1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
|
# Natural Language Toolkit: Logic
#
# Author: Dan Garrette <dhgarrette@gmail.com>
#
# URL: <http://www.nltk.org>
# For license information, see LICENSE.TXT
"""
A version of first order predicate logic, built on
top of the typed lambda calculus.
"""
import re
import operator
from nltk import defaultdict
from nltk.internals import Counter
_counter = Counter()
class Tokens(object):
# Syntaxes
OLD_NLTK = 0
NLTK = 1
PROVER9 = 2
LAMBDA = ['\\', '\\', '\\']
#Quantifiers
EXISTS = ['some', 'exists', 'exists']
ALL = ['all', 'all', 'all']
#Punctuation
DOT = ['.', '.', ' ']
OPEN = '('
CLOSE = ')'
COMMA = ','
#Operations
NOT = ['not', '-', '-']
AND = ['and', '&', '&']
OR = ['or', '|', '|']
IMP = ['implies', '->', '->']
IFF = ['iff', '<->', '<->']
EQ = ['=', '=', '=']
NEQ = ['!=', '!=', '!=']
#Collection of tokens
BINOPS = AND + OR + IMP + IFF
QUANTS = EXISTS + ALL
PUNCT = [DOT[NLTK], OPEN, CLOSE, COMMA]
TOKENS = BINOPS + EQ + NEQ + QUANTS + LAMBDA + PUNCT + NOT
#Special
SYMBOLS = LAMBDA + PUNCT + EQ + NEQ + \
[AND[NLTK], OR[NLTK], NOT[NLTK], IMP[NLTK], IFF[NLTK]]
def boolean_ops():
"""
Boolean operators
"""
names = ["negation", "conjunction", "disjunction", "implication", "equivalence"]
for pair in zip(names, [Tokens.NOT[Tokens.NLTK],
Tokens.AND[Tokens.NLTK],
Tokens.OR[Tokens.NLTK],
Tokens.IMP[Tokens.NLTK],
Tokens.IFF[Tokens.NLTK]]):
print "%-15s\t%s" % pair
def equality_preds():
"""
Equality predicates
"""
names = ["equality", "inequality"]
for pair in zip(names, [Tokens.EQ[Tokens.NLTK],
Tokens.NEQ[Tokens.NLTK]]):
print "%-15s\t%s" % pair
def binding_ops():
"""
Binding operators
"""
names = ["existential", "universal", "lambda"]
for pair in zip(names, [Tokens.EXISTS[Tokens.NLTK],
Tokens.ALL[Tokens.NLTK],
Tokens.LAMBDA[Tokens.NLTK]]):
print "%-15s\t%s" % pair
class Variable(object):
def __init__(self, name):
"""
@param name: the name of the variable
"""
assert isinstance(name, str), "%s is not a string" % name
self.name = name
def __eq__(self, other):
return isinstance(other, Variable) and self.name == other.name
def __neq__(self, other):
return not (self == other)
def __cmp__(self, other):
assert isinstance(other, Variable), "%s is not a Variable" % other
if self.name == other.name:
return 0
elif self.name < other.name:
return -1
else:
return 1
def substitute_bindings(self, bindings):
return bindings.get(self, self)
def __hash__(self):
return hash(self.name)
def __str__(self):
return self.name
def __repr__(self):
return 'Variable(\'' + self.name + '\')'
def unique_variable(pattern=None):
"""
param pattern: C{Variable} that is being replaced. The new variable must
be the same type.
"""
if pattern is not None and is_eventvar(pattern.name):
prefix = 'e0'
else:
prefix = 'z'
return Variable(prefix + str(_counter.get()))
def skolem_function(univ_scope=None):
"""
Return a skolem function over the variables in univ_scope
param univ_scope
"""
skolem = VariableExpression(Variable('F%s' % _counter.get()))
if univ_scope:
for v in list(univ_scope):
skolem = skolem(VariableExpression(v))
return skolem
class Type:
def __repr__(self):
return str(self)
def __hash__(self):
return hash(str(self))
class ComplexType(Type):
def __init__(self, first, second):
assert(isinstance(first, Type)), "%s is not a Type" % first
assert(isinstance(second, Type)), "%s is not a Type" % second
self.first = first
self.second = second
def __eq__(self, other):
return isinstance(other, ComplexType) and \
self.first == other.first and \
self.second == other.second
def matches(self, other):
if isinstance(other, ComplexType):
return self.first.matches(other.first) and \
self.second.matches(other.second)
else:
return self == ANY_TYPE
def resolve(self, other):
if other == ANY_TYPE:
return self
elif isinstance(other, ComplexType):
f = self.first.resolve(other.first)
s = self.second.resolve(other.second)
if f and s:
return ComplexType(f,s)
else:
return None
elif self == ANY_TYPE:
return other
else:
return None
def __str__(self):
if self == ANY_TYPE:
return str(ANY_TYPE)
else:
return '<%s,%s>' % (self.first, self.second)
def str(self):
if self == ANY_TYPE:
return ANY_TYPE.str()
else:
return '(%s -> %s)' % (self.first.str(), self.second.str())
class BasicType(Type):
def __eq__(self, other):
return isinstance(other, BasicType) and str(self) == str(other)
def matches(self, other):
return other == ANY_TYPE or self == other
def resolve(self, other):
if self.matches(other):
return self
else:
return None
class EntityType(BasicType):
def __str__(self):
return 'e'
def str(self):
return 'IND'
class TruthValueType(BasicType):
def __str__(self):
return 't'
def str(self):
return 'BOOL'
class EventType(BasicType):
def __str__(self):
return 'v'
def str(self):
return 'EVENT'
class AnyType(BasicType, ComplexType):
def __init__(self):
pass
first = property(lambda self: self)
second = property(lambda self: self)
def __eq__(self, other):
return isinstance(other, AnyType) or other == self
def matches(self, other):
return True
def resolve(self, other):
return other
def __str__(self):
return '?'
