1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
|
*=======================================================================
*
* WCSLIB 7.4 - an implementation of the FITS WCS standard.
* Copyright (C) 1995-2021, Mark Calabretta
*
* This file is part of WCSLIB.
*
* WCSLIB is free software: you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* WCSLIB is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
* License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with WCSLIB. If not, see http://www.gnu.org/licenses.
*
* Author: Mark Calabretta, Australia Telescope National Facility, CSIRO.
* http://www.atnf.csiro.au/people/Mark.Calabretta
* $Id: tprj2.f,v 7.4 2021/01/31 02:24:52 mcalabre Exp $
*=======================================================================
PROGRAM TPRJ2
*-----------------------------------------------------------------------
*
* TPRJ2 tests projection routines by plotting test graticules using
* PGPLOT.
*
*-----------------------------------------------------------------------
INTEGER J
DOUBLE PRECISION PV(0:29)
DOUBLE PRECISION PI
PARAMETER (PI = 3.141592653589793238462643D0)
*-----------------------------------------------------------------------
WRITE (*, 10)
10 FORMAT (
: 'Testing WCSLIB spherical projection routines (tprj2.f)',/,
: '------------------------------------------------------')
DO 20 J = 0, 29
PV(J) = 0D0
20 CONTINUE
* PGPLOT initialization.
CALL PGBEG (0, '/null', 1, 1)
* Define pen colours.
CALL PGSCR (0, 0.00, 0.00, 0.00)
CALL PGSCR (1, 1.00, 1.00, 0.00)
CALL PGSCR (2, 1.00, 1.00, 1.00)
CALL PGSCR (3, 0.50, 0.50, 0.80)
CALL PGSCR (4, 0.80, 0.50, 0.50)
CALL PGSCR (5, 0.80, 0.80, 0.80)
CALL PGSCR (6, 0.50, 0.50, 0.80)
CALL PGSCR (7, 0.80, 0.50, 0.50)
CALL PGSCR (8, 0.30, 0.50, 0.30)
30 FORMAT(/,A,' projection')
40 FORMAT(/,A,' projection',/,'Parameters:',5F12.5,/,5F12.5)
* AZP: zenithal/azimuthal perspective.
PV(1) = 2D0
PV(2) = 30D0
WRITE (*, 40) 'Zenithal/azimuthal perspective', (PV(J), J=1,2)
CALL PRJPLT ('AZP', 90, -90, PV)
* SZP: zenithal/azimuthal perspective.
PV(1) = 2D0
PV(2) = 210D0
PV(3) = 60D0
WRITE (*, 40) 'Slant zenithal perspective', (PV(J), J=1,3)
CALL PRJPLT ('SZP', 90, -90, PV)
* TAN: gnomonic.
WRITE (*, 30) 'Gnomonic'
CALL PRJPLT ('TAN', 90, 5, PV)
* STG: stereographic.
WRITE (*, 30) 'Stereographic'
CALL PRJPLT ('STG', 90, -85, PV)
* SIN: orthographic.
PV(1) = -0.3D0
PV(2) = 0.5D0
WRITE (*, 40) 'Orthographic/synthesis', (PV(J), J=1,2)
CALL PRJPLT ('SIN', 90, -90, PV)
* ARC: zenithal/azimuthal equidistant.
WRITE (*, 30) 'Zenithal/azimuthal equidistant'
CALL PRJPLT ('ARC', 90, -90, PV)
* ZPN: zenithal/azimuthal polynomial.
PV(0) = 0.05000D0
PV(1) = 0.95000D0
PV(2) = -0.02500D0
PV(3) = -0.15833D0
PV(4) = 0.00208D0
PV(5) = 0.00792D0
PV(6) = -0.00007D0
PV(7) = -0.00019D0
PV(8) = 0.00000D0
PV(9) = 0.00000D0
WRITE (*, 40) 'Zenithal/azimuthal polynomial', (PV(J), J=0,9)
CALL PRJPLT ('ZPN', 90, 10, PV)
* ZEA: zenithal/azimuthal equal area.
WRITE (*, 30) 'Zenithal/azimuthal equal area'
CALL PRJPLT ('ZEA', 90, -90, PV)
* AIR: Airy's zenithal projection.
