1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
|
/*
This file is part of Warzone 2100.
Copyright (C) 2010-2020 Warzone 2100 Project
Warzone 2100 is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
Warzone 2100 is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Warzone 2100; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file netqueue.h
*
* Basic netqueue.
*/
#ifndef _NET_QUEUE_H_
#define _NET_QUEUE_H_
#include "lib/framework/frame.h"
#include "lib/framework/pool_allocator.h"
#include "lib/netplay/byteorder_funcs_wrapper.h"
#include <vector>
#include <list>
#include <nonstd/optional.hpp>
using nonstd::optional;
using nonstd::nullopt;
using MsgDataAllocator = PoolAllocator<uint8_t, MemoryPool>;
using NetMsgDataVector = std::vector<uint8_t, MsgDataAllocator>;
// At game level:
// There should be a NetQueue representing each client.
// Clients should serialise messages to their own queue.
// Clients should call readRawData on their own queue, and send it over the network. (And popRawData when done.)
// Clients should receive data from remote clients, and call writeRawData on the corresponding queues.
// Clients should deserialise messages from all queues (including their own), such that all clients are processing the same data in the same way.
// At socket level:
// There should be a NetQueuePair per socket.
/// <summary>
/// Represents a network message with a type (uint8_t) and payload, the meaning of which depends on the type.
///
/// Instances of this class are immutable after creation, and should be created by using
/// the NetMessageBuilder class.
///
/// The binary layout of a NetMessage is as follows (stored internally as `std::vector<uint8_t>`):
///
/// | Type (1 byte) | Payload Length (2 bytes) | Payload (variable length) |
///
/// The first byte is the message type, described by a `uint8_t`, which should correspond to a value
/// from the `MESSAGE_TYPES` enumeration.
///
/// The payload length is the size of the payload in bytes, stored as a `uint16_t` in network byte order (big endian).
/// </summary>
class NetMessage
{
public:
static constexpr size_t HEADER_LENGTH = sizeof(uint8_t) + sizeof(uint16_t); // (type) + (payload length)
// Static factory method to create from raw data
static optional<NetMessage> tryFromRawData(const uint8_t* buffer, size_t bufferLen);
NetMessage(NetMessage&&) = default;
NetMessage& operator=(NetMessage&&) = default;
NetMessage(const NetMessage&) = default;
NetMessage& operator=(const NetMessage&) = default;
uint8_t type() const;
const NetMsgDataVector& rawData() const;
/// Returns a pointer to the payload data (offset by `HEADER_LENGTH` from the beginning of the raw data).
const uint8_t* payload() const;
size_t payloadSize() const;
// Append the raw data of this message to the provided output vector.
void rawDataAppendToVector(std::vector<uint8_t>& output) const;
private:
// Meant to be executed only by NetMessageBuilder
explicit NetMessage(NetMsgDataVector&& data);
friend class NetMessageBuilder;
NetMsgDataVector data_;
};
/// <summary>
/// This class is used to facilitate efficient creation of network messages.
/// It provides methods to append data (via `append()` calls) and to create a final message out of
/// this intermediate data vector (via `build()` call), effectively just moving the data into the `NetMessage`
/// that is being built.
///
/// NOTE: Once the `build()` method is called, the current `NetMessageBuilder` instance becomes invalid.
/// </summary>
class NetMessageBuilder
{
public:
explicit NetMessageBuilder(uint8_t type, size_t reservedCapacity = 16);
explicit NetMessageBuilder(NetMsgDataVector&& rawData);
uint8_t type() const
{
return data_[0];
}
void append(uint8_t v)
{
data_.push_back(v);
}
void append(const uint8_t* src, size_t len)
{
auto resultLen = data_.size() + len;
ASSERT_OR_RETURN(, resultLen <= UINT16_MAX, "Resulting message length exceeds uint16_t max: %zu", resultLen);
data_.insert(data_.end(), src, src + len);
}
// Build the final message (invalidates NetMessageBuilder instance)
NetMessage build()
{
// Update the length in the header
auto len = data_.size() - NetMessage::HEADER_LENGTH;
if (len > UINT16_MAX)
{
ASSERT(false, "Message payload length exceeds uint16_t max: %zu (message type: %u)", len, type());
len = UINT16_MAX; // Clamp to max length, so we can still send the message and probably gracefully handle it on the other side.
