1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
|
# Natural Language Toolkit - Instances
# Understands the creation and validation of instances from input file path
#
# Author: Sumukh Ghodke <sumukh dot ghodke at gmail dot com>
#
# URL: <http://www.nltk.org/>
# This software is distributed under GPL, for license information see LICENSE.TXT
from nltk_contrib.classifier import instance as ins, item, cfile, confusionmatrix as cm, numrange as r, util
from nltk_contrib.classifier.exceptions import systemerror as system, invaliddataerror as inv
from nltk import probability as prob
import operator, UserList, UserDict, math
class Instances(UserList.UserList):
def __init__(self, instances):
UserList.UserList.__init__(self, instances)
def are_valid(self, klass, attributes):
for instance in self.data:
if not instance.is_valid(klass, attributes):
return False
return True
def discretise(self, discretised_attributes):
for instance in self.data:
instance.discretise(discretised_attributes)
def remove_attributes(self, attributes):
for instance in self.data:
instance.remove_attributes(attributes)
def convert_to_float(self, indices):
for instance in self.data:
instance.convert_to_float(indices)
def __str__(self):
return '[' + ', '.join([str(instance) for instance in self.data]) + ']'
class TrainingInstances(Instances):
def __init__(self, instances):
Instances.__init__(self, instances)
self.prior_probabilities = None
def filter(self, attribute, attr_value):
return TrainingInstances([instance for instance in self.data if instance.value(attribute) == attr_value])
def value_ranges(self, attributes):
"""
Returns an array of range objects, in which each corresponds to the range of values an
attribute in the attributes parameter can take.
len(returned range array) is equal to len(attributes)
"""
ranges = []
for attribute in attributes:
if not attribute.is_continuous():
raise inv.InvalidDataError('Cannot discretise non continuous attribute ' + attribute.name)
values = self.values_grouped_by_attribute(attributes)
for value in values: #each entry in values is the range of values for a particular attribute
value.sort()
ranges.append(r.Range(value[0], value[-1], True))
return ranges
def values_grouped_by_attribute(self, attributes):
"""
Returns an array where each element is an array of attribute values for a particular attribute
len(returned array) is equal to len(attributes)
"""
values = []
for attribute in attributes:
_vals_in_attr = []
for instance in self.data:
if attribute.is_continuous():
_vals_in_attr.append(float(instance.value(attribute)))
else:
_vals_in_attr.append(instance.value(attribute))
values.append(_vals_in_attr)
return values
def __as_float(self, values):
return [float(value) for value in values]
def klass_values(self):
return [instance.klass_value for instance in self.data]
def supervised_breakpoints(self, attribute):
self.sort_by(attribute)
attr_values = self.attribute_values(attribute)
return SupervisedBreakpoints(self.klass_values(), attr_values)
def attribute_values(self, attribute):
return [instance.value(attribute) for instance in self.data]
def sort_by(self, attribute):
self.data.sort(lambda x, y: cmp(x.value(attribute), y.value(attribute)))
def cross_validation_datasets(self, fold):
"""
Gold instances are completely new objects except for attribute value objects,
we wont be changing the attribute value objects in the gold instances anyway
unless something really weird is happening!
"""
if fold > len(self): fold = len(self) / 2
stratified = self.stratified_bunches(fold)
datasets = []
for index in range(len(stratified)):
gold = GoldInstances(training_as_gold(stratified[index]))
rest = flatten(stratified[:index]) + flatten(stratified[index + 1:])
training = TrainingInstances(rest)
datasets.append((training, gold))
return datasets
def stratified_bunches(self, fold):
stratified = [[] for each in range(fold)]
self.data.sort(key=lambda instance: instance.klass_value)
for index in range(len(self.data)): stratified[index % fold].append(self.data[index])
return stratified
def posterior_probablities(self, attributes, klass_values):
freq_dists = attributes.empty_freq_dists()
for attribute in attributes:
for value in attribute.values:
for klass_value in klass_values:
freq_dists[attribute][value].inc(klass_value) #Laplacian smoothing
stat_list_values = {}
cont_attrs = filter(lambda attr: attr.is_continuous(), attributes)
if attributes.has_continuous():
for attribute in cont_attrs:
stat_list_values[attribute] = {}
for klass_value in klass_values:
stat_list_values[attribute][klass_value] = util.StatList()
for instance in self.data:
for attribute in attributes:
if attribute.is_continuous():
stat_list_values[attribute][instance.klass_value].append(instance.value(attribute))
else:
freq_dists[attribute][instance.value(attribute)].inc(instance.klass_value)
