1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
|
/* Copyright 2016-present Facebook, Inc.
* Licensed under the Apache License, Version 2.0 */
#include "WatchmanConnection.h"
#include <folly/ExceptionWrapper.h>
#include <folly/SocketAddress.h>
#include <folly/Subprocess.h>
#include <folly/experimental/bser/Bser.h>
#include <folly/futures/InlineExecutor.h>
namespace watchman {
using namespace folly::bser;
using namespace folly;
// Ordered with the most likely kind first
static const std::vector<dynamic> kUnilateralLabels{"subscription", "log"};
static const dynamic kError("error");
static const dynamic kCapabilities("capabilities");
// We'll just dispatch bser decodes and callbacks inline unless they
// give us an alternative environment
static InlineExecutor inlineExecutor;
WatchmanConnection::WatchmanConnection(
EventBase* eventBase,
Optional<std::string>&& sockPath,
Optional<WatchmanConnection::Callback>&& callback,
Executor* cpuExecutor)
: eventBase_(eventBase),
sockPath_(std::move(sockPath)),
callback_(std::move(callback)),
cpuExecutor_(cpuExecutor ? cpuExecutor : &inlineExecutor),
versionCmd_(nullptr),
bufQ_(IOBufQueue::cacheChainLength()) {
CHECK_NOTNULL(eventBase);
}
WatchmanConnection::~WatchmanConnection() {
close();
}
folly::Future<std::string> WatchmanConnection::getSockPath() {
// Take explicit configuration first
if (sockPath_.hasValue()) {
return makeFuture(sockPath_.value());
}
// Else use the environmental variable used by watchman to report
// the active socket path
auto var = getenv("WATCHMAN_SOCK");
if (var && *var) {
return makeFuture(std::string(var));
}
return via(cpuExecutor_, [] {
// Else discover it from the CLI
folly::Subprocess proc(
{"watchman", "--output-encoding=bser", "get-sockname"},
folly::Subprocess::Options().pipeStdout().pipeStderr().usePath());
SCOPE_FAIL {
// Always clean up to avoid Subprocess asserting on destruction
proc.kill();
proc.wait();
};
auto out_pair = proc.communicate();
auto result = parseBser(out_pair.first);
proc.waitChecked();
return result["sockname"].asString();
});
}
Future<dynamic> WatchmanConnection::connect(folly::dynamic versionArgs) {
if (!versionArgs.isObject()) {
throw WatchmanError("versionArgs must be object");
}
versionCmd_ = folly::dynamic::array("version", versionArgs);
auto res = getSockPath().then(
[shared_this=shared_from_this()] (std::string&& path) {
shared_this->eventBase_->runInEventBaseThread([=] {
folly::SocketAddress addr;
addr.setFromPath(path);
shared_this->sock_ =
folly::AsyncSocket::newSocket(shared_this->eventBase_);
shared_this->sock_->connect(shared_this.get(), addr);
}
);
return shared_this->connectPromise_.getFuture();
});
return res;
}
void WatchmanConnection::close() {
if (closing_) {
return;
}
closing_ = true;
if (sock_) {
eventBase_->runImmediatelyOrRunInEventBaseThreadAndWait([this] {
sock_->close();
sock_.reset();
});
}
failQueuedCommands(
make_exception_wrapper<WatchmanError>(
"WatchmanConnection::close() was called"));
}
// The convention for Watchman responses is that they represent
// an error if they contain the "error" key. We want to report
// those as exceptions, but it is easier to do that via a Try
Try<dynamic> WatchmanConnection::watchmanResponseToTry(dynamic&& value) {
auto error = value.get_ptr(kError);
if (error) {
return Try<dynamic>(make_exception_wrapper<WatchmanResponseError>(value));
}
return Try<dynamic>(std::move(value));
}
void WatchmanConnection::connectSuccess() noexcept {
try {
sock_->setReadCB(this);
sock_->setCloseOnExec();
run(versionCmd_).then(
[shared_this=shared_from_this()] (dynamic&& result) {
// If there is no "capabilities" key then the version of
// watchman is too old; treat this as an error
if (!result.get_ptr(kCapabilities)) {
result["error"] =
"This watchman server has no support for capabilities, "
"please upgrade to the current stable version of watchman";
shared_this->connectPromise_.setTry(
shared_this->watchmanResponseToTry(std::move(result)));
return;
}
shared_this->connectPromise_.setValue(std::move(result));
}
).onError(
[shared_this=shared_from_this()]
(const folly::exception_wrapper& e) {
shared_this->connectPromise_.setException(e);
}
);
} catch(const std::exception& e) {
connectPromise_.setException(
folly::exception_wrapper(std::current_exception(), e));
} catch(...) {
connectPromise_.setException(
folly::exception_wrapper(std::current_exception()));
}
}
void WatchmanConnection::connectErr(
const folly::AsyncSocketException& ex) noexcept {
connectPromise_.setException(ex);
}
WatchmanConnection::QueuedCommand::QueuedCommand(const dynamic& command)
: cmd(command) {}
Future<dynamic> WatchmanConnection::run(const dynamic& command) noexcept {
auto cmd = std::make_shared<QueuedCommand>(command);
if (broken_) {
cmd->promise.setException(WatchmanError("The connection was broken"));
return cmd->promise.getFuture();
}
if (!sock_) {
cmd->promise.setException(WatchmanError(
"No socket (did you call connect() and check result for exceptions?)"));
return cmd->promise.getFuture();
}
bool shouldWrite;
{
std::lock_guard<std::mutex> g(mutex_);
// We only need to call sendCommand if we don't have a command in
// progress; the completion handler will trigger it once we receive
// the response
shouldWrite = commandQ_.empty();
commandQ_.push_back(cmd);
}
if (shouldWrite) {
eventBase_->runInEventBaseThread(
[shared_this=shared_from_this()] {
shared_this->sendCommand();
}
);
}
return cmd->promise.getFuture();
}
// Generate a failure for all queued commands
void WatchmanConnection::failQueuedCommands(
const folly::exception_wrapper& ex) {
std::lock_guard<std::mutex> g(mutex_);
auto q = commandQ_;
commandQ_.clear();
broken_ = true;
for (auto& cmd : q) {
if (!cmd->promise.isFulfilled()) {
cmd->promise.setException(ex);
}
}
// If the user has explicitly closed the connection no need for callback
if (callback_ && !closing_) {
cpuExecutor_->add([shared_this=shared_from_this(), ex] {
(*(shared_this->callback_))(folly::Try<folly::dynamic>(ex));
});
}
}
// Sends the next eligible command to the Watchman service
void WatchmanConnection::sendCommand(bool pop) {
std::shared_ptr<QueuedCommand> cmd;
{
std::lock_guard<std::mutex> g(mutex_);
if (pop) {
// We finished processing this one, discard it and focus
// on the next item, if any.