PV(1) = 45D0
WRITE (*, 40) 'Airy''s zenithal', PV(1)
CALL PRJPLT ('AIR', 90, -85, PV)
* CYP: cylindrical perspective.
PV(1) = 3.0D0
PV(2) = 0.8D0
WRITE (*, 40) 'Cylindrical perspective', (PV(J), J=1,2)
CALL PRJPLT ('CYP', 90, -90, PV)
* CEA: cylindrical equal area.
PV(1) = 0.75D0
WRITE (*, 40) 'Cylindrical equal area', PV(1)
CALL PRJPLT ('CEA', 90, -90, PV)
* CAR: plate carree.
WRITE (*, 30) 'Plate carree'
CALL PRJPLT ('CAR', 90, -90, PV)
* MER: Mercator's.
WRITE (*, 30) 'Mercator''s'
CALL PRJPLT ('MER', 85, -85, PV)
* SFL: Sanson-Flamsteed.
WRITE (*, 30) 'Sanson-Flamsteed (global sinusoid)'
CALL PRJPLT ('SFL', 90, -90, PV)
* PAR: parabolic.
WRITE (*, 30) 'Parabolic'
CALL PRJPLT ('PAR', 90, -90, PV)
* MOL: Mollweide's projection.
WRITE (*, 30) 'Mollweide''s'
CALL PRJPLT ('MOL', 90, -90, PV)
* AIT: Hammer-Aitoff.
WRITE (*, 30) 'Hammer-Aitoff'
CALL PRJPLT ('AIT', 90, -90, PV)
* COP: conic perspective.
PV(1) = 60D0
PV(2) = 15D0
WRITE (*, 40) 'Conic perspective', (PV(J), J=1,2)
CALL PRJPLT ('COP', 90, -25, PV)
* COE: conic equal area.
PV(1) = 60D0
PV(2) = -15D0
WRITE (*, 40) 'Conic equal area', (PV(J), J=1,2)
CALL PRJPLT ('COE', 90, -90, PV)
* COD: conic equidistant.
PV(1) = -60D0
PV(2) = 15D0
WRITE (*, 40) 'Conic equidistant', (PV(J), J=1,2)
CALL PRJPLT ('COD', 90, -90, PV)
* COO: conic orthomorphic.
PV(1) = -60D0
PV(2) = -15D0
WRITE (*, 40) 'Conic orthomorphic', (PV(J), J=1,2)
CALL PRJPLT ('COO', 85, -90, PV)
* BON: Bonne's projection.
PV(1) = 30D0
WRITE (*, 40) 'Bonne''s', PV(1)
CALL PRJPLT ('BON', 90, -90, PV)
* PCO: polyconic.
WRITE (*, 30) 'Polyconic'
CALL PRJPLT ('PCO', 90, -90, PV)
* TSC: tangential spherical cube.
WRITE (*, 30) 'Tangential spherical cube'
CALL PRJPLT ('TSC', 90, -90, PV)
* CSC: COBE quadrilateralized spherical cube.
WRITE (*, 30) 'COBE quadrilateralized spherical cube'
CALL PRJPLT ('CSC', 90, -90, PV)
* QSC: quadrilateralized spherical cube.
WRITE (*, 30) 'Quadrilateralized spherical cube'
CALL PRJPLT ('QSC', 90, -90, PV)
* HPX: HEALPix projection.
PV(1) = 4D0
PV(2) = 3D0
WRITE (*, 40) 'HEALPix', (PV(J), J=1,2)
CALL PRJPLT ('HPX', 90, -90, PV)
* XPH: HEALPix polar, aka "butterfly" projection.
WRITE (*, 40) 'Butterfly', (PV(J), J=1,2)
CALL PRJPLT ('XPH', 90, -90, PV)
CALL PGASK (0)
CALL PGEND
END
SUBROUTINE PRJPLT (PCODE, NORTH, SOUTH, PV)
*-----------------------------------------------------------------------
* PRJPLT draws a 15 degree coordinate graticule.
*
* Given:
* PCODE C*3 Projection code.
* NORTH I Northern cutoff latitude, degrees.
* SOUTH I Southern cutoff latitude, degrees.
