__class__.__name__, expression, 
                            other_type, allowed_type))


def typecheck(expressions, signature=None):
    """
    Ensure correct typing across a collection of C{Expression}s.
    @param expressions: a collection of expressions
    @param signature: C{dict} that maps variable names to types (or string 
    representations of types)
    """
    #typecheck and create master signature
    for expression in expressions:
        signature = expression.typecheck(signature)
    #apply master signature to all expressions 
    for expression in expressions[:-1]:
        expression.typecheck(signature)
    return signature


class SubstituteBindingsI(object):
    """
    An interface for classes that can perform substitutions for
    variables.
    """
    def substitute_bindings(self, bindings):
        """
        @return: The object that is obtained by replacing
        each variable bound by C{bindings} with its values.
        Aliases are already resolved. (maybe?)
        @rtype: (any)
        """
        raise NotImplementedError()

    def variables(self):
        """
        @return: A list of all variables in this object.
        """
        raise NotImplementedError()


class Expression(SubstituteBindingsI):
    """This is the base abstract object for all logical expressions"""
    def __call__(self, other, *additional):
        accum = self.applyto(other)
        for a in additional:
            accum = accum(a)
        return accum
    
    def applyto(self, other):
        assert isinstance(other, Expression), "%s is not an Expression" % other
        return ApplicationExpression(self, other)
    
    def __neg__(self):
        return NegatedExpression(self)
    
    def negate(self):
        """If this is a negated expression, remove the negation.  
        Otherwise add a negation."""
        return -self
    
    def __and__(self, other):
        assert isinstance(other, Expression), "%s is not an Expression" % other
        return AndExpression(self, other)
    
    def __or__(self, other):
        assert isinstance(other, Expression), "%s is not an Expression" % other
        return OrExpression(self, other)
    
    def __gt__(self, other):
        assert isinstance(other, Expression), "%s is not an Expression" % other
        return ImpExpression(self, other)
    
    def __lt__(self, other):
        assert isinstance(other, Expression), "%s is not an Expression" % other
        return IffExpression(self, other)
    
    def __eq__(self, other):
        raise NotImplementedError()
    
    def __neq__(self, other):
        return not (self == other)
    
    def tp_equals(self, other, prover=None):
        """Pass the expression (self <-> other) to the theorem prover.   
        If the prover says it is valid, then the self and other are equal."""
        assert isinstance(other, Expression), "%s is not an Expression" % other
        
        if prover is None:
            from nltk.inference import Prover9
            prover = Prover9()
        bicond = IffExpression(self.simplify(), other.simplify())
        return prover.prove(bicond)

    def __hash__(self):
        return hash(repr(self))
    
    def substitute_bindings(self, bindings):
        expr = self
        for var in expr.variables():
            if var in bindings:
                val = bindings[var]
                if isinstance(val, Variable):
                    val = VariableExpression(val)
                elif not isinstance(val, Expression):
                    raise ValueError('Can not substitute a non-expression '
                                     'value into an expression: %r' % (val,))
                # Substitute bindings in the target value.
                val = val.substitute_bindings(bindings)
                # Replace var w/ the target value.
                expr = expr.replace(var, val)
        return expr.simplify()

    def typecheck(self, signature=None):
        """
        Infer and check types.  Raise exceptions if necessary.
        @param signature: C{dict} that maps variable names to types (or string 
        representations of types)
        @return: the signature, plus any additional type mappings 
        """
        sig = defaultdict(list)
        if signature:
            for (key, val) in signature.iteritems():
                varEx = VariableExpression(Variable(key))
                if isinstance(val, Type):
                    varEx.type = val
                else:
                    varEx.type = parse_type(val)
                sig[key].append(varEx)

        self._set_type(signature=sig)
        
        return dict([(key, vars[0].type) for (key, vars) in sig.iteritems()])
    
    def findtype(self, variable):
        """
        Find the type of the given variable as it is used in this expression.
        For example, finding the type of "P" in "P(x) & Q(x,y)" yields "<e,t>"
        @param variable: C{Variable}  
        """
        raise NotImplementedError() 
    
    def _set_type(self, other_type=ANY_TYPE, signature=None):
        """
        Set the type of this expression to be the given type.  Raise type 
        exceptions where applicable.
        @param other_type: C{Type} to set
        @param signature: C{dict<str, list<AbstractVariableExpression>>} store 
        all variable expressions with a given name
        """
        raise NotImplementedError()
    
    def replace(self, variable, expression, replace_bound=False):
        """
        Replace every instance of 'variable' with 'expression'
        @param variable: C{Variable} The variable to replace
        @param expression: C{Expression} The expression with which to replace it
        @param replace_bound: C{boolean} Should bound variables be replaced?  
        """
        assert isinstance(variable, Variable), "%s is not a Variable" % variable
        assert isinstance(expression, Expression), "%s is not an Expression" % expression

        def combinator(a, *additional):
            if len(additional) == 0:
                return self.__class__(a)
            elif len(additional) == 1:
                return self.__class__(a, additional[0])
        
