1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
|
*=======================================================================
*
* WCSLIB 7.4 - an implementation of the FITS WCS standard.
* Copyright (C) 1995-2021, Mark Calabretta
*
* This file is part of WCSLIB.
*
* WCSLIB is free software: you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* WCSLIB is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
* License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with WCSLIB. If not, see http://www.gnu.org/licenses.
*
* Author: Mark Calabretta, Australia Telescope National Facility, CSIRO.
* http://www.atnf.csiro.au/people/Mark.Calabretta
* $Id: ttab3.f,v 7.4 2021/01/31 02:24:52 mcalabre Exp $
*=======================================================================
PROGRAM TTAB3
*-----------------------------------------------------------------------
*
* TTAB3 tests the -TAB routines using PGPLOT for graphical display. It
* constructs a table that approximates Bonne's projection and uses it to
* draw a graticule.
*
*-----------------------------------------------------------------------
* Set up the lookup table.
INTEGER K1, K2, M
PARAMETER (M = 2, K1 = 271, K2 = 235)
INTEGER K(M), MAP(M)
DOUBLE PRECISION CRVAL(M)
DATA K /K1, K2/
DATA MAP /0, 1/
DATA CRVAL /135D0, 95D0/
INTEGER CI, I, IK, ILAT, ILNG, IM, J, STAT(K1,K2), STATUS
REAL XR(361), YR(361)
DOUBLE PRECISION COORD(M,K1,K2), WORLD(M,361), X(K1), XY(M,361),
: Y(K2)
* On some systems, such as Sun Sparc, the structs MUST be aligned
* on a double precision boundary, done here using equivalences.
* Failure to do this may result in mysterious "bus errors".
INCLUDE 'prj.inc'
INCLUDE 'tab.inc'
INTEGER PRJ(PRJLEN), TAB(TABLEN)
DOUBLE PRECISION DUMMY1, DUMMY2
EQUIVALENCE (PRJ,DUMMY1), (TAB,DUMMY2)
*-----------------------------------------------------------------------
WRITE (*, 10)
10 FORMAT ('Testing WCSLIB inverse coordinate lookup table ',
: 'routines (ttab3.f)',/,
: '-----------------------------------------------',
: '------------------',/)
* PGPLOT initialization.
CALL PGBEG (0, '/null', 1, 1)
CALL PGVSTD ()
CALL PGSCH (0.7)
CALL PGWNAD (-135.0, 135.0, -95.0, 140.0)
CALL PGBOX ('BC', 0.0, 0, 'BC', 0.0, 0)
CALL PGSCR (0, 0.00, 0.00, 0.00)
CALL PGSCR (1, 1.00, 1.00, 0.00)
CALL PGSCR (2, 1.00, 1.00, 1.00)
CALL PGSCR (3, 0.50, 0.50, 0.80)
CALL PGSCR (4, 0.80, 0.50, 0.50)
CALL PGSCR (5, 0.80, 0.80, 0.80)
CALL PGSCR (6, 0.50, 0.50, 0.80)
CALL PGSCR (7, 0.80, 0.50, 0.50)
CALL PGSCR (8, 0.30, 0.50, 0.30)
* Set up the lookup table.
STATUS = TABPTI (TAB, TAB_FLAG, -1, 0, 0)
STATUS = TABINI(M, K, TAB)
IF (STATUS.NE.0) THEN
WRITE (*, 20) STATUS
20 FORMAT ('TABINI ERROR',I2,'.')
GO TO 999
END IF
STATUS = TABPTI (TAB, TAB_M, M, 0, 0)
DO 40 IM = 1, M
STATUS = TABPTI (TAB, TAB_K, K(IM), IM, 0)
STATUS = TABPTI (TAB, TAB_MAP, MAP(IM), IM, 0)
STATUS = TABPTD (TAB, TAB_CRVAL, CRVAL(IM), IM, 0)
DO 30 IK = 1, K(IM)
STATUS = TABPTD (TAB, TAB_INDEX, DBLE(IK-1), IM, IK)
30 CONTINUE
40 CONTINUE
* Set up the lookup table to approximate Bonne's projection.
DO 50 I = 1, K1
X(I) = 136 - I
50 CONTINUE
DO 60 J = 1, K2
Y(J) = J - 96
60 CONTINUE
STATUS = PRJINI (PRJ)
STATUS = PRJPTD (PRJ, PRJ_PV, 35D0, 1)
* Disable bounds checking (or alternatively, simply ignore
* out-of-bounds errors). This is necessary to provide continuity
* beyond the -180 and +180 meridians, noting that bonx2s() computes
* out-of-bounds values so as to provide continuity.
STATUS = PRJPTI (PRJ, PRJ_BOUNDS, 0, 0)
STATUS = BONX2S (PRJ, K1, K2, 1, 2, X, Y, COORD(1,1,1),
: COORD(2,1,1), STAT)
IK = 1
DO 80 J = 1, K2
DO 70 I = 1, K1
STATUS = TABPTD (TAB, TAB_COORD, COORD(1,I,J), IK, 0)
STATUS = TABPTD (TAB, TAB_COORD, COORD(2,I,J), IK+1, 0)
IK = IK + 2
70 CONTINUE
80 CONTINUE
* Draw meridians.
CI = 1
DO 110 ILNG = -180, 180, 15
CI = CI + 1
IF (CI.GT.7) CI = 2
IF (ILNG.NE.0) THEN
CALL PGSCI (CI)
ELSE
CALL PGSCI (1)
END IF
J = 0
DO 90 ILAT = -90, 90
J = J + 1
WORLD(1,J) = DBLE(ILNG)
WORLD(2,J) = DBLE(ILAT)
90 CONTINUE
* A fudge to account for the singularity at the poles.
WORLD(1,1) = 0D0
WORLD(1,181) = 0D0
STATUS = TABS2X (TAB, 181, 2, WORLD, XY, STAT)
IK = 0
DO 100 J = 1, 181
IF (STAT(J,1).NE.0) THEN
IF (IK.GT.1) CALL PGLINE (K, XR, YR)
IK = 0
GO TO 100
END IF
IK = IK + 1
XR(IK) = REAL(XY(1,J))
YR(IK) = REAL(XY(2,J))
100 CONTINUE
CALL PGLINE (IK, XR, YR)
110 CONTINUE
* Draw parallels.
CI = 1
DO 140 ILAT = -75, 75, 15
CI = CI + 1
IF (CI.GT.7) CI = 2
IF (ILAT.NE.0) THEN
CALL PGSCI (CI)
ELSE
CALL PGSCI (1)
END IF
J = 0
DO 120 ILNG = -180, 180
J = J + 1
WORLD(1,J) = DBLE(ILNG)
WORLD(2,J) = DBLE(ILAT)
120 CONTINUE
STATUS = TABS2X (TAB, 361, 2, WORLD, XY, STAT)
IK = 0
DO 130 J = 1, 361
IF (STAT(J,1).NE.0) THEN
IF (IK.GT.1) CALL PGLINE (IK, XR, YR)
IK = 0
GO TO 130
END IF
IK = IK + 1
XR(IK) = REAL(XY(1,J))
YR(IK) = REAL(XY(2,J))
130 CONTINUE
CALL PGLINE (IK, XR, YR)
140 CONTINUE
CALL PGEND ()
999 STATUS = TABFREE (TAB)
END
|