def str(self):
return 'ANY'
TRUTH_TYPE = TruthValueType()
ENTITY_TYPE = EntityType()
EVENT_TYPE = EventType()
ANY_TYPE = AnyType()
def parse_type(type_string):
assert isinstance(type_string, str)
type_string = type_string.replace(' ', '') #remove spaces
if type_string[0] == '<':
assert type_string[-1] == '>'
paren_count = 0
for i,char in enumerate(type_string):
if char == '<':
paren_count += 1
elif char == '>':
paren_count -= 1
assert paren_count > 0
elif char == ',':
if paren_count == 1:
break
return ComplexType(parse_type(type_string[1 :i ]),
parse_type(type_string[i+1:-1]))
elif type_string[0] == str(ENTITY_TYPE):
return ENTITY_TYPE
elif type_string[0] == str(TRUTH_TYPE):
return TRUTH_TYPE
elif type_string[0] == str(ANY_TYPE):
return ANY_TYPE
else:
raise ParseException("Unexpected character: '%s'." % type_string[0])
class TypeException(Exception):
def __init__(self, msg):
Exception.__init__(self, msg)
class InconsistentTypeHierarchyException(TypeException):
def __init__(self, variable, expression=None):
if expression:
msg = "The variable \'%s\' was found in multiple places with different"\
" types in \'%s\'." % (variable, expression)
else:
msg = "The variable \'%s\' was found in multiple places with different"\
" types." % (variable)
Exception.__init__(self, msg)
class TypeResolutionException(TypeException):
def __init__(self, expression, other_type):
Exception.__init__(self, "The type of '%s', '%s', cannot be "
"resolved with type '%s'" % \
(expression, expression.type, other_type))
class IllegalTypeException(TypeException):
def __init__(self, expression, other_type, allowed_type):
Exception.__init__(self, "Cannot set type of %s '%s' to '%s'; "
"must match type '%s'." %
(expression.__class__.__name__, expression,
other_type, allowed_type))
def typecheck(expressions, signature=None):
"""
Ensure correct typing across a collection of C{Expression}s.
@param expressions: a collection of expressions
@param signature: C{dict} that maps variable names to types (or string
representations of types)
"""
#typecheck and create master signature
for expression in expressions:
signature = expression.typecheck(signature)
#apply master signature to all expressions
for expression in expressions[:-1]:
expression.typecheck(signature)
return signature
class SubstituteBindingsI(object):
"""
An interface for classes that can perform substitutions for
variables.
"""
def substitute_bindings(self, bindings):
"""
@return: The object that is obtained by replacing
each variable bound by C{bindings} with its values.
Aliases are already resolved. (maybe?)
@rtype: (any)
"""
raise NotImplementedError()
def variables(self):
"""
@return: A list of all variables in this object.
"""
raise NotImplementedError()
class Expression(SubstituteBindingsI):
"""This is the base abstract object for all logical expressions"""
def __call__(self, other, *additional):
accum = self.applyto(other)
for a in additional:
accum = accum(a)
return accum
def applyto(self, other):
assert isinstance(other, Expression), "%s is not an Expression" % other
return ApplicationExpression(self, other)
def __neg__(self):
return NegatedExpression(self)
def negate(self):
"""If this is a negated expression, remove the negation.
Otherwise add a negation."""
return -self
def __and__(self, other):
assert isinstance(other, Expression), "%s is not an Expression" % other
return AndExpression(self, other)
def __or__(self, other):
assert isinstance(other, Expression), "%s is not an Expression" % other
return OrExpression(self, other)
def __gt__(self, other):
assert isinstance(other, Expression), "%s is not an Expression" % other
return ImpExpression(self, other)
def __lt__(self, other):
assert isinstance(other, Expression), "%s is not an Expression" % other
return IffExpression(self, other)
def __eq__(self, other):
raise NotImplementedError()
def __neq__(self, other):
return not (self == other)
def tp_equals(self, other, prover=None):
"""Pass the expression (self <-> other) to the theorem prover.
If the prover says it is valid, then the self and other are equal."""
assert isinstance(other, Expression), "%s is not an Expression" % other
if prover is None:
from nltk.inference import Prover9
prover = Prover9()
bicond = IffExpression(self.simplify(), other.simplify())
return prover.prove(bicond)
def __hash__(self):
return hash(repr(self))
def substitute_bindings(self, bindings):
expr = self
for var in expr.variables():
if var in bindings:
val = bindings[var]
if isinstance(val, Variable):
val = VariableExpression(val)
elif not isinstance(val, Expression):
raise ValueError('Can not substitute a non-expression '
'value into an expression: %r' % (val,))
# Substitute bindings in the target value.
val = val.substitute_bindings(bindings)
# Replace var w/ the target value.
expr = expr.replace(var, val)
return expr.simplify()
def typecheck(self, signature=None):
"""
Infer and check types. Raise exceptions if necessary.