        return self.visit(lambda e: e.replace(variable, expression, replace_bound), 
                          combinator, set())
    
    def normalize(self):
        """Rename auto-generated unique variables"""
        def f(e):
            if isinstance(e,Variable):
                if re.match(r'^z\d+$', e.name) or re.match(r'^e0\d+$', e.name):
                    return set([e])
                else:
                    return set([])
            else: 
                combinator = lambda *parts: reduce(operator.or_, parts)
                return e.visit(f, combinator, set())
        
        result = self
        for i,v in enumerate(sorted(list(f(self)))):
            if is_eventvar(v.name):
                newVar = 'e0%s' % (i+1)
            else:
                newVar = 'z%s' % (i+1)
            result = result.replace(v, VariableExpression(Variable(newVar)), True)
        return result
    
    def visit(self, function, combinator, default):
        """
        Recursively visit sub expressions
        @param function: C{Function} to call on each sub expression
        @param combinator: C{Function} to combine the results of the 
        function calls
        @return: result of combination
        """
        raise NotImplementedError()

    def __repr__(self):
        return '<%s %s>' % (self.__class__.__name__, self)
    
    def __str__(self):
        return self.str()

    def variables(self):
        """
        Return a set of all the variables that are available to be replaced.
        This includes free (non-bound) variables as well as predicates.
        @return: C{set} of C{Variable}s
        """
        return self.visit(lambda e: isinstance(e,Variable) and 
                          set([e]) or e.variables(), 
                          lambda *parts: reduce(operator.or_, parts), set())

    def free(self, indvar_only=True):
        """
        Return a set of all the free (non-bound) variables in self.  Variables
        serving as predicates are not included.
        @param indvar_only: C{boolean} only return individual variables?
        @return: C{set} of C{Variable}s
        """
        return self.visit(lambda e: isinstance(e,Variable) and 
                          set([e]) or e.free(indvar_only), 
                          lambda *parts: reduce(operator.or_, parts), set())

    def simplify(self):
        """
        @return: beta-converted version of this expression
        """
        def combinator(a, *additional):
            if len(additional) == 0:
                return self.__class__(a)
            elif len(additional) == 1:
                return self.__class__(a, additional[0])
        
        return self.visit(lambda e: isinstance(e,Variable) 
                          and e or e.simplify(), combinator, set())


class ApplicationExpression(Expression):
    r"""
    This class is used to represent two related types of logical expressions.
    
    The first is a Predicate Expression, such as "P(x,y)".  A predicate 
    expression is comprised of a C{FunctionVariableExpression} or 
    C{ConstantExpression} as the predicate and a list of Expressions as the 
    arguments.
    
    The second is a an application of one expression to another, such as 
    "(\x.dog(x))(fido)".
    
    The reason Predicate Expressions are treated as Application Expressions is
    that the Variable Expression predicate of the expression may be replaced 
    with another Expression, such as a LambdaExpression, which would mean that 
    the Predicate should be thought of as being applied to the arguments.
    
    The LogicParser will always curry arguments in a application expression.
    So, "\x y.see(x,y)(john,mary)" will be represented internally as 
    "((\x y.(see(x))(y))(john))(mary)".  This simplifies the internals since 
    there will always be exactly one argument in an application.
    
    The str() method will usually print the curried forms of application 
    expressions.  The one exception is when the the application expression is
    really a predicate expression (ie, underlying function is an 
    C{AbstractVariableExpression}).  This means that the example from above  
    will be returned as "(\x y.see(x,y)(john))(mary)".
    """
    def __init__(self, function, argument):
        """
        @param function: C{Expression}, for the function expression
        @param argument: C{Expression}, for the argument   
        """
        assert isinstance(function, Expression), "%s is not an Expression" % function
        assert isinstance(argument, Expression), "%s is not an Expression" % argument
        self.function = function
        self.argument = argument
        
    def simplify(self):
        function = self.function.simplify()
        argument = self.argument.simplify()
        if isinstance(function, LambdaExpression):
            return function.term.replace(function.variable, argument).simplify()
        else:
            return self.__class__(function, argument)
        
    def free(self, indvar_only=True):
        """@see: Expression.free()"""
        if isinstance(self.function, AbstractVariableExpression):
            return self.argument.free(indvar_only)
        else:
            return self.function.free(indvar_only) | \
                   self.argument.free(indvar_only) 
    
    def _get_type(self):
        if isinstance(self.function.type, ComplexType):
            return self.function.type.second
        else:
            return ANY_TYPE
            
    type = property(_get_type)
    
    def _set_type(self, other_type=ANY_TYPE, signature=None):
        """@see Expression._set_type()"""
        assert isinstance(other_type, Type)
        
        if signature == None:
            signature = defaultdict(list)
        