}
const uint16_t payloadLen = static_cast<uint16_t>(len);
// Store payload length in network byte order starting at the second byte of the data vector.
wz_htons_store_unaligned(&data_[1], payloadLen);
return NetMessage(std::move(data_));
}
private:
NetMsgDataVector data_;
};
struct NETQUEUE
{
void* queue; ///< Is either a (NetQueuePair **) or a (NetQueue *). (Note different numbers of *.)
bool isPair;
uint8_t index;
uint8_t queueType;
uint8_t exclude;
};
/// MessageWriter is used for serialising, using the same interface as MessageReader.
class MessageWriter
{
public:
// This should allocate a message owned by this instance
explicit MessageWriter(NETQUEUE queue, uint8_t messageType)
: queueInfo(queue), msgBuilder(messageType)
{}
MessageWriter(MessageWriter&&) = default;
MessageWriter(const MessageWriter&) = default;
MessageWriter& operator=(const MessageWriter&) = default;
void byte(uint8_t v)
{
msgBuilder.append(v);
}
void bytes(uint8_t* pIn, size_t numBytes)
{
msgBuilder.append(pIn, numBytes);
}
void bytes(const uint8_t* pIn, size_t numBytes)
{
msgBuilder.append(pIn, numBytes);
}
void bytesVector(const std::vector<uint8_t>& vIn, size_t numBytes)
{
msgBuilder.append(vIn.data(), std::min(numBytes, vIn.size()));
}
bool valid() const
{
return true;
}
NETQUEUE queueInfo;
bool bSecretMessageWrap = false;
NetMessageBuilder msgBuilder;
};
/// MessageReader is used for deserialising, using the same interface as MessageWriter.
class MessageReader
{
public:
explicit MessageReader(const NetMessage& m)
: msgData(&m.rawData()), index(NetMessage::HEADER_LENGTH), msgType(m.type())
{}
MessageReader(MessageReader&&) = default;
MessageReader(const MessageReader&) = default;
MessageReader& operator=(const MessageReader&) = default;
void byte(uint8_t &v) const
{
v = index >= msgData->size() ? 0x00 : (*msgData)[index];
++index;
}
void bytes(uint8_t *pOut, size_t numBytes) const
{
size_t numCopyBytes = (index >= msgData->size()) ? 0 : std::min<size_t>(msgData->size() - index, numBytes);
if (numCopyBytes > 0)
{
memcpy(pOut, &((*msgData)[index]), numCopyBytes);
}
if (numCopyBytes < numBytes)
{
memset(pOut + numCopyBytes, 0, numBytes - numCopyBytes);
}
index += numCopyBytes;
}
template <typename VecT>
void bytesVector(VecT& vOut, size_t desiredBytes) const
{
static_assert(std::is_same<typename VecT::value_type, uint8_t>::value, "Expected vector<uint8_t> as the argument");
size_t numCopyBytes = (index >= msgData->size()) ? 0 : std::min<size_t>(msgData->size() - index, desiredBytes);
if (numCopyBytes > 0)
{
size_t startIdx = vOut.size();
vOut.resize(vOut.size() + numCopyBytes);
memcpy(&(vOut[startIdx]), &((*msgData)[index]), numCopyBytes);
}
index += numCopyBytes;
}
bool valid() const
{
return index <= msgData->size();
}
const NetMsgDataVector* msgData;
mutable size_t index = NetMessage::HEADER_LENGTH;
uint8_t msgType;
};
/// A NetQueue is a queue of NetMessages. A NetQueue can convert the messages into a stream of bytes, which can be sent over the network, and converted back into a queue of NetMessages by the NetQueue at the other end.
class NetQueue
{
public:
NetQueue();
// Disable copy constructor and assignment operator.
