1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
|
/*
This file is part of Warzone 2100.
Copyright (C) 2024 Warzone 2100 Project
Warzone 2100 is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
Warzone 2100 is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Warzone 2100; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/** @file paged_entity_container.h
* Optimized paged container for various in-game entities,
* capable of recycling erased elements, which greatly reduces
* memory fragmentation for rapid allocation/deallocation patterns.
*/
#pragma once
#include <stddef.h>
#include <stdint.h>
#include <iterator>
#include <limits>
#include <memory>
#include <type_traits>
#include <queue>
#include <vector>
#include <utility>
/// <summary>
/// Optimized paged container for various in-game entities,
/// capable of recycling erased elements, which greatly reduces
/// memory fragmentation for rapid allocation/deallocation patterns.
///
/// As noted above, the container allocates memory in fixed-size
/// continuous chunks, or pages, hence the name.
///
/// Each page is set to hold exactly `MaxElementsPerPage` elements,
/// which is 1024 by default.
///
/// Also, each element is equipped with some additional metadata,
/// which allows the container to reuse the same memory (also called "slots")
/// for consequent allocations, after the current element was freed.
///
/// Such a structure is often called the "slot map".
/// More info can be found by following these links:
/// * https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0661r0.pdf
/// * https://www.youtube.com/watch?v=SHaAR7XPtNU
///
/// Each slot can currently survive up to `std::numeric_limits<uint32_t>::max() - 1`
/// incarnations (also called "generations"). When the generation counter overflows,
/// the slot will become "expired", meaning that it won't ever return back
/// to the freelist queue.
/// The slot expiration mechanism can help prevent various memory-related
/// errors and reduce the risks of accessing bad/stale pointers.
///
/// There isn't currently an API to explicitly check which "generation"
/// an element belongs to, but it is planned for the future.
///
/// `PagedEntityContainer` further tries to optimize rapid
/// allocation/deallocation patterns by calling destructors only
/// when it's needed (e.g. it won't call any destructors for
/// instances of `T`, which are trivially destructible, and will just
/// re-write one object on top of the other while reallocating
/// an existing slot).
///
/// The container provides `begin()`/`end()` methods which return an instance
/// of forward iterator, which traverses only slots, which are currently
/// alive (meaning: there is always a valid allocated item at the current
/// position pointed-to by iterator, except for `end()` iterator).
///
/// There are `emplace()` and `erase()` methods, to insert or remove a single
/// element from the container. `emplace()` does not ever invalidate any
/// iterators and references. `erase()` invalidates only the reference/iterator,
/// which is being erased from the container.
///
/// Also, `clear()` method invalidates all existing references and iterators.
/// This method erases all elements (calling their destructors, if needed),
/// frees all pages except the first one and resets its metadata
/// completely, so that the container can be used as if it was
/// constructed anew.
///
/// Algorithmic complexities of common operations are as follows:
/// * `emplace()` is `O(1)` + complexity of `T(Args&&...)` constructor.
/// * `erase()` is `O(1)` + complexity of `~T()` destructor.
/// * `clear()` can be up to `O(N)` if destructors need to be called.
///
/// This implementation is loosely inspired by the following implementations,
/// which can be found on the GitHub:
/// * https://github.com/SergeyMakeev/slot_map/blob/main/slot_map/slot_map.h
/// * https://github.com/Masstronaut/slot_array/blob/master/slot_map.hpp
/// </summary>
/// <typeparam name="T">Entity type. Should be a complete type.</typeparam>
/// <typeparam name="MaxElementsPerPage">The fixed number of elements each page may hold.</typeparam>
/// <typeparam name="ReuseSlots">If `false`, slots are one-shot and set to expire after single use.</typeparam>
template <typename T, size_t MaxElementsPerPage = 1024, bool ReuseSlots = true>
class PagedEntityContainer
{
using SlotIndexType = size_t;
// Default initial capacity is exactly 1 page.
static constexpr size_t DEFAULT_INITIAL_CAPACITY = 1 * MaxElementsPerPage;
static constexpr SlotIndexType INVALID_SLOT_IDX = std::numeric_limits<SlotIndexType>::max();
static constexpr size_t INVALID_PAGE_IDX = std::numeric_limits<size_t>::max();
/// <summary>
/// Guaranteed to be standard-layout type.