* PV D(0:29) Projection parameters.
*-----------------------------------------------------------------------
LOGICAL CUBIC, HEALPX, INTRRP
INTEGER CI, H, ILAT, ILNG, J, K, LEN, NORTH, SOUTH, STAT(361),
: STATUS
REAL HX, HY, SX, SY, XR(512), XR0, YR(512), YR0
DOUBLE PRECISION LAT(361), LNG(361), PV(0:29), X(361), X0, Y(361),
: Y0
CHARACTER PCODE*3
* On some systems, such as Sun Sparc, the struct MUST be aligned
* on a double precision boundary, done here using an equivalence.
* Failure to do this may result in mysterious "bus errors".
INCLUDE 'prj.inc'
INTEGER PRJ(PRJLEN)
DOUBLE PRECISION DUMMY
EQUIVALENCE (PRJ,DUMMY)
*-----------------------------------------------------------------------
STATUS = PRJINI(PRJ)
DO 10 J = 0, 29
STATUS = PRJPTD (PRJ, PRJ_PV, PV(J), J)
10 CONTINUE
STATUS = PRJPTC (PRJ, PRJ_CODE, PCODE, 0)
WRITE (*, 20) PCODE, NORTH, SOUTH
20 FORMAT ('Plotting ',A3,'; latitudes',I3,' to',I4,'.')
CALL PGASK (0)
STATUS = PRJSET(PRJ)
STATUS = PRJGTI (PRJ, PRJ_CATEGORY, J)
CUBIC = J.EQ.PRJ_QUADCUBE
HEALPX = J.EQ.PRJ_HEALPIX
IF (CUBIC) THEN
* Draw the perimeter of the quadcube projection.
CALL PGENV (-335.0, 65.0, -200.0, 200.0, 1, -2)
CALL PGSCI (2)
CALL PGTEXT (-340.0, -220.0, PCODE // ' - 15 degree graticule')
CALL PGSCI (8)
STATUS = PRJGTD (PRJ, PRJ_X0, X0)
STATUS = PRJGTD (PRJ, PRJ_Y0, Y0)
XR0 = REAL(X0)
YR0 = REAL(Y0)
XR(1) = 45.0 + XR0
YR(1) = 45.0 - YR0
XR(2) = 45.0 + XR0
YR(2) = 3.0*45.0 - YR0
XR(3) = -45.0 + XR0
YR(3) = 3.0*45.0 - YR0
XR(4) = -45.0 + XR0
YR(4) = -3.0*45.0 - YR0
XR(5) = 45.0 + XR0
YR(5) = -3.0*45.0 - YR0
XR(6) = 45.0 + XR0
YR(6) = 45.0 - YR0
XR(7) = -7.0*45.0 + XR0
YR(7) = 45.0 - YR0
XR(8) = -7.0*45.0 + XR0
YR(8) = -45.0 - YR0
XR(9) = 45.0 + XR0
YR(9) = -45.0 - YR0
CALL PGLINE (9, XR, YR)
ELSE
CALL PGENV (-200.0, 200.0, -200.0, 200.0, 1, -2)
CALL PGSCI (2)
CALL PGTEXT (-240.0, -220.0, PCODE//' - 15 degree graticule')
IF (HEALPX) THEN
IF (PCODE.EQ.'HPX') THEN
* Draw the perimeter of the HEALPix projection.
