1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
|
..
Except where otherwise noted, this document is licensed under Creative
Commons Attribution 3.0 License. You can view the license at:
https://creativecommons.org/licenses/by/3.0/
.. _implement_cluster_data_model_collector_plugin:
========================================
Build a new cluster data model collector
========================================
Watcher Decision Engine has an external cluster data model (CDM) plugin
interface which gives anyone the ability to integrate an external cluster data
model collector (CDMC) in order to extend the initial set of cluster data model
collectors Watcher provides.
This section gives some guidelines on how to implement and integrate custom
cluster data model collectors within Watcher.
Creating a new plugin
=====================
In order to create a new cluster data model collector, you have to:
- Extend the :py:class:`~.base.BaseClusterDataModelCollector` class.
- Implement its :py:meth:`~.BaseClusterDataModelCollector.execute` abstract
method to return your entire cluster data model that this method should
build.
- Implement its :py:meth:`~.BaseClusterDataModelCollector.audit_scope_handler`
abstract property to return your audit scope handler.
- Implement its :py:meth:`~.Goal.notification_endpoints` abstract property to
return the list of all the :py:class:`~.base.NotificationEndpoint` instances
that will be responsible for handling incoming notifications in order to
incrementally update your cluster data model.
First of all, you have to extend the :class:`~.BaseClusterDataModelCollector`
base class which defines the :py:meth:`~.BaseClusterDataModelCollector.execute`
abstract method you will have to implement. This method is responsible for
building an entire cluster data model.
Here is an example showing how you can write a plugin called
``DummyClusterDataModelCollector``:
.. code-block:: python
# Filepath = <PROJECT_DIR>/thirdparty/dummy.py
# Import path = thirdparty.dummy
from watcher.decision_engine.model import model_root
from watcher.decision_engine.model.collector import base
class DummyClusterDataModelCollector(base.BaseClusterDataModelCollector):
def execute(self):
model = model_root.ModelRoot()
# Do something here...
return model
@property
def audit_scope_handler(self):
return None
@property
def notification_endpoints(self):
return []
This implementation is the most basic one. So in order to get a better
understanding on how to implement a more advanced cluster data model collector,
have a look at the :py:class:`~.NovaClusterDataModelCollector` class.
Define a custom model
=====================
As you may have noticed in the above example, we are reusing an existing model
provided by Watcher. However, this model can be easily customized by
implementing a new class that would implement the :py:class:`~.Model` abstract
base class. Here below is simple example on how to proceed in implementing a
custom Model:
.. code-block:: python
# Filepath = <PROJECT_DIR>/thirdparty/dummy.py
# Import path = thirdparty.dummy
from watcher.decision_engine.model import base as modelbase
from watcher.decision_engine.model.collector import base
class MyModel(modelbase.Model):
def to_string(self):
return 'MyModel'
class DummyClusterDataModelCollector(base.BaseClusterDataModelCollector):
def execute(self):
model = MyModel()
# Do something here...
return model
@property
def notification_endpoints(self):
return []
Here below is the abstract ``Model`` class that every single cluster data model
should implement:
.. autoclass:: watcher.decision_engine.model.base.Model
:members:
:special-members: __init__
:noindex:
Define configuration parameters
===============================
At this point, you have a fully functional cluster data model collector.
By default, cluster data model collectors define a ``period`` option (see
:py:meth:`~.BaseClusterDataModelCollector.get_config_opts`) that corresponds
to the interval of time between each synchronization of the in-memory model.