return PosteriorProbabilities(freq_dists, stat_list_values)
def class_freq_dist(self):
class_freq_dist = prob.FreqDist()
for instance in self.data:
class_freq_dist.inc(instance.klass_value)
return class_freq_dist
#todo remove this
class TestInstances(Instances):
def __init__(self, instances):
Instances.__init__(self, instances)
class GoldInstances(Instances):
def __init__(self, instances):
Instances.__init__(self, instances)
def confusion_matrix(self, klass):
for i in self.data:
if i.classified_klass == None:
raise system.SystemError('Cannot calculate accuracy as one or more instance(s) are not classified')
matrix = cm.ConfusionMatrix(klass)
for i in self.data:
matrix.count(i.klass_value, i.classified_klass)
return matrix
class SupervisedBreakpoints(UserList.UserList):
"""
Used to find breakpoints for discretisation
"""
def __init__(self, klass_values, attr_values):
UserList.UserList.__init__(self, [])
self.attr_values = attr_values
self.klass_values = klass_values
def find_naive(self):
self.data[:] = self.breakpoints_in_class_membership()
self.adjust_for_equal_values()
def find_naive_v1(self, min_size):
frequencies = prob.FreqDist()
for index in range(len(self.klass_values) - 1):
frequencies.inc(self.klass_values[index])
if frequencies[frequencies.max()] >= min_size:
self.append(index)
frequencies = prob.FreqDist()
def find_naive_v2(self, min_size):
self.find_naive()
self.adjust_for_min_freq(min_size)
def find_entropy_based_max_depth(self, max_depth):
self.max_depth = max_depth
self.extend(self.__find_breakpoints(self.klass_values))
def __find_breakpoints(self, klass_values, depth = 0):
breakpoints = []
if len(klass_values) <= 1: return breakpoints
from nltk_contrib.classifier import min_entropy_breakpoint
position, entropy = min_entropy_breakpoint(klass_values)
if abs(entropy) == 0: return breakpoints
breakpoints.append(position)
first, second = klass_values[:position+1], klass_values[position+1:]
if depth < self.max_depth:
breakpoints.extend(self.__find_breakpoints(first, depth + 1))
breakpoints.extend([position + 1 + x for x in self.__find_breakpoints(second, depth + 1)])
return breakpoints
def breakpoints_in_class_membership(self):
"""
Returns an array of indices where the class membership changes from one value to another
the indicies will always lie between 0 and one less than number of instance, both inclusive.
"""
return [index for index in range(len(self.klass_values) - 1) if not self.klass_values[index] == self.klass_values[index + 1]]
def adjust_for_min_freq(self, min_size):
prev = -1
self.sort()
to_remove,frequencies = [], prob.FreqDist()
for breakpoint in self.data:
frequencies.inc(self.klass_values[breakpoint], breakpoint - prev)
if frequencies[frequencies.max()] < min_size:
to_remove.append(breakpoint)
else:
frequencies = prob.FreqDist()
prev = breakpoint
for item in to_remove:
self.remove(item)
def adjust_for_equal_values(self):
index = 0
to_be_deleted = []
while(index < len(self.data) - 1):
if self.attr_values[self.data[index]] == self.attr_values[self.data[index + 1]]:
to_be_deleted.append(index)
else:
while(self.data[index] < self.data[index + 1] and self.attr_values[self.data[index]] == self.attr_values[self.data[index] + 1]):
self.data[index] += 1
index += 1
to_be_deleted.sort()
to_be_deleted.reverse()
for index in to_be_deleted:
self.data.__delitem__(index)
last = self.data[-1]
while (last < len(self.attr_values) - 1 and self.attr_values[last] == self.attr_values[last + 1]):
self.data[-1] += 1
last = self.data[-1]
if last == len(self.attr_values) - 1: del self.data[-1]
def as_ranges(self):
ranges, lower = [], self.attr_values[0]
self.sort()
for breakpoint in self.data:
mid = (self.attr_values[breakpoint] + self.attr_values[breakpoint + 1]) / 2.0
ranges.append(r.Range(lower, mid))
lower = mid
ranges.append(r.Range(lower, self.attr_values[-1], True))
return ranges
class PosteriorProbabilities(UserDict.UserDict):
def __init__(self, freq_dists, stat_list_values):
self.freq_dists = freq_dists
self.stat_list_values = stat_list_values
def value(self, attribute, value, klass_value):
if attribute.is_continuous():
stat_list = self.stat_list_values[attribute][klass_value]
return calc_prob_based_on_distrbn(stat_list.mean(), stat_list.std_dev(), value)
return self.freq_dists[attribute][value].freq(klass_value)
def calc_prob_based_on_distrbn(mean, sd, value):
if sd == 0:
if value == mean:
return 1
else: return 0
return (1.0 / math.sqrt(2 * math.pi * sd)) * math.exp(-pow((value - mean), 2)/ (2 * pow(sd, 2)))
def training_as_gold(instances):
return [instance.as_gold() for instance in instances]
## Utility method
# needs to be pulled out into a common utility class
def flatten(alist):
if type(alist) == list:
elements = []
for each in alist:
if type(each) == list:
elements.extend(flatten(each))
else:
elements.append(each)
return elements
return None
|