///
/// This means the address of `AlignedElementStorage` instance
/// should always be the same as the address of its first data member.
/// </summary>
struct AlignedElementStorage
{
// Align raw storage to the requirements of `T` type, which allows
// to use placement-new to construct new instances of `T`
// within the contiguous storage of `AlignmentElementStorage:s`.
alignas(T) char rawStorage[sizeof(T)];
};
// Aggregate struct which contains an page-wise element index, i.e. <page index, index within that page>.
using PageIndex = std::pair<size_t, size_t>;
/// <summary>
/// Structure to describe a single element slot.
/// Provides information whether the current element is alive or not,
/// as well as the current incarnation ordinal number.
/// </summary>
class SlotMetadata
{
static constexpr uint32_t INVALID_GENERATION = 0;
uint32_t _generation = INVALID_GENERATION;
bool _isAlive = false;
public:
bool is_valid() const
{
return _generation != INVALID_GENERATION;
}
bool is_alive() const
{
return _isAlive;
}
void invalidate()
{
_generation = INVALID_GENERATION;
}
void set_dead()
{
_isAlive = false;
}
void set_alive()
{
_isAlive = true;
}
void reset_generation()
{
_generation = 1;
}
void advance_generation()
{
++_generation;
}
};
/// <summary>
/// This class holds the actual contiguous storage and metadata for the elements,
/// as well as the queue for recycled indices.
///
/// Always allocates storage for exactly `MaxElementsPerPage` elements.
///
/// If the parent container is instantiated with the `ReuseSlots=false` mode,
/// expired pages will deallocate their storage to keep memory consumption
/// under control.
/// </summary>
class Page
{
// Represents the free list of recycled IDs (i.e. IDs of elements,
// which were erased earlier and are eligible to be recycled and used again).
std::queue<SlotIndexType> _recycledFreeIndices;
std::unique_ptr<AlignedElementStorage[]> _storage = nullptr;
std::unique_ptr<SlotMetadata[]> _slotMetadata = nullptr;
// The number of allocated (i.e., alive) elements in the page.
size_t _currentSize = 0;
// Max valid index within a single page. Monotonically increasing value as
// the page gets filled up.
SlotIndexType _maxValidIndex = INVALID_SLOT_IDX;
// The number of expired slots, i.e. which have overflowed generation number.
size_t _expiredSlotsCount = 0;
public:
bool is_full() const
{
return _currentSize + _expiredSlotsCount == MaxElementsPerPage;
}
void allocate_storage()
{
assert(_storage == nullptr);
assert(_slotMetadata == nullptr);
// Allocate storage for `MaxElementsPerPage` elements.
_storage = std::make_unique<AlignedElementStorage[]>(MaxElementsPerPage);
_slotMetadata = std::make_unique<SlotMetadata[]>(MaxElementsPerPage);
}
bool has_recycled_indices() const
{
return !_recycledFreeIndices.empty();
}
void recycle_index(const SlotIndexType& idx)
{
_recycledFreeIndices.emplace(idx);
}
SlotIndexType pop_free_index()
{
assert(!_recycledFreeIndices.empty());
auto res = _recycledFreeIndices.front();
_recycledFreeIndices.pop();
return res;
}
SlotIndexType max_valid_index() const
{
return _maxValidIndex;
}
void set_max_valid_index(SlotIndexType idx)
{
_maxValidIndex = idx;
}
SlotMetadata* slotMetadata()
{
return _slotMetadata.get();
}
const SlotMetadata* slotMetadata() const
{
return _slotMetadata.get();
}
AlignedElementStorage* storage()
{
return _storage.get();
}
const AlignedElementStorage* storage() const
{
return _storage.get();
}
void decrease_current_size()
{
--_currentSize;
}
void increase_current_size()
{
++_currentSize;
}
void increase_expired_slots_count()
{
++_expiredSlotsCount;
}
// When `ReuseSlots=false`, expired pages will also deallocate
// their storage upon reaching "expired" state.
bool is_expired() const
{
return _expiredSlotsCount == MaxElementsPerPage;
}
// This method renders the page unusable!