commandQ_.pop_front();
}
if (commandQ_.empty()) {
return;
}
cmd = commandQ_.front();
}
sock_->writeChain(this, toBserIOBuf(cmd->cmd, serialization_opts()));
}
void WatchmanConnection::popAndSendCommand() {
sendCommand(/* pop = */ true);
}
// Called when AsyncSocket::writeChain completes
void WatchmanConnection::writeSuccess() noexcept {
// Don't care particularly
}
// Called when AsyncSocket::writeChain fails
void WatchmanConnection::writeErr(
size_t,
const folly::AsyncSocketException& ex) noexcept {
failQueuedCommands(ex);
}
// Called when AsyncSocket wants to give us data
void WatchmanConnection::getReadBuffer(void** bufReturn, size_t* lenReturn) {
std::lock_guard<std::mutex> g(mutex_);
const auto ret = bufQ_.preallocate(2048, 2048);
*bufReturn = ret.first;
*lenReturn = ret.second;
}
// Called when AsyncSocket gave us data
void WatchmanConnection::readDataAvailable(size_t len) noexcept {
{
std::lock_guard<std::mutex> g(mutex_);
bufQ_.postallocate(len);
}
cpuExecutor_->add([shared_this=shared_from_this()] {
shared_this->decodeNextResponse();
});
}
std::unique_ptr<folly::IOBuf> WatchmanConnection::splitNextPdu() {
std::lock_guard<std::mutex> g(mutex_);
if (!bufQ_.front()) {
return nullptr;
}
// Do we have enough data to decode the next item?
size_t pdu_len = 0;
try {
pdu_len = decodePduLength(bufQ_.front());
} catch (const std::out_of_range&) {
// Don't have enough data yet
return nullptr;
}
if (pdu_len > bufQ_.chainLength()) {
// Don't have enough data yet
return nullptr;
}
// Remove the PDU blob from the front of the chain
return bufQ_.split(pdu_len);
}
// Try to peel off one or more PDU's from our buffer queue.
// Decode each complete PDU from BSER -> dynamic and dispatch
// either the associated QueuedCommand or to the callback_ for
// unilateral responses.
// This is executed via the cpuExecutor. We only allow one
// thread to carry out the decoding at a time so that the callbacks
// are triggered in the order that they are received. It is possible
// for us to receive a large PDU followed by a small one and for the
// small one to finish decoding before the large one, so we must
// serialize the dispatching.
void WatchmanConnection::decodeNextResponse() {
{
std::lock_guard<std::mutex> g(mutex_);
if (decoding_) {
return;
}
decoding_ = true;
}
SCOPE_EXIT {
std::lock_guard<std::mutex> g(mutex_);
decoding_ = false;
};
while (true) {
auto pdu = splitNextPdu();
if (!pdu) {
return;
}
try {
auto decoded = parseBser(pdu.get());
bool is_unilateral = false;
// Check for a unilateral response
for (const auto& k : kUnilateralLabels) {
if (decoded.get_ptr(k)) {
// This is a unilateral response
if (callback_.hasValue()) {
callback_.value()(watchmanResponseToTry(std::move(decoded)));
is_unilateral = true;
break;
}
// No callback; usage error :-/
failQueuedCommands(
std::runtime_error("No unilateral callback has been installed"));
return;
}
}
if (is_unilateral) {
continue;
}
// It's actually a command response; get the cmd so that we
// can fulfil its promise
std::shared_ptr<QueuedCommand> cmd;
{
std::lock_guard<std::mutex> g(mutex_);
if (commandQ_.empty()) {
failQueuedCommands(
std::runtime_error("No commands have been queued"));
return;
}
cmd = commandQ_.front();
}
// Dispatch outside of the lock in case it tries to send another
// command
cmd->promise.setTry(watchmanResponseToTry(std::move(decoded)));
// Now we're in a position to send the next queued command.
// We remove it after dispatching the try above in case that
// queued up more commands; we want to be the one thing that
// is responsible for sending the next queued command here
popAndSendCommand();
} catch (const std::exception& ex) {
failQueuedCommands(ex);
return;
}
}
}
// Called when AsyncSocket hits EOF
void WatchmanConnection::readEOF() noexcept {
failQueuedCommands(
std::system_error(ENOTCONN, std::system_category(), "connection closed"));
}
// Called when AsyncSocket has a read error
void WatchmanConnection::readErr(
const folly::AsyncSocketException& ex) noexcept {
failQueuedCommands(ex);
}
} // namespace watchman
|