        self.argument._set_type(ANY_TYPE, signature)
        try:
            self.function._set_type(ComplexType(self.argument.type, other_type), signature)
        except TypeResolutionException, e:
            raise TypeException(
                    "The function '%s' is of type '%s' and cannot be applied " 
                    "to '%s' of type '%s'.  Its argument must match type '%s'."
                    % (self.function, self.function.type, self.argument, 
                       self.argument.type, self.function.type.first))

    def findtype(self, variable):
        """@see Expression.findtype()"""
        assert isinstance(variable, Variable), "%s is not a Variable" % variable
        function, args = self.uncurry()
        if not isinstance(function, AbstractVariableExpression):
            #It's not a predicate expression ("P(x,y)"), so leave args curried
            function = self.function
            args = [self.argument]
        
        found = [arg.findtype(variable) for arg in [function]+args]
        
        unique = []
        for f in found:
            if f != ANY_TYPE:
                if unique:
                    for u in unique:
                        if f.matches(u):
                            break
                else:
                    unique.append(f)
            
        if len(unique) == 1:
            return list(unique)[0]
        else:
            return ANY_TYPE
        
    def visit(self, function, combinator, default):
        """@see: Expression.visit()"""
        return combinator(function(self.function), function(self.argument))
        
    def __eq__(self, other):
        return isinstance(other, ApplicationExpression) and \
                self.function == other.function and \
                self.argument == other.argument 

    def str(self, syntax=Tokens.NLTK):
        # uncurry the arguments and find the base function
        function, args = self.uncurry()
        if isinstance(function, AbstractVariableExpression):
            #It's a predicate expression ("P(x,y)"), so uncurry arguments
            arg_str = ','.join([arg.str(syntax) for arg in args])
        else:
            #Leave arguments curried
            function = self.function
            arg_str = self.argument.str(syntax)
        
        function_str = function.str(syntax)
        parenthesize_function = False
        if isinstance(function, LambdaExpression):
            if isinstance(function.term, ApplicationExpression):
                if not isinstance(function.term.function, 
                                  AbstractVariableExpression):
                    parenthesize_function = True
            elif not isinstance(function.term, BooleanExpression):
                parenthesize_function = True
        elif isinstance(function, ApplicationExpression):
            parenthesize_function = True
                
        if parenthesize_function:
            function_str = Tokens.OPEN + function_str + Tokens.CLOSE
            
        return function_str + Tokens.OPEN + arg_str + Tokens.CLOSE

    def uncurry(self):
        """
        Uncurry this application expression
        
        return: A tuple (base-function, arg-list)
        """
        function = self.function
        args = [self.argument]
        while isinstance(function, ApplicationExpression):
            #(\x.\y.sees(x,y)(john))(mary)
            args.insert(0, function.argument)
            function = function.function
        return (function, args)
    
    args = property(lambda self: self.uncurry()[1], doc="uncurried arg-list")

class AbstractVariableExpression(Expression):
    """This class represents a variable to be used as a predicate or entity"""
    def __init__(self, variable):
        """
        @param variable: C{Variable}, for the variable
        """
        assert isinstance(variable, Variable), "%s is not a Variable" % variable
        self.variable = variable

    def simplify(self):
        return self

    def replace(self, variable, expression, replace_bound=False):
        """@see: Expression.replace()"""
        assert isinstance(variable, Variable), "%s is not an Variable" % variable
        assert isinstance(expression, Expression), "%s is not an Expression" % expression
        if self.variable == variable:
            return expression
        else:
            return self
    
    def _set_type(self, other_type=ANY_TYPE, signature=None):
        """@see Expression._set_type()"""
        assert isinstance(other_type, Type)
        
        if signature == None:
            signature = defaultdict(list)
        
        resolution = other_type
        for varEx in signature[self.variable.name]:
            resolution = varEx.type.resolve(resolution)
            if not resolution:
                raise InconsistentTypeHierarchyException(self)
            
        signature[self.variable.name].append(self)
        for varEx in signature[self.variable.name]:
            varEx.type = resolution

    def findtype(self, variable):
        """@see Expression.findtype()"""
        assert isinstance(variable, Variable), "%s is not a Variable" % variable
        if self.variable == variable:
            return self.type
        else:
            return ANY_TYPE

    def visit(self, function, combinator, default):
        """@see: Expression.visit()"""
        return combinator(function(self.variable))

    def __eq__(self, other):
        """Allow equality between instances of C{AbstractVariableExpression} 
        subtypes."""
        return isinstance(other, AbstractVariableExpression) and \
               self.variable == other.variable
        
    def str(self, syntax=Tokens.NLTK):
        return str(self.variable)
    
    
class IndividualVariableExpression(AbstractVariableExpression):
    """This class represents variables that take the form of a single lowercase
    character (other than 'e') followed by zero or more digits."""
    def _set_type(self, other_type=ANY_TYPE, signature=None):
        """@see Expression._set_type()"""
        assert isinstance(other_type, Type)
        
        if signature == None:
            signature = defaultdict(list)

        if not other_type.matches(ENTITY_TYPE):
            raise IllegalTypeException(self, other_type, ENTITY_TYPE)
            
