File: util.py

package info (click to toggle)
w3af 1.0-rc3svn3489-1
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd, squeeze, wheezy
  • size: 59,908 kB
  • ctags: 16,916
  • sloc: python: 136,990; xml: 63,472; sh: 153; ruby: 94; makefile: 40; asm: 35; jsp: 32; perl: 18; php: 5
file content (408 lines) | stat: -rw-r--r-- 14,750 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
# Natural Language Toolkit: Semantic Interpretation
#
# Author: Ewan Klein <ewan@inf.ed.ac.uk>
# URL: <http://www.nltk.org/>
# For license information, see LICENSE.TXT

"""
Utility functions for batch-processing sentences: parsing and
extraction of the semantic representation of the root node of the the
syntax tree, followed by evaluation of the semantic representation in
a first-order model.
"""

import evaluate
import re
import nltk
from logic import *

##############################################################
## Utility functions for connecting parse output to semantics
##############################################################

def text_parse(inputs, grammar, trace=0):
    """
    Convert input sentences into syntactic trees.
    
    @parameter inputs: sentences to be parsed
    @type inputs: C{list} of C{str}
    @parameter grammar: name of feature-based grammar to use in parsing
    @rtype: C{dict}
    @return: a mapping from input sentences to a list of L{Tree}s
    """
    parses = {}
    cp = nltk.parse.load_earley(grammar, trace=trace)
    for sent in inputs:
        tokens = sent.split()
        syntrees = cp.nbest_parse(tokens)
        parses[sent] = syntrees
    return parses

def _semrep(node):
    """
    Find the semantic representation at a given tree node.
    
    @parameter node: node of a parse L{Tree}
    @rtype: L{logic.Expression}
    """
    assert isinstance(node, nltk.grammar.FeatStructNonterminal)
    try:
        semrep = node['sem']
        return semrep
    except KeyError:
        print "Node has no 'sem' feature specification"
    raise

def root_semrep(syntree, start='S'):
    """
    Find the semantic representation at the root of a tree.
    
    @parameter syntree: a parse L{Tree}
    @parameter beta_reduce: if C{True}, carry out beta reduction on the logical forms that are returned
    @return: the semantic representation at the root of a L{Tree}
    @rtype: L{logic.Expression}
    """
    return _semrep(syntree.node)

def text_interpret(inputs, grammar, start='S', trace=0):
    """
    Add the semantic representation to each syntactic parse tree
    of each input sentence.
    
    @parameter inputs: a list of sentences
    @parameter grammar: name of a feature-based grammar
    @return: a mapping from sentences to lists of pairs (parse-tree, semantic-representations)
    @rtype: C{dict}
    """
    parses = text_parse(inputs, grammar, trace=trace)
    semreps = {}
    for sent in inputs:
        syntrees = parses[sent]
        syn_sem = \
           [(syn, root_semrep(syn, start=start))
            for syn in syntrees]
        semreps[sent] = syn_sem
    return semreps

def text_evaluate(inputs, grammar, model, assignment, trace=0):
    """
    Add the truth-in-a-model value to each semantic representation
    for each syntactic parse of each input sentences.
    
    @parameter inputs: a list of sentences
    @parameter grammar: name of a feature-based grammar    
    @return: a mapping from sentences to lists of triples (parse-tree, semantic-representations, evaluation-in-model)
    @rtype: C{dict}
    """
    g = assignment
    m = model
    semreps = text_interpret(inputs, grammar)
    evaluations = {}
    for sent in inputs:
        syn_sem_val = \
          [(syn, sem, m.evaluate(str(sem), g, trace=trace)) for (syn, sem) in semreps[sent]]
        evaluations[sent] = syn_sem_val
    return evaluations

##########################################
# REs used by the parse_valuation function
##########################################
_VAL_SPLIT_RE = re.compile(r'\s*=+>\s*')
_ELEMENT_SPLIT_RE = re.compile(r'\s*,\s*')
_TUPLES_RE = re.compile(r"""\s*         
                                (\([^)]+\))  # tuple-expression
                                \s*""", re.VERBOSE)

def parse_valuation_line(s):
    """
    Parse a line in a valuation file.
    
    Lines are expected to be of the form::
    
      noosa => n
      girl => {g1, g2}
      chase => {(b1, g1), (b2, g1), (g1, d1), (g2, d2)}
    
    @parameter s: input line
    @type s: C{str}
    @return: a pair (symbol, value)
    @rtype: C{tuple}
    """
    pieces = _VAL_SPLIT_RE.split(s)
    symbol = pieces[0]
    value = pieces[1]
    # check whether the value is meant to be a set
    if value.startswith('{'):
        value = value[1:-1]
        tuple_strings = _TUPLES_RE.findall(value)
        # are the set elements tuples?
        if tuple_strings:
            set_elements = []
            for ts in tuple_strings:
                ts = ts[1:-1]
                element = tuple(_ELEMENT_SPLIT_RE.split(ts))
                set_elements.append(element)
        else:
            set_elements = _ELEMENT_SPLIT_RE.split(value)
        value = set(set_elements)
    return symbol, value
    
def parse_valuation(s):
    """
    Convert a valuation file into a valuation.
    