@param signature: C{dict} that maps variable names to types (or string
representations of types)
@return: the signature, plus any additional type mappings
"""
sig = defaultdict(list)
if signature:
for (key, val) in signature.iteritems():
varEx = VariableExpression(Variable(key))
if isinstance(val, Type):
varEx.type = val
else:
varEx.type = parse_type(val)
sig[key].append(varEx)
self._set_type(signature=sig)
return dict([(key, vars[0].type) for (key, vars) in sig.iteritems()])
def findtype(self, variable):
"""
Find the type of the given variable as it is used in this expression.
For example, finding the type of "P" in "P(x) & Q(x,y)" yields "<e,t>"
@param variable: C{Variable}
"""
raise NotImplementedError()
def _set_type(self, other_type=ANY_TYPE, signature=None):
"""
Set the type of this expression to be the given type. Raise type
exceptions where applicable.
@param other_type: C{Type} to set
@param signature: C{dict<str, list<AbstractVariableExpression>>} store
all variable expressions with a given name
"""
raise NotImplementedError()
def replace(self, variable, expression, replace_bound=False):
"""
Replace every instance of 'variable' with 'expression'
@param variable: C{Variable} The variable to replace
@param expression: C{Expression} The expression with which to replace it
@param replace_bound: C{boolean} Should bound variables be replaced?
"""
assert isinstance(variable, Variable), "%s is not a Variable" % variable
assert isinstance(expression, Expression), "%s is not an Expression" % expression
def combinator(a, *additional):
if len(additional) == 0:
return self.__class__(a)
elif len(additional) == 1:
return self.__class__(a, additional[0])
return self.visit(lambda e: e.replace(variable, expression, replace_bound),
combinator, set())
def normalize(self):
"""Rename auto-generated unique variables"""
def f(e):
if isinstance(e,Variable):
if re.match(r'^z\d+$', e.name) or re.match(r'^e0\d+$', e.name):
return set([e])
else:
return set([])
else:
combinator = lambda *parts: reduce(operator.or_, parts)
return e.visit(f, combinator, set())
result = self
for i,v in enumerate(sorted(list(f(self)))):
if is_eventvar(v.name):
newVar = 'e0%s' % (i+1)
else:
newVar = 'z%s' % (i+1)
result = result.replace(v, VariableExpression(Variable(newVar)), True)
return result
def visit(self, function, combinator, default):
"""
Recursively visit sub expressions
@param function: C{Function} to call on each sub expression
@param combinator: C{Function} to combine the results of the
function calls
@return: result of combination
"""
raise NotImplementedError()
def __repr__(self):
return '<%s %s>' % (self.__class__.__name__, self)
def __str__(self):
return self.str()
def variables(self):
"""
Return a set of all the variables that are available to be replaced.
This includes free (non-bound) variables as well as predicates.
@return: C{set} of C{Variable}s
"""
return self.visit(lambda e: isinstance(e,Variable) and
set([e]) or e.variables(),
lambda *parts: reduce(operator.or_, parts), set())
def free(self, indvar_only=True):
"""
Return a set of all the free (non-bound) variables in self. Variables
serving as predicates are not included.
@param indvar_only: C{boolean} only return individual variables?
@return: C{set} of C{Variable}s
"""
return self.visit(lambda e: isinstance(e,Variable) and
set([e]) or e.free(indvar_only),
lambda *parts: reduce(operator.or_, parts), set())
def simplify(self):
"""
@return: beta-converted version of this expression
"""
def combinator(a, *additional):
if len(additional) == 0:
return self.__class__(a)
elif len(additional) == 1:
return self.__class__(a, additional[0])
return self.visit(lambda e: isinstance(e,Variable)
and e or e.simplify(), combinator, set())
class ApplicationExpression(Expression):
r"""
This class is used to represent two related types of logical expressions.
The first is a Predicate Expression, such as "P(x,y)". A predicate
expression is comprised of a C{FunctionVariableExpression} or
C{ConstantExpression} as the predicate and a list of Expressions as the
arguments.
The second is a an application of one expression to another, such as
"(\x.dog(x))(fido)".
The reason Predicate Expressions are treated as Application Expressions is
that the Variable Expression predicate of the expression may be replaced
with another Expression, such as a LambdaExpression, which would mean that
the Predicate should be thought of as being applied to the arguments.
The LogicParser will always curry arguments in a application expression.
So, "\x y.see(x,y)(john,mary)" will be represented internally as
"((\x y.(see(x))(y))(john))(mary)". This simplifies the internals since
there will always be exactly one argument in an application.
The str() method will usually print the curried forms of application
expressions. The one exception is when the the application expression is
really a predicate expression (ie, underlying function is an
C{AbstractVariableExpression}). This means that the example from above
will be returned as "(\x y.see(x,y)(john))(mary)".
"""
def __init__(self, function, argument):
"""
@param function: C{Expression}, for the function expression
@param argument: C{Expression}, for the argument
"""
assert isinstance(function, Expression), "%s is not an Expression" % function
assert isinstance(argument, Expression), "%s is not an Expression" % argument
self.function = function
self.argument = argument
def simplify(self):
function = self.function.simplify()
argument = self.argument.simplify()
if isinstance(function, LambdaExpression):
return function.term.replace(function.variable, argument).simplify()
else:
return self.__class__(function, argument)
def free(self, indvar_only=True):
"""@see: Expression.free()"""
if isinstance(self.function, AbstractVariableExpression):
return self.argument.free(indvar_only)
else:
return self.function.free(indvar_only) | \
self.argument.free(indvar_only)
def _get_type(self):
if isinstance(self.function.type, ComplexType):
return self.function.type.second
else:
return ANY_TYPE
type = property(_get_type)
def _set_type(self, other_type=ANY_TYPE, signature=None):
"""@see Expression._set_type()"""
assert isinstance(other_type, Type)
if signature == None:
signature = defaultdict(list)
self.argument._set_type(ANY_TYPE, signature)
try:
self.function._set_type(ComplexType(self.argument.type, other_type), signature)
except TypeResolutionException, e:
raise TypeException(
"The function '%s' is of type '%s' and cannot be applied "
"to '%s' of type '%s'. Its argument must match type '%s'."