However, in more complex implementation, you may want to define some
configuration options so one can tune the cluster data model collector to your
needs. To do so, you can implement the :py:meth:`~.Loadable.get_config_opts`
class method as followed:
.. code-block:: python
from oslo_config import cfg
from watcher.decision_engine.model import model_root
from watcher.decision_engine.model.collector import base
class DummyClusterDataModelCollector(base.BaseClusterDataModelCollector):
def execute(self):
model = model_root.ModelRoot()
# Do something here...
return model
@property
def audit_scope_handler(self):
return None
@property
def notification_endpoints(self):
return []
@classmethod
def get_config_opts(cls):
return super(
DummyClusterDataModelCollector, cls).get_config_opts() + [
cfg.StrOpt('test_opt', help="Demo Option.", default=0),
# Some more options ...
]
The configuration options defined within this class method will be included
within the global ``watcher.conf`` configuration file under a section named by
convention: ``{namespace}.{plugin_name}`` (see section :ref:`Register a new
entry point <register_new_cdmc_entrypoint>`). The namespace for CDMC plugins is
``watcher_cluster_data_model_collectors``, so in our case, the ``watcher.conf``
configuration would have to be modified as followed:
.. code-block:: ini
[watcher_cluster_data_model_collectors.dummy]
# Option used for testing.
test_opt = test_value
Then, the configuration options you define within this method will then be
injected in each instantiated object via the ``config`` parameter of the
:py:meth:`~.BaseClusterDataModelCollector.__init__` method.
Abstract Plugin Class
=====================
Here below is the abstract ``BaseClusterDataModelCollector`` class that every
single cluster data model collector should implement:
.. autoclass:: watcher.decision_engine.model.collector.base.BaseClusterDataModelCollector
:members:
:special-members: __init__
:noindex:
.. _register_new_cdmc_entrypoint:
Register a new entry point
==========================
In order for the Watcher Decision Engine to load your new cluster data model
collector, the latter must be registered as a named entry point under the
``watcher_cluster_data_model_collectors`` entry point namespace of your
``setup.py`` file. If you are using pbr_, this entry point should be placed in
your ``setup.cfg`` file.
The name you give to your entry point has to be unique.
Here below is how to register ``DummyClusterDataModelCollector`` using pbr_:
.. code-block:: ini
[entry_points]
watcher_cluster_data_model_collectors =
dummy = thirdparty.dummy:DummyClusterDataModelCollector
.. _pbr: https://docs.openstack.org/pbr/latest/
Add new notification endpoints
==============================
At this point, you have a fully functional cluster data model collector.
However, this CDMC is only refreshed periodically via a background scheduler.
As you may sometimes execute a strategy with a stale CDM due to a high activity
on your infrastructure, you can define some notification endpoints that will be
responsible for incrementally updating the CDM based on notifications emitted
by other services such as Nova. To do so, you can implement and register a new
``DummyEndpoint`` notification endpoint regarding a ``dummy`` event as shown
below:
.. code-block:: python
from watcher.decision_engine.model import model_root
from watcher.decision_engine.model.collector import base
class DummyNotification(base.NotificationEndpoint):
@property
def filter_rule(self):
return filtering.NotificationFilter(
publisher_id=r'.*',
event_type=r'^dummy$',
)
def info(self, ctxt, publisher_id, event_type, payload, metadata):
# Do some CDM modifications here...
pass
class DummyClusterDataModelCollector(base.BaseClusterDataModelCollector):
def execute(self):
model = model_root.ModelRoot()
# Do something here...
return model
@property
def notification_endpoints(self):
return [DummyNotification(self)]
Note that if the event you are trying to listen to is published by a new
service, you may have to also add a new topic Watcher will have to subscribe to
in the ``notification_topics`` option of the ``[watcher_decision_engine]``
section.
Using cluster data model collector plugins
==========================================
The Watcher Decision Engine service will automatically discover any installed
plugins when it is restarted. If a Python package containing a custom plugin is
installed within the same environment as Watcher, Watcher will automatically
make that plugin available for use.
At this point, you can use your new cluster data model plugin in your
:ref:`strategy plugin <implement_strategy_plugin>` by using the
:py:attr:`~.BaseStrategy.collector_manager` property as followed:
.. code-block:: python
# [...]
dummy_collector = self.collector_manager.get_cluster_model_collector(
"dummy") # "dummy" is the name of the entry point we declared earlier
dummy_model = dummy_collector.get_latest_cluster_data_model()
# Do some stuff with this model
|