    @parameter s: the contents of a valuation file
    @type s: C{str}
    @return: a L{nltk.sem} valuation
    @rtype: L{Valuation}
    """
    statements = []
    for linenum, line in enumerate(s.splitlines()):
        line = line.strip()
        if line.startswith('#') or line=='': continue
        try: statements.append(parse_valuation_line(line))
        except ValueError:
            raise ValueError, 'Unable to parse line %s: %s' % (linenum, line)
    val = evaluate.Valuation(statements)
    return val

def parse_logic(s, logic_parser=None):
    """
    Convert a file of First Order Formulas into a list of {Expression}s.
    
    @param s: the contents of the file
    @type s: C{str}
    @param logic_parser: The parser to be used to parse the logical expression
    @type logic_parser: C{LogicParser}
    @return: a list of parsed formulas.
    @rtype: C{list} of L{Expression}
    """
    if logic_parser is None:
        logic_parser = LogicParser()
        
    statements = []
    for linenum, line in enumerate(s.splitlines()):
        line = line.strip()
        if line.startswith('#') or line=='': continue
        try:
            statements.append(logic_parser.parse(line))
        except ParseException:
            raise ValueError, 'Unable to parse line %s: %s' % (linenum, line)
    return statements
        
        
def skolemize(expression, univ_scope=None):
    """
    Skolemize the expression and convert to conjunctive normal form (CNF)
    """
    if univ_scope is None:
        univ_scope = set()

    if isinstance(expression, AllExpression):
        term = skolemize(expression.term, univ_scope|set([expression.variable]))
        return term.replace(expression.variable, VariableExpression(unique_variable()))
    elif isinstance(expression, AndExpression):
        return skolemize(expression.first, univ_scope) &\
               skolemize(expression.second, univ_scope)
    elif isinstance(expression, OrExpression):
        return to_cnf(skolemize(expression.first, univ_scope), 
                      skolemize(expression.second, univ_scope))
    elif isinstance(expression, ImpExpression):
        return to_cnf(skolemize(-expression.first, univ_scope), 
                      skolemize(expression.second, univ_scope))
    elif isinstance(expression, IffExpression):
        return to_cnf(skolemize(-expression.first, univ_scope), 
                      skolemize(expression.second, univ_scope)) &\
               to_cnf(skolemize(expression.first, univ_scope), 
                      skolemize(-expression.second, univ_scope))
    elif isinstance(expression, EqualityExpression):
        return expression
    elif isinstance(expression, NegatedExpression):
        negated = expression.term
        if isinstance(negated, AllExpression):
            term = skolemize(-negated.term, univ_scope)
            if univ_scope:
                return term.replace(negated.variable, skolem_function(univ_scope))
            else:
                skolem_constant = VariableExpression(unique_variable())
                return term.replace(negated.variable, skolem_constant)
        elif isinstance(negated, AndExpression):
            return to_cnf(skolemize(-negated.first, univ_scope), 
                          skolemize(-negated.second, univ_scope))
        elif isinstance(negated, OrExpression):
            return skolemize(-negated.first, univ_scope) &\
                   skolemize(-negated.second, univ_scope)
        elif isinstance(negated, ImpExpression):
            return skolemize(negated.first, univ_scope) &\
                   skolemize(-negated.second, univ_scope)
        elif isinstance(negated, IffExpression):
            return to_cnf(skolemize(-negated.first, univ_scope), 
                          skolemize(-negated.second, univ_scope)) &\
                   to_cnf(skolemize(negated.first, univ_scope), 
                          skolemize(negated.second, univ_scope))
        elif isinstance(negated, EqualityExpression):
            return expression
        elif isinstance(negated, NegatedExpression):
            return skolemize(negated.term, univ_scope)
        elif isinstance(negated, ExistsExpression):
            term = skolemize(-negated.term, univ_scope|set([negated.variable]))
            return term.replace(negated.variable, VariableExpression(unique_variable()))
        elif isinstance(negated, ApplicationExpression):
            return expression
        else:
            raise Exception('\'%s\' cannot be skolemized' % expression)
    elif isinstance(expression, ExistsExpression):
        term = skolemize(expression.term, univ_scope)
        if univ_scope:
            return term.replace(expression.variable, skolem_function(univ_scope))
        else:
            skolem_constant = VariableExpression(unique_variable())
            return term.replace(expression.variable, skolem_constant)
    elif isinstance(expression, ApplicationExpression):
        return expression
    else:
        raise Exception('\'%s\' cannot be skolemized' % expression)