% (self.function, self.function.type, self.argument,
self.argument.type, self.function.type.first))
def findtype(self, variable):
"""@see Expression.findtype()"""
assert isinstance(variable, Variable), "%s is not a Variable" % variable
function, args = self.uncurry()
if not isinstance(function, AbstractVariableExpression):
#It's not a predicate expression ("P(x,y)"), so leave args curried
function = self.function
args = [self.argument]
found = [arg.findtype(variable) for arg in [function]+args]
unique = []
for f in found:
if f != ANY_TYPE:
if unique:
for u in unique:
if f.matches(u):
break
else:
unique.append(f)
if len(unique) == 1:
return list(unique)[0]
else:
return ANY_TYPE
def visit(self, function, combinator, default):
"""@see: Expression.visit()"""
return combinator(function(self.function), function(self.argument))
def __eq__(self, other):
return isinstance(other, ApplicationExpression) and \
self.function == other.function and \
self.argument == other.argument
def str(self, syntax=Tokens.NLTK):
# uncurry the arguments and find the base function
function, args = self.uncurry()
if isinstance(function, AbstractVariableExpression):
#It's a predicate expression ("P(x,y)"), so uncurry arguments
arg_str = ','.join([arg.str(syntax) for arg in args])
else:
#Leave arguments curried
function = self.function
arg_str = self.argument.str(syntax)
function_str = function.str(syntax)
parenthesize_function = False
if isinstance(function, LambdaExpression):
if isinstance(function.term, ApplicationExpression):
if not isinstance(function.term.function,
AbstractVariableExpression):
parenthesize_function = True
elif not isinstance(function.term, BooleanExpression):
parenthesize_function = True
elif isinstance(function, ApplicationExpression):
parenthesize_function = True
if parenthesize_function:
function_str = Tokens.OPEN + function_str + Tokens.CLOSE
return function_str + Tokens.OPEN + arg_str + Tokens.CLOSE
def uncurry(self):
"""
Uncurry this application expression
return: A tuple (base-function, arg-list)
"""
function = self.function
args = [self.argument]
while isinstance(function, ApplicationExpression):
#(\x.\y.sees(x,y)(john))(mary)
args.insert(0, function.argument)
function = function.function
return (function, args)
args = property(lambda self: self.uncurry()[1], doc="uncurried arg-list")
class AbstractVariableExpression(Expression):
"""This class represents a variable to be used as a predicate or entity"""
def __init__(self, variable):
"""
@param variable: C{Variable}, for the variable
"""
assert isinstance(variable, Variable), "%s is not a Variable" % variable
self.variable = variable
def simplify(self):
return self
def replace(self, variable, expression, replace_bound=False):
"""@see: Expression.replace()"""
assert isinstance(variable, Variable), "%s is not an Variable" % variable
assert isinstance(expression, Expression), "%s is not an Expression" % expression
if self.variable == variable:
return expression
else:
return self
def _set_type(self, other_type=ANY_TYPE, signature=None):
"""@see Expression._set_type()"""
assert isinstance(other_type, Type)
if signature == None:
signature = defaultdict(list)
resolution = other_type
for varEx in signature[self.variable.name]:
resolution = varEx.type.resolve(resolution)
if not resolution:
raise InconsistentTypeHierarchyException(self)
signature[self.variable.name].append(self)
for varEx in signature[self.variable.name]:
varEx.type = resolution
def findtype(self, variable):
"""@see Expression.findtype()"""
assert isinstance(variable, Variable), "%s is not a Variable" % variable
if self.variable == variable:
return self.type
else:
return ANY_TYPE
def visit(self, function, combinator, default):
"""@see: Expression.visit()"""
return combinator(function(self.variable))
def __eq__(self, other):
"""Allow equality between instances of C{AbstractVariableExpression}
subtypes."""
return isinstance(other, AbstractVariableExpression) and \
self.variable == other.variable
def str(self, syntax=Tokens.NLTK):
return str(self.variable)
class IndividualVariableExpression(AbstractVariableExpression):
"""This class represents variables that take the form of a single lowercase
character (other than 'e') followed by zero or more digits."""
def _set_type(self, other_type=ANY_TYPE, signature=None):
"""@see Expression._set_type()"""
assert isinstance(other_type, Type)
if signature == None:
signature = defaultdict(list)
if not other_type.matches(ENTITY_TYPE):
raise IllegalTypeException(self, other_type, ENTITY_TYPE)
signature[self.variable.name].append(self)
type = property(lambda self: ENTITY_TYPE, _set_type)
class FunctionVariableExpression(AbstractVariableExpression):
"""This class represents variables that take the form of a single uppercase
character followed by zero or more digits."""
type = ANY_TYPE
def free(self, indvar_only=True):
"""@see: Expression.free()"""
if not indvar_only:
return set([self.variable])
else:
return set()
class EventVariableExpression(IndividualVariableExpression):
"""This class represents variables that take the form of a single lowercase
'e' character followed by zero or more digits."""
type = EVENT_TYPE
class ConstantExpression(AbstractVariableExpression):
"""This class represents variables that do not take the form of a single
character followed by zero or more digits."""
