1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
|
from nltk.classify import iis
import yaml
import os
class SequentialClassifier(object):
def __init__(self, left=2, right=0):
#left = look back
#right = look forward
self._model = []
self._left = left
self._right = right
self._leftcontext = [None] * (left)
self._history = self._leftcontext
self._rightcontext = [None] * (right)
def size(self):
return len(self._model)
def classify(self, featuresets):
if self.size() == 0:
raise ValueError, 'Tagger is not trained'
for i, featureset in enumerate(featuresets):
#if i >= self._left:
#self._leftcontext = sequence[i-self._left : i]
#else:
#self._leftcontext = sequence[:i]
self._rightcontext = sequence[i+1 : i+1+self._right]
label = self.classify_one(featureset)
featureset['label'] = label
del self._leftcontext[0]
self._leftcontext.append(featureset)
yield label
def classify_one(self, featureset):
"""
Classify a single featureset.
"""
return self._model([featureset][0])
def contexts(self, sequence):
"""
Build a generator of triples (left context, item, right context).
@param sequence: Input sequence
@type sequence: C{list}
@rtype: C{generator} of triples (left_context, token, right_contex)
"""
for i in range(len(sequence)):
if i >= self._left:
left_context = sequence[i - self._left:i]
else:
left_context = sequence[:i]
right_context = sequence[i+1 : i+1+self._right]
yield (left_context, sequence[i], right_context)
def detect_features(self, context):
from string import join
left_context, item, right_context = context
features = {}
token = item['token']
features['cur_token(%s)' % token] = True
features['is_title'] = token.istitle()
features['is_digit'] = token.isdigit()
features['is_upper'] = token.isupper()
features['POS(%s)' % item['POS']] = True
if left_context == []:
features['initword'] = True
else:
left_labels = join([item['label'] for item in left_context], '_')
features['left_labels(%s)' % left_labels] = True
return features
def save_features(self, training_data, filename):
stream = open(filename,'w')
yaml.dump_all(training_data, stream)
print "Saving features to %s" % os.path.abspath(filename)
stream.close()
def corpus2training_data(self, training_corpus, model_name='default', save=False):
dict_corpus = tabular2dict(training_corpus, KEYS)
contexts = self.contexts(dict_corpus)
print "Detecting features"
training_data = [(self.detect_features(c), c[1]['label']) for c in contexts]
if save:
feature_file = model_name + '.yaml'
self.save_features(training_data, feature_file)
else:
return training_data
def train(self, training_corpus, classifier=iis):
"""
Train a classifier.
"""
if self.size() != 0:
raise ValueError, 'Classifier is already trained'
training_data = self.corpus2training_data(training_corpus)
print "Training classifier"
self._model = iis(training_data)
def tabular2dict(tabular, keys):
"""
Utility function to turn tabular format CONLL data into a
sequence of dictionaries.
@param tabular: tabular input
@param keys: a dictionary that maps field positions into feature names
@rtype: C{list} of featuresets
"""
tokendicts = []
lines = tabular.splitlines()
for line in lines:
line = line.strip()
line = line.split()
if line:
tokendict = {}
for i in range(len(line)):
key = keys[i]
tokendict [key] = line[i]
tokendicts.append(tokendict )
return tokendicts
KEYS = {0: 'token', 1: 'POS', 2: 'label'}
def demo():
tabtrain = \
"""Het Art O
Hof N B-ORG
van Prep I-ORG
Cassatie N I-ORG
verbrak V O
het Art O
arrest N O
"""
tabtest = \
"""Het Art
Hof N
van Prep
Cassatie N
verbrak V
het Art
arrest N
"""
test = tabular2dict(tabtest, KEYS)
train = tabular2dict(tabtrain, KEYS)
sc = SequentialClassifier(2, 0)
sc.train(tabtrain)
sc.classify(tabtest)
demo()
|