def to_cnf(first, second):
    """
    Convert this split disjunction to conjunctive normal form (CNF)
    """
    if isinstance(first, AndExpression):
        r_first = to_cnf(first.first, second)
        r_second = to_cnf(first.second, second)
        return r_first & r_second
    elif isinstance(second, AndExpression):
        r_first = to_cnf(first, second.first)
        r_second = to_cnf(first, second.second)
        return r_first & r_second
    else:
        return first | second


def demo_model0():
    global m0, g0
    val = evaluate.Valuation()
    #Initialize a valuation of non-logical constants."""
    v = [('john', 'b1'),
        ('mary', 'g1'),
        ('suzie', 'g2'),
        ('fido', 'd1'),
        ('tess', 'd2'),
        ('noosa', 'n'),
        ('girl', set(['g1', 'g2'])),
        ('boy', set(['b1', 'b2'])),
        ('dog', set(['d1', 'd2'])),
        ('bark', set(['d1', 'd2'])),
        ('walk', set(['b1', 'g2', 'd1'])),
        ('chase', set([('b1', 'g1'), ('b2', 'g1'), ('g1', 'd1'), ('g2', 'd2')])),
        ('see', set([('b1', 'g1'), ('b2', 'd2'), ('g1', 'b1'),('d2', 'b1'), ('g2', 'n')])),
        ('in', set([('b1', 'n'), ('b2', 'n'), ('d2', 'n')])),
        ('with', set([('b1', 'g1'), ('g1', 'b1'), ('d1', 'b1'), ('b1', 'd1')]))
     ]
    #Read in the data from C{v}
    val.read(v)
    #Bind C{dom} to the C{domain} property of C{val}
    dom = val.domain
    #Initialize a model with parameters C{dom} and C{val}.
    m0 = evaluate.Model(dom, val)
    #Initialize a variable assignment with parameter C{dom}
    g0 = evaluate.Assignment(dom)


def read_sents(file):
    sents = [l.rstrip() for l in open(file)]
    # get rid of blank lines
    sents = [l for l in sents if len(l) > 0]
    sents = [l for l in sents if not l[0] == '#']
    return sents

def demo():
    import sys
    from optparse import OptionParser
    description = \
    """
    Parse and evaluate some sentences.
    """

    opts = OptionParser(description=description)
    
    opts.set_defaults(evaluate=True, beta=True, syntrace=0,
                      semtrace=0, demo='default', grammar='', sentences='')

    opts.add_option("-d", "--demo", dest="demo",
                    help="choose demo D; omit this for the default demo, or specify 'chat80'", metavar="D")
    opts.add_option("-g", "--gram", dest="grammar",
                    help="read in grammar G", metavar="G")
    opts.add_option("-m", "--model", dest="model",
                        help="import model M (omit '.py' suffix)", metavar="M")
    opts.add_option("-s", "--sentences", dest="sentences",
                        help="read in a file of test sentences S", metavar="S")
    opts.add_option("-e", "--no-eval", action="store_false", dest="evaluate",
                    help="just do a syntactic analysis")
    opts.add_option("-b", "--no-beta-reduction", action="store_false",
                    dest="beta", help="don't carry out beta-reduction")
    opts.add_option("-t", "--syntrace", action="count", dest="syntrace",
                    help="set syntactic tracing on; requires '-e' option")
    opts.add_option("-T", "--semtrace", action="count", dest="semtrace",
                    help="set semantic tracing on")

    (options, args) = opts.parse_args()
    
    SPACER = '-' * 30

    demo_model0()

    sents = [
    'Fido sees a boy with Mary',
    'John sees Mary',
    'every girl chases a dog',
    'every boy chases a girl',
    'John walks with a girl in Noosa',
    'who walks']
    
    gramfile = 'grammars/sample_grammars/sem2.fcfg'
        
    if options.sentences:
        sentsfile = options.sentences
    if options.grammar:
        gramfile = options.grammar
    if options.model:
        exec "import %s as model" % options.model
    
    if sents is None:
        sents = read_sents(sentsfile)

    gram = nltk.data.load(gramfile)
    
    # Set model and assignment
    model = m0
    g = g0

    if options.evaluate: 
        evaluations = \
            text_evaluate(sents, gram, model, g, semtrace=options.semtrace)
    else:
        semreps = \
            text_interpret(sents, gram, beta_reduce=options.beta, syntrace=options.syntrace)
        
    for sent in sents:
        n = 1
        print '\nSentence: %s' % sent
        print SPACER
        if options.evaluate: 
            
            for (syntree, semrep, value) in evaluations[sent]:
                if isinstance(value, dict):
                    value = set(value.keys())
                print '%d:  %s' % (n, semrep.infixify())
                print value
                n += 1
        else:
           
            for (syntree, semrep) in semreps[sent]:
#                print '%d:  %s' % (n, semrep.infixify())
                print '%d:  %s' % (n, semrep)
                n += 1
                
if __name__ == "__main__":
    demo()