type = ENTITY_TYPE
def _set_type(self, other_type=ANY_TYPE, signature=None):
"""@see Expression._set_type()"""
assert isinstance(other_type, Type)
if signature == None:
signature = defaultdict(list)
if other_type == ANY_TYPE:
#entity type by default, for individuals
resolution = ENTITY_TYPE
else:
resolution = other_type
if self.type != ENTITY_TYPE:
resolution = resolution.resolve(self.type)
for varEx in signature[self.variable.name]:
resolution = varEx.type.resolve(resolution)
if not resolution:
raise InconsistentTypeHierarchyException(self)
signature[self.variable.name].append(self)
for varEx in signature[self.variable.name]:
varEx.type = resolution
def free(self, indvar_only=True):
"""@see: Expression.free()"""
if not indvar_only:
return set([self.variable])
else:
return set()
def VariableExpression(variable):
"""
This is a factory method that instantiates and returns a subtype of
C{AbstractVariableExpression} appropriate for the given variable.
"""
assert isinstance(variable, Variable), "%s is not a Variable" % variable
if is_indvar(variable.name):
return IndividualVariableExpression(variable)
elif is_funcvar(variable.name):
return FunctionVariableExpression(variable)
elif is_eventvar(variable.name):
return EventVariableExpression(variable)
else:
return ConstantExpression(variable)
class VariableBinderExpression(Expression):
"""This an abstract class for any Expression that binds a variable in an
Expression. This includes LambdaExpressions and Quantified Expressions"""
def __init__(self, variable, term):
"""
@param variable: C{Variable}, for the variable
@param term: C{Expression}, for the term
"""
assert isinstance(variable, Variable), "%s is not a Variable" % variable
assert isinstance(term, Expression), "%s is not an Expression" % term
self.variable = variable
self.term = term
def replace(self, variable, expression, replace_bound=False):
"""@see: Expression.replace()"""
assert isinstance(variable, Variable), "%s is not a Variable" % variable
assert isinstance(expression, Expression), "%s is not an Expression" % expression
#if the bound variable is the thing being replaced
if self.variable == variable:
if replace_bound:
assert isinstance(expression, AbstractVariableExpression),\
"%s is not a AbstractVariableExpression" % expression
return self.__class__(expression.variable,
self.term.replace(variable, expression, True))
else:
return self
else:
# if the bound variable appears in the expression, then it must
# be alpha converted to avoid a conflict
if self.variable in expression.free():
self = self.alpha_convert(unique_variable(self.variable))
#replace in the term
return self.__class__(self.variable,
self.term.replace(variable, expression, replace_bound))
def alpha_convert(self, newvar):
"""Rename all occurrences of the variable introduced by this variable
binder in the expression to @C{newvar}.
@param newvar: C{Variable}, for the new variable
"""
assert isinstance(newvar, Variable), "%s is not a Variable" % newvar
return self.__class__(newvar,
self.term.replace(self.variable,
VariableExpression(newvar),
True))
def variables(self):
"""@see: Expression.variables()"""
return self.term.variables() - set([self.variable])
def free(self, indvar_only=True):
"""@see: Expression.free()"""
return self.term.free(indvar_only) - set([self.variable])
def findtype(self, variable):
"""@see Expression.findtype()"""
assert isinstance(variable, Variable), "%s is not a Variable" % variable
if variable == self.variable:
return ANY_TYPE
else:
return self.term.findtype(variable)
def visit(self, function, combinator, default):
"""@see: Expression.visit()"""
return combinator(function(self.variable), function(self.term))
def __eq__(self, other):
r"""Defines equality modulo alphabetic variance. If we are comparing
\x.M and \y.N, then check equality of M and N[x/y]."""
if isinstance(self, other.__class__) or \
isinstance(other, self.__class__):
if self.variable == other.variable:
return self.term == other.term
else:
# Comparing \x.M and \y.N. Relabel y in N with x and continue.
varex = VariableExpression(self.variable)
return self.term == other.term.replace(other.variable, varex)
else:
return False
class LambdaExpression(VariableBinderExpression):
type = property(lambda self:
ComplexType(self.term.findtype(self.variable),
self.term.type))
def _set_type(self, other_type=ANY_TYPE, signature=None):
"""@see Expression._set_type()"""
assert isinstance(other_type, Type)
if signature == None:
signature = defaultdict(list)
self.term._set_type(other_type.second, signature)
if not self.type.resolve(other_type):
raise TypeResolutionException(self, other_type)
def str(self, syntax=Tokens.NLTK):
variables = [self.variable]
term = self.term
if syntax != Tokens.PROVER9:
while term.__class__ == self.__class__:
variables.append(term.variable)
term = term.term
return Tokens.LAMBDA[syntax] + ' '.join(str(v) for v in variables) + \
Tokens.DOT[syntax] + term.str(syntax)
class QuantifiedExpression(VariableBinderExpression):
type = property(lambda self: TRUTH_TYPE)
def _set_type(self, other_type=ANY_TYPE, signature=None):
"""@see Expression._set_type()"""
assert isinstance(other_type, Type)
if signature == None:
signature = defaultdict(list)
if not other_type.matches(TRUTH_TYPE):
raise IllegalTypeException(self, other_type, TRUTH_TYPE)
self.term._set_type(TRUTH_TYPE, signature)
def str(self, syntax=Tokens.NLTK):
variables = [self.variable]
term = self.term
if syntax != Tokens.PROVER9:
while term.__class__ == self.__class__:
variables.append(term.variable)
term = term.term
return self.getQuantifier(syntax) + ' ' + \
' '.join(str(v) for v in variables) + \
Tokens.DOT[syntax] + term.str(syntax)
class ExistsExpression(QuantifiedExpression):
def getQuantifier(self, syntax=Tokens.NLTK):
return Tokens.EXISTS[syntax]
class AllExpression(QuantifiedExpression):
def getQuantifier(self, syntax=Tokens.NLTK):
return Tokens.ALL[syntax]
class NegatedExpression(Expression):
def __init__(self, term):
assert isinstance(term, Expression), "%s is not an Expression" % term
self.term = term
type = property(lambda self: TRUTH_TYPE)
def _set_type(self, other_type=ANY_TYPE, signature=None):
"""@see Expression._set_type()"""
assert isinstance(other_type, Type)
if signature == None:
signature = defaultdict(list)
if not other_type.matches(TRUTH_TYPE):
raise IllegalTypeException(self, other_type, TRUTH_TYPE)
self.term._set_type(TRUTH_TYPE, signature)
def findtype(self, variable):
assert isinstance(variable, Variable), "%s is not a Variable" % variable
return self.term.findtype(variable)
def visit(self, function, combinator, default):
"""@see: Expression.visit()"""
return combinator(function(self.term))
def negate(self):
"""@see: Expression.negate()"""
return self.term
def __eq__(self, other):
return isinstance(other, NegatedExpression) and self.term == other.term
def str(self, syntax=Tokens.NLTK):
if syntax == Tokens.PROVER9:
return Tokens.NOT[syntax] + Tokens.OPEN + self.term.str(syntax) +\
Tokens.CLOSE
else:
return Tokens.NOT[syntax] + self.term.str(syntax)
class BinaryExpression(Expression):
def __init__(self, first, second):
assert isinstance(first, Expression), "%s is not an Expression" % first
assert isinstance(second, Expression), "%s is not an Expression" % second
self.first = first
self.second = second
type = property(lambda self: TRUTH_TYPE)
def findtype(self, variable):
"""@see Expression.findtype()"""
assert isinstance(variable, Variable), "%s is not a Variable" % variable
f = self.first.findtype(variable)
s = self.second.findtype(variable)
if f == s or s == ANY_TYPE:
return f
elif f == ANY_TYPE:
return s
else:
return ANY_TYPE
def visit(self, function, combinator, default):
"""@see: Expression.visit()"""
return combinator(function(self.first), function(self.second))
def __eq__(self, other):
return (isinstance(self, other.__class__) or \
isinstance(other, self.__class__)) and \
self.first == other.first and self.second == other.second
def str(self, syntax=Tokens.NLTK):
return Tokens.OPEN + self.first.str(syntax) + ' ' + self.getOp(syntax) \
+ ' ' + self.second.str(syntax) + Tokens.CLOSE
class BooleanExpression(BinaryExpression):
def _set_type(self, other_type=ANY_TYPE, signature=None):
"""@see Expression._set_type()"""
assert isinstance(other_type, Type)
if signature == None:
signature = defaultdict(list)
if not other_type.matches(TRUTH_TYPE):
raise IllegalTypeException(self, other_type, TRUTH_TYPE)
self.first._set_type(TRUTH_TYPE, signature)
self.second._set_type(TRUTH_TYPE, signature)
class AndExpression(BooleanExpression):
"""This class represents conjunctions"""
def getOp(self, syntax=Tokens.NLTK):
return Tokens.AND[syntax]
class OrExpression(BooleanExpression):
"""This class represents disjunctions"""
def getOp(self, syntax=Tokens.NLTK):
return Tokens.OR[syntax]
class ImpExpression(BooleanExpression):
"""This class represents implications"""
def getOp(self, syntax=Tokens.NLTK):
return Tokens.IMP[syntax]
class IffExpression(BooleanExpression):
"""This class represents biconditionals"""
def getOp(self, syntax=Tokens.NLTK):
return Tokens.IFF[syntax]
class EqualityExpression(BinaryExpression):
"""This class represents equality expressions like "(x = y)"."""
def _set_type(self, other_type=ANY_TYPE, signature=None):
"""@see Expression._set_type()"""
assert isinstance(other_type, Type)
if signature == None:
signature = defaultdict(list)
if not other_type.matches(TRUTH_TYPE):
raise IllegalTypeException(self, other_type, TRUTH_TYPE)
self.first._set_type(ENTITY_TYPE, signature)
self.second._set_type(ENTITY_TYPE, signature)
def getOp(self, syntax=Tokens.NLTK):
return Tokens.EQ[syntax]
class LogicParser(object):
"""A lambda calculus expression parser."""
def __init__(self, type_check=False):
"""
@param type_check: C{boolean} should type checking be performed?
to their types.
"""
assert isinstance(type_check, bool)
self._currentIndex = 0
self._buffer = []
self.type_check = type_check
def parse(self, data, signature=None):
"""
Parse the expression.