//
// The page will then need to call `allocate_storage()` + `reset_metadata()`
// to be usable once again.
void deallocate_storage()
{
_storage.reset();
_slotMetadata.reset();
}
// Reset generations to least possible valid value for all slots,
// plus mark all slots as dead, so that the page appears clean and empty.
void reset_metadata()
{
auto* meta = slotMetadata();
assert(meta != nullptr);
for (size_t i = 0; i < MaxElementsPerPage; ++i)
{
auto& slot = meta[i];
slot.reset_generation();
slot.set_dead();
}
_currentSize = 0;
_maxValidIndex = INVALID_SLOT_IDX;
_expiredSlotsCount = 0;
// There's no `.clear()` for `std::queue`, unfortunately.
_recycledFreeIndices = {};
}
};
public:
explicit PagedEntityContainer()
: PagedEntityContainer(DEFAULT_INITIAL_CAPACITY)
{}
explicit PagedEntityContainer(size_t initialCapacity)
{
reserve(initialCapacity);
}
~PagedEntityContainer()
{
// No need to perform any additional cleanup steps
// aside from calling destructors, if needed.
destroy_live_elements();
}
bool empty() const
{
return _size == 0;
}
size_t size() const
{
return _size;
}
// Raw capacity minus part which represents storage,
// not accessible anymore (i.e., expired slots).
size_t usable_capacity() const
{
return _capacity - _expiredSlotsCount;
}
// Reserve the storage based on the raw capacity of the container, not `usable_capacity()`.
void reserve(size_t capacity)
{
// Check `capacity` against current `_capacity`. If <= do nothing,
// else calculate the necessary amount of pages to be allocated
// and extend the storage.
if (_capacity >= capacity)
{
return;
}
size_t needed_nr_of_pages = (capacity / MaxElementsPerPage) - _pages.size();
while (needed_nr_of_pages-- != 0)
{
allocate_new_page();
}
}
void allocate_new_page()
{
Page newPage;
newPage.allocate_storage();
_pages.emplace_back(std::move(newPage));
_capacity += MaxElementsPerPage;
}
template <typename... Args>
T& emplace(Args&&... args)
{
// Find first page with free slots available,
// record found page index,
// then pop free index from the relevant page.
auto pageId = find_first_page_with_recycled_ids();
if (pageId != INVALID_PAGE_IDX)
{
Page& p = _pages[pageId];
// Retrieve a spare ID from the freelist.
PageIndex pageIdx = {pageId, p.pop_free_index()};
// Mark the current slot as alive.
get_slot_metadata(pageIdx).set_alive();
_pages[pageIdx.first].increase_current_size();
// Construct the element.
T* res = allocate_element_impl(page_index_to_storage_addr(pageIdx), std::forward<Args>(args)...);
++_size;
return *res;
}
if (_size == usable_capacity())
{
allocate_new_page();
}
// No IDs available for recycling, allocate a new ID.
auto newIdx = allocate_new_idx();
_maxIndex = page_index_to_global(newIdx);
_pages[newIdx.first].increase_current_size();
// Construct the element.
T* res = allocate_element_impl(page_index_to_storage_addr(newIdx), std::forward<Args>(args)...);
++_size;
return *res;
}
void erase(const PageIndex& pageIdx)
{
auto& slotMetadata = get_slot_metadata(pageIdx);
if (!slotMetadata.is_alive())
{
return;
}
// Either advance slot generation number or invalidate the slot right away,
// the behavior depends on whether we reuse the slots or not.
advance_slot_generation<ReuseSlots>(slotMetadata);
// Ensure that the element pointed-to by this slot is dead.
slotMetadata.set_dead();
const bool isSlotExpired = !slotMetadata.is_valid();
// Deallocate the object (i.e. call the destructor, if needed).