        signature[self.variable.name].append(self)
                
    type = property(lambda self: ENTITY_TYPE, _set_type)

class FunctionVariableExpression(AbstractVariableExpression):
    """This class represents variables that take the form of a single uppercase
    character followed by zero or more digits."""
    type = ANY_TYPE

    def free(self, indvar_only=True):
        """@see: Expression.free()"""
        if not indvar_only: 
            return set([self.variable])
        else: 
            return set()
    
class EventVariableExpression(IndividualVariableExpression):
    """This class represents variables that take the form of a single lowercase
    'e' character followed by zero or more digits."""
    type = EVENT_TYPE

class ConstantExpression(AbstractVariableExpression):
    """This class represents variables that do not take the form of a single
    character followed by zero or more digits."""
    type = ENTITY_TYPE

    def _set_type(self, other_type=ANY_TYPE, signature=None):
        """@see Expression._set_type()"""
        assert isinstance(other_type, Type)
        
        if signature == None:
            signature = defaultdict(list)
        
        if other_type == ANY_TYPE:
            #entity type by default, for individuals
            resolution = ENTITY_TYPE
        else:
            resolution = other_type
            if self.type != ENTITY_TYPE:
                resolution = resolution.resolve(self.type)
            
        for varEx in signature[self.variable.name]:
            resolution = varEx.type.resolve(resolution)
            if not resolution:
                raise InconsistentTypeHierarchyException(self)
            
        signature[self.variable.name].append(self)
        for varEx in signature[self.variable.name]:
            varEx.type = resolution

    def free(self, indvar_only=True):
        """@see: Expression.free()"""
        if not indvar_only: 
            return set([self.variable])
        else: 
            return set()


def VariableExpression(variable):
    """
    This is a factory method that instantiates and returns a subtype of 
    C{AbstractVariableExpression} appropriate for the given variable.
    """
    assert isinstance(variable, Variable), "%s is not a Variable" % variable
    if is_indvar(variable.name):
        return IndividualVariableExpression(variable)
    elif is_funcvar(variable.name):
        return FunctionVariableExpression(variable)
    elif is_eventvar(variable.name):
        return EventVariableExpression(variable)
    else:
        return ConstantExpression(variable)

    
class VariableBinderExpression(Expression):
    """This an abstract class for any Expression that binds a variable in an
    Expression.  This includes LambdaExpressions and Quantified Expressions"""
    def __init__(self, variable, term):
        """
        @param variable: C{Variable}, for the variable
        @param term: C{Expression}, for the term
        """
        assert isinstance(variable, Variable), "%s is not a Variable" % variable
        assert isinstance(term, Expression), "%s is not an Expression" % term
        self.variable = variable
        self.term = term

    def replace(self, variable, expression, replace_bound=False):
        """@see: Expression.replace()"""
        assert isinstance(variable, Variable), "%s is not a Variable" % variable
        assert isinstance(expression, Expression), "%s is not an Expression" % expression
        #if the bound variable is the thing being replaced
        if self.variable == variable:
            if replace_bound: 
                assert isinstance(expression, AbstractVariableExpression),\
                       "%s is not a AbstractVariableExpression" % expression
                return self.__class__(expression.variable, 
                                      self.term.replace(variable, expression, True))
            else: 
                return self
        else:
            # if the bound variable appears in the expression, then it must
            # be alpha converted to avoid a conflict
            if self.variable in expression.free():
                self = self.alpha_convert(unique_variable(self.variable))
                
            #replace in the term
            return self.__class__(self.variable,
                                  self.term.replace(variable, expression, replace_bound))

    def alpha_convert(self, newvar):
        """Rename all occurrences of the variable introduced by this variable
        binder in the expression to @C{newvar}.
        @param newvar: C{Variable}, for the new variable
        """
        assert isinstance(newvar, Variable), "%s is not a Variable" % newvar
        return self.__class__(newvar, 
                              self.term.replace(self.variable, 
                                                VariableExpression(newvar), 
                                                True))

    def variables(self):
        """@see: Expression.variables()"""
        return self.term.variables() - set([self.variable])

    def free(self, indvar_only=True):
        """@see: Expression.free()"""
        return self.term.free(indvar_only) - set([self.variable])

    def findtype(self, variable):
        """@see Expression.findtype()"""
        assert isinstance(variable, Variable), "%s is not a Variable" % variable
        if variable == self.variable:
            return ANY_TYPE
        else:
            return self.term.findtype(variable)

    def visit(self, function, combinator, default):
        """@see: Expression.visit()"""
        return combinator(function(self.variable), function(self.term))
        
    def __eq__(self, other):
        r"""Defines equality modulo alphabetic variance.  If we are comparing 
        \x.M  and \y.N, then check equality of M and N[x/y]."""
        if isinstance(self, other.__class__) or \
           isinstance(other, self.__class__):
            if self.variable == other.variable:
                return self.term == other.term
            else:
                # Comparing \x.M  and \y.N.  Relabel y in N with x and continue.
                varex = VariableExpression(self.variable)
                return self.term == other.term.replace(other.variable, varex)
        else:
            return False