CALL PGSCI (8)
H = NINT(PV(1))
SX = 180.0 / H
SY = SX * NINT(PV(2) + 1D0) / 2.0
STATUS = PRJGTD (PRJ, PRJ_X0, X0)
STATUS = PRJGTD (PRJ, PRJ_Y0, Y0)
XR0 = REAL(X0)
YR0 = REAL(Y0)
HX = 180.0 + XR0
HY = SY - SX - YR0
CALL PGMOVE (HX, HY)
DO 30 J = 1, H
HX = HX - SX
HY = HY + SX
CALL PGDRAW (HX, HY)
HX = HX - SX
HY = HY - SX
CALL PGDRAW (HX, HY)
30 CONTINUE
HX = 180.0 + XR0
HY = -SY + SX - YR0
IF (MOD(INT(PV(2)),2).EQ.1) THEN
K = 1
ELSE
K = -1
HY = HY - SX
END IF
CALL PGMOVE (HX, HY)
DO 40 J = 1, H
HX = HX - SX
HY = HY - K*SX
CALL PGDRAW (HX, HY)
HX = HX - SX
HY = HY + K*SX
CALL PGDRAW (HX, HY)
40 CONTINUE
ELSE IF (PCODE.EQ.'XPH') THEN
DO 70 ILNG = -90, 180, 90
LNG(1) = DBLE(ILNG) - 0.0001
J = 1
DO 50 ILAT = 90, -90, -1
LAT(J) = DBLE(ILAT)
J = J + 1
50 CONTINUE
STATUS = PRJS2X(PRJ, 1, 181, 1, 1, LNG, LAT, X, Y, STAT)
DO 60 J = 1, 181
XR(J) = -REAL(X(J))
YR(J) = REAL(Y(J))
60 CONTINUE
CALL PGLINE(181, XR, YR)
70 CONTINUE
END IF
END IF
END IF
CI = 1
DO 100 ILNG = -180, 180, 15
CI = CI + 1
IF (CI.GT.7) CI = 2
LNG(1) = DBLE(ILNG)
IF (ILNG.EQ.0) THEN
CALL PGSCI (1)
ELSE
CALL PGSCI (CI)
END IF
J = 1
DO 80 ILAT = NORTH, SOUTH, -1
LAT(J) = DBLE(ILAT)
J = J + 1
80 CONTINUE
LEN = NORTH - SOUTH + 1
STATUS = PRJS2X (PRJ, 1, LEN, 1, 1, LNG, LAT, X, Y, STAT)
K = 0
DO 90 J = 1, LEN
IF (STAT(J).NE.0) THEN
IF (K.GT.1) CALL PGLINE (K, XR, YR)
K = 0
GO TO 90
END IF
IF (CUBIC .AND. J.GT.1) THEN
IF (ABS(X(J) - X(J-1)).GT.2D0 .OR.
: ABS(Y(J) - Y(J-1)).GT.5D0) THEN
IF (K.GT.1) CALL PGLINE (K, XR, YR)
K = 0
END IF
ELSE IF (HEALPX .AND. ILNG.EQ.180) THEN
IF (X(J).GT.180D0) GO TO 90
END IF
K = K + 1
XR(K) = -REAL(X(J))
YR(K) = REAL(Y(J))
90 CONTINUE
CALL PGLINE (K, XR, YR)
100 CONTINUE
CI = 1
INTRRP = CUBIC .OR. HEALPX
DO 130 ILAT = -90, 90, 15
CI = CI + 1
IF (CI.GT.7) CI = 2
IF (ILAT.GT.NORTH) GO TO 130
IF (ILAT.LT.SOUTH) GO TO 130
LAT(1) = DBLE(ILAT)
IF (ILAT.EQ.0) THEN
CALL PGSCI (1)
ELSE
CALL PGSCI (CI)
END IF
ILNG = -180
DO 110 J = 1, 361
LNG(J) = DBLE(ILNG)
ILNG = ILNG + 1
110 CONTINUE
STATUS = PRJS2X (PRJ, 361, 1, 1, 1, LNG, LAT, X, Y, STAT)
K = 0
DO 120 J = 1, 361
IF (STAT(J).NE.0) THEN
IF (K.GT.1) CALL PGLINE (K, XR, YR)
K = 0
GO TO 120
END IF
IF (INTRRP .AND. J.GT.1) THEN
IF (ABS(X(J) - X(J-1)).GT.2D0 .OR.
: ABS(Y(J) - Y(J-1)).GT.5D0) THEN
IF (K.GT.1) CALL PGLINE (K, XR, YR)
K = 0
END IF
END IF
K = K + 1
XR(K) = -REAL(X(J))
YR(K) = REAL(Y(J))
120 CONTINUE
CALL PGLINE (K, XR, YR)
130 CONTINUE
CALL PGSCI(1)
XR(1) = 0.0
YR(1) = 0.0
CALL PGPT (1, XR, YR, 21)
CALL PGASK (1)
CALL PGPAGE()
RETURN
END
|