T* valuePtr = reinterpret_cast<T*>(page_index_to_storage_addr(pageIdx));
deallocate_element_impl(valuePtr);
// Decrease both page and container sizes.
_pages[pageIdx.first].decrease_current_size();
--_size;
if (isSlotExpired)
{
// Increase counters for expired slots tracking.
_pages[pageIdx.first].increase_expired_slots_count();
++_expiredSlotsCount;
// Looks like at least GCC is smart enough to optimize the following
// instructions away, even when this is not a `constexpr if`, but a regular `if`,
// See https://godbolt.org/z/bY8oEYsdz.
if (!ReuseSlots)
{
if (_pages[pageIdx.first].is_expired())
{
// Free storage pointers for expired pages when not reusing slots,
// this should alleviate the problem of excessive memory consumption
// in such cases.
_pages[pageIdx.first].deallocate_storage();
}
}
}
else
{
// Put the erased index into freelist for recycled IDs.
_pages[pageIdx.first].recycle_index(pageIdx.second);
}
}
void erase(SlotIndexType idx)
{
erase(global_to_page_index(idx));
}
/// <summary>
/// Forward iterator, which traverses live elements in the parent container.
/// </summary>
/// <typeparam name="IsConst">Marks whether iterator is const or not.</typeparam>
template <bool IsConst>
class IteratorImpl
{
public:
using iterator_category = std::forward_iterator_tag;
using value_type = std::conditional_t<IsConst, std::add_const_t<T>, T>;
using difference_type = std::ptrdiff_t;
using pointer = std::add_pointer_t<value_type>;
using reference = std::add_lvalue_reference_t<value_type>;
using ParentContainerType = std::conditional_t<
IsConst,
std::add_const_t<PagedEntityContainer>,
PagedEntityContainer
>;
IteratorImpl(ParentContainerType& c, PageIndex idx)
: _pageIdx(idx), _c(c)
{}
IteratorImpl(const IteratorImpl& other)
: _pageIdx(other._pageIdx), _c(other._c)
{}
// Allow promotion of non-const iterator to const iterator.
template <bool DummyConst = IsConst, std::enable_if_t<DummyConst, bool> = true>
IteratorImpl(const IteratorImpl<false>& other)
: _pageIdx(other._pageIdx), _c(other._c)
{}
const PageIndex& index() const
{
return _pageIdx;
}
bool operator==(const IteratorImpl& other) const
{
return _pageIdx == other._pageIdx && &_c == &other._c;
}
bool operator!=(const IteratorImpl& other) const
{
return !(*this == other);
}
reference operator*() const
{
return *get_value_impl();
}
pointer operator->() const
{
return get_value_impl();
}
// Prefix increment
IteratorImpl& operator++()
{
do
{
advance_page_index();
} while (page_index_to_global(_pageIdx) <= _c._maxIndex && !get_metadata_impl().is_alive());
if (page_index_to_global(_pageIdx) > _c._maxIndex)
{
_pageIdx = invalid_page_index();
}
return *this;
}
// Postfix increment
IteratorImpl operator++(int)
{
auto& self = *this;
IteratorImpl copy(self);
++self;
return copy;
}
private:
pointer get_value_impl() const
{
return reinterpret_cast<pointer>(_c.page_index_to_storage_addr(_pageIdx));
}
const SlotMetadata& get_metadata_impl() const
{
return _c.get_slot_metadata(_pageIdx);
}
SlotMetadata& get_metadata_impl()
{
return _c.get_slot_metadata(_pageIdx);
}
void advance_page_index()
{
const auto pagesCount = _c._pages.size();
assert(_pageIdx.first < pagesCount);
assert(_pageIdx.second <= current_page().max_valid_index());
// Move to the next page if already pointing to the last valid index or if the current page is expired.
if (_pageIdx.second == current_page().max_valid_index() || current_page().is_expired())
{
// Skip expired pages when transitioning to the next page.
do
{
++_pageIdx.first;
} while (_pageIdx.first < pagesCount && current_page().is_expired());
_pageIdx.second = 0;
}
else
{
// Move along within the current page.