class LambdaExpression(VariableBinderExpression):
    type = property(lambda self: 
                    ComplexType(self.term.findtype(self.variable), 
                                self.term.type))

    def _set_type(self, other_type=ANY_TYPE, signature=None):
        """@see Expression._set_type()"""
        assert isinstance(other_type, Type)
        
        if signature == None:
            signature = defaultdict(list)
        
        self.term._set_type(other_type.second, signature)
        if not self.type.resolve(other_type):
            raise TypeResolutionException(self, other_type)

    def str(self, syntax=Tokens.NLTK):
        variables = [self.variable]
        term = self.term
        if syntax != Tokens.PROVER9:
            while term.__class__ == self.__class__:
                variables.append(term.variable)
                term = term.term
        return Tokens.LAMBDA[syntax] + ' '.join(str(v) for v in variables) + \
               Tokens.DOT[syntax] + term.str(syntax)


class QuantifiedExpression(VariableBinderExpression):
    type = property(lambda self: TRUTH_TYPE)

    def _set_type(self, other_type=ANY_TYPE, signature=None):
        """@see Expression._set_type()"""
        assert isinstance(other_type, Type)
        
        if signature == None:
            signature = defaultdict(list)
        
        if not other_type.matches(TRUTH_TYPE):
            raise IllegalTypeException(self, other_type, TRUTH_TYPE)
        self.term._set_type(TRUTH_TYPE, signature)

    def str(self, syntax=Tokens.NLTK):
        variables = [self.variable]
        term = self.term
        if syntax != Tokens.PROVER9:
            while term.__class__ == self.__class__:
                variables.append(term.variable)
                term = term.term
        return self.getQuantifier(syntax) + ' ' + \
               ' '.join(str(v) for v in variables) + \
               Tokens.DOT[syntax] + term.str(syntax)
        
class ExistsExpression(QuantifiedExpression):
    def getQuantifier(self, syntax=Tokens.NLTK):
        return Tokens.EXISTS[syntax]

class AllExpression(QuantifiedExpression):
    def getQuantifier(self, syntax=Tokens.NLTK):
        return Tokens.ALL[syntax]


class NegatedExpression(Expression):
    def __init__(self, term):
        assert isinstance(term, Expression), "%s is not an Expression" % term
        self.term = term
        
    type = property(lambda self: TRUTH_TYPE)
    
    def _set_type(self, other_type=ANY_TYPE, signature=None):
        """@see Expression._set_type()"""
        assert isinstance(other_type, Type)
        
        if signature == None:
            signature = defaultdict(list)
        
        if not other_type.matches(TRUTH_TYPE):
            raise IllegalTypeException(self, other_type, TRUTH_TYPE)
        self.term._set_type(TRUTH_TYPE, signature)

    def findtype(self, variable):
        assert isinstance(variable, Variable), "%s is not a Variable" % variable
        return self.term.findtype(variable)
        
    def visit(self, function, combinator, default):
        """@see: Expression.visit()"""
        return combinator(function(self.term))
        
    def negate(self):
        """@see: Expression.negate()"""
        return self.term
    
    def __eq__(self, other):
        return isinstance(other, NegatedExpression) and self.term == other.term

    def str(self, syntax=Tokens.NLTK):
        if syntax == Tokens.PROVER9:
            return Tokens.NOT[syntax] + Tokens.OPEN + self.term.str(syntax) +\
                   Tokens.CLOSE
        else:
            return Tokens.NOT[syntax] + self.term.str(syntax)
        
        
class BinaryExpression(Expression):
    def __init__(self, first, second):
        assert isinstance(first, Expression), "%s is not an Expression" % first
        assert isinstance(second, Expression), "%s is not an Expression" % second
        self.first = first
        self.second = second

    type = property(lambda self: TRUTH_TYPE)
    
    def findtype(self, variable):
        """@see Expression.findtype()"""
        assert isinstance(variable, Variable), "%s is not a Variable" % variable
        f = self.first.findtype(variable)
        s = self.second.findtype(variable)
        if f == s or s == ANY_TYPE:
            return f
        elif f == ANY_TYPE:
            return s
        else:
            return ANY_TYPE

    def visit(self, function, combinator, default):
        """@see: Expression.visit()"""
        return combinator(function(self.first), function(self.second))
        
    def __eq__(self, other):
        return (isinstance(self, other.__class__) or \
                isinstance(other, self.__class__)) and \
               self.first == other.first and self.second == other.second

    def str(self, syntax=Tokens.NLTK):
        return Tokens.OPEN + self.first.str(syntax) + ' ' + self.getOp(syntax) \
                + ' ' + self.second.str(syntax) + Tokens.CLOSE
        
        
class BooleanExpression(BinaryExpression):
    def _set_type(self, other_type=ANY_TYPE, signature=None):
        """@see Expression._set_type()"""
        assert isinstance(other_type, Type)
        