@param data: C{str} for the input to be parsed
@param signature: C{dict<str, str>} that maps variable names to type
strings
@returns: a parsed Expression
"""
self._currentIndex = 0
self._buffer = self.process(data).split()
result = self.parse_Expression()
if self.inRange(0):
raise UnexpectedTokenException(self.token(0))
if self.type_check:
result.typecheck(signature)
return result
def process(self, data):
"""Put whitespace between symbols to make parsing easier"""
out = ''
tokenTrie = StringTrie(self.get_all_symbols())
while data:
st = tokenTrie
c = data[0]
token = ''
while c in st:
token += c
st = st[c]
if len(data) > len(token):
c = data[len(token)]
else:
break
if StringTrie.LEAF in st:
#token is a complete symbol
out += ' '+token+' '
data = data[len(token):]
else:
out += data[0]
data = data[1:]
return out
def get_all_symbols(self):
"""This method exists to be overridden"""
return Tokens.SYMBOLS
def inRange(self, location):
"""Return TRUE if the given location is within the buffer"""
return self._currentIndex+location < len(self._buffer)
def token(self, location=None):
"""Get the next waiting token. If a location is given, then
return the token at currentIndex+location without advancing
currentIndex; setting it gives lookahead/lookback capability."""
try:
if location == None:
tok = self._buffer[self._currentIndex]
self._currentIndex += 1
else:
tok = self._buffer[self._currentIndex+location]
return tok
except IndexError:
raise ParseException, 'More tokens expected.'
def isvariable(self, tok):
return tok not in Tokens.TOKENS
def parse_Expression(self, allow_adjuncts=True):
"""Parse the next complete expression from the stream and return it."""
tok = self.token()
accum = self.handle(tok)
if not accum:
raise UnexpectedTokenException(tok)
if allow_adjuncts:
accum = self.attempt_ApplicationExpression(accum)
accum = self.attempt_BooleanExpression(accum)
return accum
def handle(self, tok):
"""This method is intended to be overridden for logics that
use different operators or expressions"""
if self.isvariable(tok):
return self.handle_variable(tok)
elif tok in Tokens.NOT:
return self.handle_negation()
elif tok in Tokens.LAMBDA:
return self.handle_lambda(tok)
elif tok in Tokens.QUANTS:
return self.handle_quant(tok)
elif tok == Tokens.OPEN:
return self.handle_open(tok)
def handle_negation(self):
return self.make_NegatedExpression(self.parse_Expression(False))
def make_NegatedExpression(self, expression):
return NegatedExpression(expression)
def handle_variable(self, tok):
#It's either: 1) a predicate expression: sees(x,y)
# 2) an application expression: P(x)
# 3) a solo variable: john OR x
accum = self.make_VariableExpression(tok)
if self.inRange(0) and self.token(0) == Tokens.OPEN:
#The predicate has arguments
if isinstance(accum, IndividualVariableExpression):
raise ParseException('\'%s\' is an illegal predicate name. '
'Individual variables may not be used as '
'predicates.' % tok)
self.token() #swallow the Open Paren
#curry the arguments
accum = self.make_ApplicationExpression(accum,
self.parse_Expression())
while self.token(0) == Tokens.COMMA:
self.token() #swallow the comma
accum = self.make_ApplicationExpression(accum,
self.parse_Expression())
self.assertToken(self.token(), Tokens.CLOSE)
return self.attempt_EqualityExpression(accum)
def ensure_abstractable(self, tok):
if isinstance(VariableExpression(Variable(tok)), ConstantExpression):
raise ParseException('\'%s\' is an illegal variable name. '
'Constants may not be abstracted.' % tok)
def handle_lambda(self, tok):
# Expression is a lambda expression
self.ensure_abstractable(self.token(0))
vars = [Variable(self.token())]
while self.isvariable(self.token(0)):
# Support expressions like: \x y.M == \x.\y.M
self.ensure_abstractable(self.token(0))
vars.append(Variable(self.token()))
self.assertToken(self.token(), Tokens.DOT)
accum = self.parse_Expression(False)
while vars:
accum = self.make_LambdaExpression(vars.pop(), accum)
return accum
def handle_quant(self, tok):
# Expression is a quantified expression: some x.M
factory = self.get_QuantifiedExpression_factory(tok)
vars = [self.token()]
while self.isvariable(self.token(0)):
# Support expressions like: some x y.M == some x.some y.M
vars.append(self.token())
self.assertToken(self.token(), Tokens.DOT)
accum = self.parse_Expression(False)
while vars:
var = vars.pop()
varex = self.make_VariableExpression(var)
if isinstance(varex, ConstantExpression):
raise ParseException('\'%s\' is an illegal variable name. '
'Constant expressions may not be '
'quantified.' % var)
accum = self.make_QuanifiedExpression(factory, Variable(var), accum)
return accum
def get_QuantifiedExpression_factory(self, tok):
"""This method serves as a hook for other logic parsers that
have different quantifiers"""
if tok in Tokens.EXISTS:
return ExistsExpression
elif tok in Tokens.ALL:
return AllExpression
else:
self.assertToken(tok, Tokens.QUANTS)
def make_QuanifiedExpression(self, factory, variable, term):
return factory(variable, term)
def handle_open(self, tok):
#Expression is in parens
accum = self.parse_Expression()
self.assertToken(self.token(), Tokens.CLOSE)
return accum
def attempt_EqualityExpression(self, expression):
"""Attempt to make an equality expression. If the next token is an
equality operator, then an EqualityExpression will be returned.