++_pageIdx.second;
}
}
Page& current_page()
{
return _c._pages[_pageIdx.first];
}
// Make both possible instantiations of iterator friends
// to allow promotion to from non-const to const iterator.
template<bool IsConst2>
friend class IteratorImpl;
friend class PagedEntityContainer;
PageIndex _pageIdx;
ParentContainerType& _c;
};
template <bool IsConst>
friend class IteratorImpl;
using iterator = IteratorImpl<false>;
using const_iterator = IteratorImpl<true>;
const_iterator begin() const
{
return const_iterator(const_cast<PagedEntityContainer*>(this)->begin());
}
iterator begin()
{
if (empty())
{
return end();
}
for (size_t pageIdx = 0, pagesEnd = _pages.size(); pageIdx != pagesEnd; ++pageIdx)
{
const Page& p = _pages[pageIdx];
if (p.is_expired())
{
continue;
}
const auto* slotMeta = p.slotMetadata();
for (size_t elemIdx = 0, elemEnd = p.max_valid_index(); elemIdx <= elemEnd; ++elemIdx)
{
if (slotMeta[elemIdx].is_alive())
{
return iterator(*this, {pageIdx, elemIdx});
}
}
}
// No live elements, return end iterator.
return end();
}
const_iterator end() const
{
return const_iterator(*this, invalid_page_index());
}
iterator end()
{
return iterator(*this, invalid_page_index());
}
const_iterator cbegin() const
{
return begin();
}
const_iterator cend() const
{
return end();
}
// Tries to look up the relevant page index for `x` and return an iterator to it.
// Returns `end()` if not found.
iterator find(T& x)
{
auto* addr = reinterpret_cast<AlignedElementStorage*>(&x);
assert(is_properly_aligned_ptr(addr));
if (empty())
{
return end();
}
for (size_t i = 0, end = _pages.size(); i != end; ++i)
{
Page& p = _pages[i];
if (p.is_expired())
{
continue;
}
auto* storage = p.storage();
assert(storage != nullptr);
// If the address is inside the current page, calculate the index from raw offset.
if (addr >= storage && addr <= &storage[p.max_valid_index()])
{
// Pointer subtraction of yields the difference between
// array subscripts in the current case.
const ptrdiff_t idx = addr - storage;
return iterator(*this, {i, static_cast<size_t>(idx)});
}
}
return end();
}
const_iterator find(const T& x) const
{
return const_iterator(const_cast<PagedEntityContainer*>(this)->find(const_cast<T&>(x)));
}
void erase(const_iterator it)
{
assert(&it._c == this);
erase(it.index());
}
void erase(iterator it)
{
assert(&it._c == this);
erase(it.index());
}
// Destroys all elements and frees all data pages except first to save up on memory.
// Reset metadata of the only remaining page to make container usable once again.
void clear()
{
// Deallocate all live elements, call destructors, if needed.
for (auto it = begin(), endIt = end(); it != endIt; ++it)
{
erase(it);
}
// Shrink the storage to just a single page.
_pages.resize(1);
_capacity = MaxElementsPerPage;
// No valid items in the container now.
_maxIndex = INVALID_SLOT_IDX;
if (!ReuseSlots)
{
// If the first page is in the expired state, then
// its storage is deallocated, too. So, reallocate it.
//
// NOTE: expired pages free their storage only when
// the slot recycling mechanism is disabled!
if (_pages.front().is_expired())
{
_pages.front().allocate_storage();
}
}
_pages.front().reset_metadata();
_expiredSlotsCount = 0;
}
private:
PageIndex allocate_new_idx()
{
// Assume there are no "holes" in the existing data and the storage isn't full.
// Look at the last page and allocate a new idx from it.