        if signature == None:
            signature = defaultdict(list)
        
        if not other_type.matches(TRUTH_TYPE):
            raise IllegalTypeException(self, other_type, TRUTH_TYPE)
        self.first._set_type(TRUTH_TYPE, signature)
        self.second._set_type(TRUTH_TYPE, signature)

class AndExpression(BooleanExpression):
    """This class represents conjunctions"""
    def getOp(self, syntax=Tokens.NLTK):
        return Tokens.AND[syntax]

class OrExpression(BooleanExpression):
    """This class represents disjunctions"""
    def getOp(self, syntax=Tokens.NLTK):
        return Tokens.OR[syntax]

class ImpExpression(BooleanExpression):
    """This class represents implications"""
    def getOp(self, syntax=Tokens.NLTK):
        return Tokens.IMP[syntax]

class IffExpression(BooleanExpression):
    """This class represents biconditionals"""
    def getOp(self, syntax=Tokens.NLTK):
        return Tokens.IFF[syntax]


class EqualityExpression(BinaryExpression):
    """This class represents equality expressions like "(x = y)"."""
    def _set_type(self, other_type=ANY_TYPE, signature=None):
        """@see Expression._set_type()"""
        assert isinstance(other_type, Type)
        
        if signature == None:
            signature = defaultdict(list)
        
        if not other_type.matches(TRUTH_TYPE):
            raise IllegalTypeException(self, other_type, TRUTH_TYPE)
        self.first._set_type(ENTITY_TYPE, signature)
        self.second._set_type(ENTITY_TYPE, signature)

    def getOp(self, syntax=Tokens.NLTK):
        return Tokens.EQ[syntax]


class LogicParser(object):
    """A lambda calculus expression parser."""

    def __init__(self, type_check=False):
        """
        @param type_check: C{boolean} should type checking be performed?
        to their types.
        """
        assert isinstance(type_check, bool)
        
        self._currentIndex = 0
        self._buffer = []
        self.type_check = type_check

    def parse(self, data, signature=None):
        """
        Parse the expression.

        @param data: C{str} for the input to be parsed
        @param signature: C{dict<str, str>} that maps variable names to type 
        strings
        @returns: a parsed Expression
        """
        self._currentIndex = 0
        self._buffer = self.process(data).split()

        result = self.parse_Expression()
        if self.inRange(0):
            raise UnexpectedTokenException(self.token(0))

        if self.type_check:
            result.typecheck(signature)

        return result

    def process(self, data):
        """Put whitespace between symbols to make parsing easier"""
        out = ''
        tokenTrie = StringTrie(self.get_all_symbols())
        while data:
            st = tokenTrie
            c = data[0]
            token = ''
            while c in st:
                token += c
                st = st[c]
                if len(data) > len(token):
                    c = data[len(token)]
                else:
                    break
            if StringTrie.LEAF in st: 
                #token is a complete symbol
                out += ' '+token+' '
                data = data[len(token):]
            else:
                out += data[0]
                data = data[1:]
        return out

    def get_all_symbols(self):
        """This method exists to be overridden"""
        return Tokens.SYMBOLS

    def inRange(self, location):
        """Return TRUE if the given location is within the buffer"""
        return self._currentIndex+location < len(self._buffer)

    def token(self, location=None):
        """Get the next waiting token.  If a location is given, then 
        return the token at currentIndex+location without advancing
        currentIndex; setting it gives lookahead/lookback capability."""
        try:
            if location == None:
                tok = self._buffer[self._currentIndex]
                self._currentIndex += 1
            else:
                tok = self._buffer[self._currentIndex+location]
            return tok
        except IndexError:
            raise ParseException, 'More tokens expected.'

    def isvariable(self, tok):
        return tok not in Tokens.TOKENS
    
    def parse_Expression(self, allow_adjuncts=True):
        """Parse the next complete expression from the stream and return it."""
        tok = self.token()
        
        accum = self.handle(tok)
        
        if not accum:
            raise UnexpectedTokenException(tok)
        
        if allow_adjuncts:
            accum = self.attempt_ApplicationExpression(accum)
            accum = self.attempt_BooleanExpression(accum)
        
        return accum
    
    def handle(self, tok):
        """This method is intended to be overridden for logics that 
        use different operators or expressions"""
        if self.isvariable(tok):
            return self.handle_variable(tok)
        
        elif tok in Tokens.NOT:
            return self.handle_negation()
        
        elif tok in Tokens.LAMBDA:
            return self.handle_lambda(tok)
            
        elif tok in Tokens.QUANTS:
            return self.handle_quant(tok)
            
        elif tok == Tokens.OPEN:
            return self.handle_open(tok)
            
    def handle_negation(self):
        return self.make_NegatedExpression(self.parse_Expression(False))
        
    def make_NegatedExpression(self, expression):
        return NegatedExpression(expression)
        
    def handle_variable(self, tok):
        #It's either: 1) a predicate expression: sees(x,y)
        #             2) an application expression: P(x)
        #             3) a solo variable: john OR x
        accum = self.make_VariableExpression(tok)
        if self.inRange(0) and self.token(0) == Tokens.OPEN:
            #The predicate has arguments
            if isinstance(accum, IndividualVariableExpression):
                raise ParseException('\'%s\' is an illegal predicate name.  '
                                     'Individual variables may not be used as '
                                     'predicates.' % tok)
            self.token() #swallow the Open Paren
            