NetQueue(const NetQueue &) = delete;
void operator =(const NetQueue &) = delete;
// Network related, receiving
void writeRawData(const uint8_t *netData, size_t netLen); ///< Inserts data from the network into the NetQueue.
// Network related, sending
void setWillNeverGetMessagesForNet(); ///< Marks that we will not be sending this data over the network.
unsigned numMessagesForNet() const; ///< Checks that we didn't mark that we will not be sending this data over the network (returns 0), and returns the number of messages to be sent.
const NetMessage &getMessageForNet() const; ///< Extracts data from the NetQueue to send over the network.
void popMessageForNet(); ///< Pops the extracted data, so that future getMessageForNet calls do not return that data.
// All game clients should check game messages from all queues, including their own, and only the net messages sent to them.
// Message related, storing.
void pushMessage(NetMessage&& message); ///< Adds a message to the queue.
// Message related, extracting.
void setWillNeverGetMessages(); ///< Marks that we will not be reading any of the messages (only sending over the network).
bool haveMessage() const; ///< Return true if we have a message ready to return.
const NetMessage &getMessage() const; ///< Returns a message.
bool currentMessageWasDecrypted() const;
bool replaceCurrentWithDecrypted(NetMessage &&decryptedMessage);
void popMessage(); ///< Pops the last returned message.
size_t currentIncompleteDataBuffered() const;
inline size_t numPendingGameTimeUpdateMessages() const
{
return pendingGameTimeUpdateMessages;
}
private:
void popOldMessages(); ///< Pops any messages that are no longer needed.
bool canGetMessagesForNet; ///< True if we will send the messages over the network, false if we don't.
bool canGetMessages; ///< True if we will get the messages, false if we don't use them ourselves.
inline const NetMessage &internal_getMessageForNet() const
{
// Return the message.
List::iterator i = dataPos;
--i;
return *i;
};
inline const NetMessage &internal_getConstMessage() const
{
// Return the message.
List::iterator i = messagePos;
--i;
return *i;
};
inline NetMessage &internal_getMessage()
{
// Return the message.
List::iterator i = messagePos;
--i;
return *i;
};
using MsgAllocator = PoolAllocator<NetMessage, MemoryPool>;
using List = std::list<NetMessage, MsgAllocator>;
List::iterator dataPos; ///< Last message which was sent over the network.
List::iterator messagePos; ///< Last message which was popped.
List messages; ///< List of messages. Messages are added to the front and read from the back.
std::vector<uint8_t> incompleteReceivedMessageData; ///< Data from network which has not yet formed an entire message.
size_t pendingGameTimeUpdateMessages; ///< Pending GAME_GAME_TIME messages added to this queue
bool bCurrentMessageWasDecrypted;
};
/// A NetQueuePair is used for talking to a socket. We insert NetMessages in the send NetQueue, which converts the messages into a stream of bytes for the
/// socket. We take incoming bytes from the socket and insert them in the receive NetQueue, which converts the bytes back into NetMessages.
class NetQueuePair
{
public:
NetQueuePair()
{
send.setWillNeverGetMessages();
receive.setWillNeverGetMessagesForNet();
}
NetQueue send;
NetQueue receive;
};
/// Returns the number of bytes required to encode v.
unsigned encodedlength_uint32_t(uint32_t v);
/// Returns true iff there is another byte to be encoded.
/// Modifies v.
/// Input is v, output is b.
bool encode_uint32_t(uint8_t &b, uint32_t &v, unsigned n);
/// Returns true iff another byte is required to decode.
/// Must init v to 0, does not modify b.
/// Input is b, output is v.
bool decode_uint32_t(uint8_t b, uint32_t &v, unsigned n);
#endif //_NET_QUEUE_H_
|