Otherwise, the parameter will be returned."""
if self.inRange(0) and self.token(0) in Tokens.EQ:
self.token() #swallow the "="
return self.make_EqualityExpression(expression,
self.parse_Expression())
elif self.inRange(0) and self.token(0) in Tokens.NEQ:
self.token() #swallow the "!="
return self.make_NegatedExpression(
self.make_EqualityExpression(expression,
self.parse_Expression()))
return expression
def make_EqualityExpression(self, first, second):
"""This method serves as a hook for other logic parsers that
have different equality expression classes"""
return EqualityExpression(first, second)
def attempt_BooleanExpression(self, expression):
"""Attempt to make a boolean expression. If the next token is a boolean
operator, then a BooleanExpression will be returned. Otherwise, the
parameter will be returned."""
if self.inRange(0):
factory = self.get_BooleanExpression_factory(self.token(0))
if factory: #if a factory was returned
self.token() #swallow the operator
return self.make_BooleanExpression(factory, expression, self.parse_Expression())
#otherwise, no boolean expression can be created
return expression
def get_BooleanExpression_factory(self, tok):
"""This method serves as a hook for other logic parsers that
have different boolean operators"""
if tok in Tokens.AND:
return AndExpression
elif tok in Tokens.OR:
return OrExpression
elif tok in Tokens.IMP:
return ImpExpression
elif tok in Tokens.IFF:
return IffExpression
else:
return None
def make_BooleanExpression(self, factory, first, second):
return factory(first, second)
def attempt_ApplicationExpression(self, expression):
"""Attempt to make an application expression. The next tokens are
a list of arguments in parens, then the argument expression is a
function being applied to the arguments. Otherwise, return the
argument expression."""
if self.inRange(0) and self.token(0) == Tokens.OPEN:
if not isinstance(expression, LambdaExpression) and \
not isinstance(expression, ApplicationExpression):
raise ParseException("The function '" + str(expression) +
' is not a Lambda Expression or an '
'Application Expression, so it may '
'not take arguments')
self.token() #swallow then open paren
#curry the arguments
accum = self.make_ApplicationExpression(expression,
self.parse_Expression())
while self.token(0) == Tokens.COMMA:
self.token() #swallow the comma
accum = self.make_ApplicationExpression(accum,
self.parse_Expression())
self.assertToken(self.token(), Tokens.CLOSE)
return self.attempt_ApplicationExpression(accum)
else:
return expression
def make_ApplicationExpression(self, function, argument):
return ApplicationExpression(function, argument)
def make_VariableExpression(self, name):
return VariableExpression(Variable(name))
def make_LambdaExpression(self, variable, term):
return LambdaExpression(variable, term)
def assertToken(self, tok, expected):
if isinstance(expected, list):
if tok not in expected:
raise UnexpectedTokenException(tok, expected)
else:
if tok != expected:
raise UnexpectedTokenException(tok, expected)
def __repr__(self):
if self.inRange(0):
msg = 'Next token: ' + self.token(0)
else:
msg = 'No more tokens'
return '<' + self.__class__.__name__ + ': ' + msg + '>'
class StringTrie(defaultdict):
LEAF = "<leaf>"
def __init__(self, strings=None):
defaultdict.__init__(self, StringTrie)
if strings:
for string in strings:
self.insert(string)
def insert(self, string):
if len(string):
self[string[0]].insert(string[1:])
else:
#mark the string is complete
self[StringTrie.LEAF] = None
class ParseException(Exception):
def __init__(self, message):
Exception.__init__(self, message)
class UnexpectedTokenException(ParseException):
def __init__(self, tok, expected=None):
if expected:
ParseException.__init__(self, "parse error, unexpected token: '%s'. "
"Expected token: %s" % (tok, expected))
else:
ParseException.__init__(self, "parse error, unexpected token: '%s'"
% tok)
def is_indvar(expr):
"""
An individual variable must be a single lowercase character other than 'e',
followed by zero or more digits.
@param expr: C{str}
@return: C{boolean} True if expr is of the correct form
"""
assert isinstance(expr, str), "%s is not a string" % expr
return re.match(r'^[a-df-z]\d*$', expr)
def is_funcvar(expr):
"""
A function variable must be a single uppercase character followed by
zero or more digits.
@param expr: C{str}
@return: C{boolean} True if expr is of the correct form
"""
assert isinstance(expr, str), "%s is not a string" % expr
return re.match(r'^[A-Z]\d*$', expr)
def is_eventvar(expr):
"""
An event variable must be a single lowercase 'e' character followed by
zero or more digits.
@param expr: C{str}
@return: C{boolean} True if expr is of the correct form
"""
assert isinstance(expr, str), "%s is not a string" % expr
return re.match(r'^e\d*$', expr)
def demo():
p = LogicParser().parse
print '='*20 + 'Test parser' + '='*20
print p(r'john')
print p(r'man(x)')
print p(r'-man(x)')
print p(r'(man(x) & tall(x) & walks(x))')
print p(r'exists x.(man(x) & tall(x))')
print p(r'\x.man(x)')
print p(r'\x.man(x)(john)')
print p(r'\x y.sees(x,y)')
print p(r'\x y.sees(x,y)(a,b)')
print p(r'(\x.exists y.walks(x,y))(x)')
print p(r'exists x.(x = y)')
print p(r'\P Q.exists x.(P(x) & Q(x))')
print '='*20 + 'Test simplify' + '='*20
print p(r'\x.\y.sees(x,y)(john)(mary)').simplify()
print p(r'\x.\y.sees(x,y)(john, mary)').simplify()
print p(r'all x.(man(x) & (\x.exists y.walks(x,y))(x))').simplify()
print p(r'(\P.\Q.exists x.(P(x) & Q(x)))(\x.dog(x))(\x.bark(x))').simplify()
print '='*20 + 'Test alpha conversion and binder expression equality' + '='*20
e1 = p('exists x.P(x)')
print e1
e2 = e1.alpha_convert(Variable('z'))
print e2
print e1 == e2
def printtype(ex):
print ex.str() + ' : ' + str(ex.type)
if __name__ == '__main__':
demo()
|