            #curry the arguments
            accum = self.make_ApplicationExpression(accum, 
                                                    self.parse_Expression())
            while self.token(0) == Tokens.COMMA:
                self.token() #swallow the comma
                accum = self.make_ApplicationExpression(accum, 
                                                        self.parse_Expression())
            self.assertToken(self.token(), Tokens.CLOSE)
        return self.attempt_EqualityExpression(accum)
        
    def ensure_abstractable(self, tok):
        if isinstance(VariableExpression(Variable(tok)), ConstantExpression):
            raise ParseException('\'%s\' is an illegal variable name.  '
                                 'Constants may not be abstracted.' % tok)
    
    def handle_lambda(self, tok):
        # Expression is a lambda expression
        self.ensure_abstractable(self.token(0))
        vars = [Variable(self.token())]
        while self.isvariable(self.token(0)):
            # Support expressions like: \x y.M == \x.\y.M
            self.ensure_abstractable(self.token(0))
            vars.append(Variable(self.token()))
        self.assertToken(self.token(), Tokens.DOT)
        
        accum = self.parse_Expression(False)
        while vars:
            accum = self.make_LambdaExpression(vars.pop(), accum)
        return accum
        
    def handle_quant(self, tok):
        # Expression is a quantified expression: some x.M
        factory = self.get_QuantifiedExpression_factory(tok)

        vars = [self.token()]
        while self.isvariable(self.token(0)):
            # Support expressions like: some x y.M == some x.some y.M
            vars.append(self.token())
        self.assertToken(self.token(), Tokens.DOT)

        accum = self.parse_Expression(False)
        while vars:
            var = vars.pop()
            varex = self.make_VariableExpression(var)
            if isinstance(varex, ConstantExpression):
                raise ParseException('\'%s\' is an illegal variable name.  '
                                     'Constant expressions may not be ' 
                                     'quantified.' % var)
            accum = self.make_QuanifiedExpression(factory, Variable(var), accum)
        return accum
    
    def get_QuantifiedExpression_factory(self, tok):
        """This method serves as a hook for other logic parsers that
        have different quantifiers"""
        if tok in Tokens.EXISTS:
            return ExistsExpression
        elif tok in Tokens.ALL:
            return AllExpression
        else:
            self.assertToken(tok, Tokens.QUANTS)

    def make_QuanifiedExpression(self, factory, variable, term):
        return factory(variable, term)
        
    def handle_open(self, tok):
        #Expression is in parens
        accum = self.parse_Expression()
        self.assertToken(self.token(), Tokens.CLOSE)
        return accum
        
    def attempt_EqualityExpression(self, expression):
        """Attempt to make an equality expression.  If the next token is an 
        equality operator, then an EqualityExpression will be returned.  
        Otherwise, the parameter will be returned."""
        if self.inRange(0) and self.token(0) in Tokens.EQ:
            self.token() #swallow the "="
            return self.make_EqualityExpression(expression, 
                                                self.parse_Expression())
        elif self.inRange(0) and self.token(0) in Tokens.NEQ:
            self.token() #swallow the "!="
            return self.make_NegatedExpression(
                        self.make_EqualityExpression(expression, 
                                                     self.parse_Expression()))
        return expression
    
    def make_EqualityExpression(self, first, second):
        """This method serves as a hook for other logic parsers that
        have different equality expression classes"""
        return EqualityExpression(first, second)

    def attempt_BooleanExpression(self, expression):
        """Attempt to make a boolean expression.  If the next token is a boolean 
        operator, then a BooleanExpression will be returned.  Otherwise, the 
        parameter will be returned."""
        if self.inRange(0):
            factory = self.get_BooleanExpression_factory(self.token(0))
            if factory: #if a factory was returned
                self.token() #swallow the operator
                return self.make_BooleanExpression(factory, expression, self.parse_Expression())
        #otherwise, no boolean expression can be created
        return expression
    
    def get_BooleanExpression_factory(self, tok):
        """This method serves as a hook for other logic parsers that
        have different boolean operators"""
        if tok in Tokens.AND:
            return AndExpression
        elif tok in Tokens.OR:
            return OrExpression
        elif tok in Tokens.IMP:
            return ImpExpression
        elif tok in Tokens.IFF:
            return IffExpression
        else:
            return None
    
    def make_BooleanExpression(self, factory, first, second):
        return factory(first, second)
    