Page& lastPage = _pages.back();
assert(!lastPage.is_full());
SlotIndexType newElementIdx = lastPage.max_valid_index() != INVALID_SLOT_IDX ? lastPage.max_valid_index() + 1 : 0;
PageIndex pageIdx = {_pages.size() - 1, newElementIdx};
auto& slot = get_slot_metadata(pageIdx);
slot.reset_generation();
slot.set_alive();
lastPage.set_max_valid_index(newElementIdx);
return pageIdx;
}
template <typename... Args>
T* allocate_element_impl(void* address, Args&&... args)
{
return new (address) T(std::forward<Args>(args)...);
}
// Use some hacks for SFINAE to make it compliant to C++ standard,
// see https://stackoverflow.com/a/11056319 for details.
template <typename U = T, std::enable_if_t<std::is_trivially_destructible<U>::value, bool> = true>
void deallocate_element_impl(T* /*element*/)
{}
template <typename U = T, std::enable_if_t<!std::is_trivially_destructible<U>::value, bool> = true>
void deallocate_element_impl(T* element)
{
element->~T();
}
SlotMetadata& get_slot_metadata(const PageIndex& idx)
{
auto* metadata = _pages[idx.first].slotMetadata();
return metadata[idx.second];
}
void* page_index_to_storage_addr(const PageIndex& idx)
{
auto* storage = _pages[idx.first].storage();
return &storage[idx.second].rawStorage;
}
static PageIndex global_to_page_index(SlotIndexType idx)
{
return { idx / MaxElementsPerPage, idx % MaxElementsPerPage };
}
static SlotIndexType page_index_to_global(const PageIndex& idx)
{
return idx.first * MaxElementsPerPage + idx.second;
}
// No need to call destructors manually for trivially destructible types.
template <typename U = T, std::enable_if_t<std::is_trivially_destructible<U>::value, bool> = true>
void destroy_live_elements()
{}
template <typename U = T, std::enable_if_t<!std::is_trivially_destructible<U>::value, bool> = true>
void destroy_live_elements()
{
for (auto it = begin(), endIt = end(); it != endIt; ++it)
{
deallocate_element_impl(&*it);
}
}
size_t find_first_page_with_recycled_ids() const
{
for (size_t i = 0, end = _pages.size(); i != end; ++i)
{
if (_pages[i].has_recycled_indices())
{
return i;
}
}
return INVALID_PAGE_IDX;
}
static PageIndex invalid_page_index()
{
return { INVALID_PAGE_IDX, INVALID_SLOT_IDX };
}
static bool is_properly_aligned_ptr(void* addr)
{
return (reinterpret_cast<uintptr_t>(addr) % alignof(T)) == 0;
}
template <bool ReuseSlotsAux = ReuseSlots, std::enable_if_t<ReuseSlotsAux, bool> = true>
void advance_slot_generation(SlotMetadata& meta)
{
// Advance slot generation number, when `ReuseSlots=true`.
meta.advance_generation();
}
// Specialization for the case when `ReuseSlots=false`.
template <bool ReuseSlotsAux = ReuseSlots, std::enable_if_t<!ReuseSlotsAux, bool> = true>
void advance_slot_generation(SlotMetadata& meta)
{
// Invalidate slot right away so that it cannot be reused anymore.
meta.invalidate();
}
std::vector<Page> _pages;
SlotIndexType _maxIndex = INVALID_SLOT_IDX;
size_t _size = 0;
size_t _capacity = 0;
size_t _expiredSlotsCount = 0;
};
template <typename T, size_t MaxElementsPerPage, bool ReuseSlots>
constexpr typename PagedEntityContainer<T, MaxElementsPerPage, ReuseSlots>::SlotIndexType
PagedEntityContainer<T, MaxElementsPerPage, ReuseSlots>::INVALID_SLOT_IDX;
template <typename T, size_t MaxElementsPerPage, bool ReuseSlots>
constexpr size_t PagedEntityContainer<T, MaxElementsPerPage, ReuseSlots>::INVALID_PAGE_IDX;
|