    def attempt_ApplicationExpression(self, expression):
        """Attempt to make an application expression.  The next tokens are
        a list of arguments in parens, then the argument expression is a
        function being applied to the arguments.  Otherwise, return the
        argument expression."""
        if self.inRange(0) and self.token(0) == Tokens.OPEN:
            if not isinstance(expression, LambdaExpression) and \
               not isinstance(expression, ApplicationExpression):
                raise ParseException("The function '" + str(expression) + 
                                     ' is not a Lambda Expression or an '
                                     'Application Expression, so it may '
                                     'not take arguments')
            self.token() #swallow then open paren
            #curry the arguments
            accum = self.make_ApplicationExpression(expression, 
                                                    self.parse_Expression())
            while self.token(0) == Tokens.COMMA:
                self.token() #swallow the comma
                accum = self.make_ApplicationExpression(accum, 
                                                        self.parse_Expression())
            self.assertToken(self.token(), Tokens.CLOSE)
            return self.attempt_ApplicationExpression(accum)
        else:
            return expression

    def make_ApplicationExpression(self, function, argument):
        return ApplicationExpression(function, argument)
    
    def make_VariableExpression(self, name):
        return VariableExpression(Variable(name))
    
    def make_LambdaExpression(self, variable, term):
        return LambdaExpression(variable, term)
    
    def assertToken(self, tok, expected):
        if isinstance(expected, list):
            if tok not in expected:
                raise UnexpectedTokenException(tok, expected)
        else:
            if tok != expected:
                raise UnexpectedTokenException(tok, expected)

    def __repr__(self):
        if self.inRange(0):
            msg = 'Next token: ' + self.token(0)
        else:
            msg = 'No more tokens'
        return '<' + self.__class__.__name__ + ': ' + msg + '>'

            
class StringTrie(defaultdict):
    LEAF = "<leaf>" 

    def __init__(self, strings=None):
        defaultdict.__init__(self, StringTrie)
        if strings:
            for string in strings:
                self.insert(string)
    
    def insert(self, string):
        if len(string):
            self[string[0]].insert(string[1:])
        else:
            #mark the string is complete
            self[StringTrie.LEAF] = None
            

class ParseException(Exception):
    def __init__(self, message):
        Exception.__init__(self, message)

class UnexpectedTokenException(ParseException):
    def __init__(self, tok, expected=None):
        if expected:
            ParseException.__init__(self, "parse error, unexpected token: '%s'. "
                                    "Expected token: %s" % (tok, expected))
        else:
            ParseException.__init__(self, "parse error, unexpected token: '%s'" 
                                            % tok)
        
        
def is_indvar(expr):
    """
    An individual variable must be a single lowercase character other than 'e',
    followed by zero or more digits.
    
    @param expr: C{str}
    @return: C{boolean} True if expr is of the correct form 
    """
    assert isinstance(expr, str), "%s is not a string" % expr
    return re.match(r'^[a-df-z]\d*$', expr)

def is_funcvar(expr):
    """
    A function variable must be a single uppercase character followed by
    zero or more digits.
    
    @param expr: C{str}
    @return: C{boolean} True if expr is of the correct form 
    """
    assert isinstance(expr, str), "%s is not a string" % expr
    return re.match(r'^[A-Z]\d*$', expr)

def is_eventvar(expr):
    """
    An event variable must be a single lowercase 'e' character followed by
    zero or more digits.
    
    @param expr: C{str}
    @return: C{boolean} True if expr is of the correct form 
    """
    assert isinstance(expr, str), "%s is not a string" % expr
    return re.match(r'^e\d*$', expr)


def demo():
    p = LogicParser().parse
    print '='*20 + 'Test parser' + '='*20
    print p(r'john')
    print p(r'man(x)')
    print p(r'-man(x)')
    print p(r'(man(x) & tall(x) & walks(x))')
    print p(r'exists x.(man(x) & tall(x))')
    print p(r'\x.man(x)')
    print p(r'\x.man(x)(john)')
    print p(r'\x y.sees(x,y)')
    print p(r'\x y.sees(x,y)(a,b)')
    print p(r'(\x.exists y.walks(x,y))(x)')
    print p(r'exists x.(x = y)')
    print p(r'\P Q.exists x.(P(x) & Q(x))')
    
    print '='*20 + 'Test simplify' + '='*20
    print p(r'\x.\y.sees(x,y)(john)(mary)').simplify()
    print p(r'\x.\y.sees(x,y)(john, mary)').simplify()
    print p(r'all x.(man(x) & (\x.exists y.walks(x,y))(x))').simplify()
    print p(r'(\P.\Q.exists x.(P(x) & Q(x)))(\x.dog(x))(\x.bark(x))').simplify()
    
    print '='*20 + 'Test alpha conversion and binder expression equality' + '='*20
    e1 = p('exists x.P(x)')
    print e1
    e2 = e1.alpha_convert(Variable('z'))
    print e2
    print e1 == e2
    
def printtype(ex):
    print ex.str() + ' : ' + str(ex.type)

if __name__ == '__main__':
    demo()