1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
|
/*============================================================================
WCSLIB 7.7 - an implementation of the FITS WCS standard.
Copyright (C) 1995-2021, Mark Calabretta
This file is part of WCSLIB.
WCSLIB is free software: you can redistribute it and/or modify it under the
terms of the GNU Lesser General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option)
any later version.
WCSLIB is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details.
You should have received a copy of the GNU Lesser General Public License
along with WCSLIB. If not, see http://www.gnu.org/licenses.
Author: Mark Calabretta, Australia Telescope National Facility, CSIRO.
http://www.atnf.csiro.au/people/Mark.Calabretta
$Id: tcel2.c,v 7.7 2021/07/12 06:36:49 mcalabre Exp $
*=============================================================================
*
* tcel2 thoroughly tests the WCSLIB celestial coordinate transformation
* routines, particularly celset(), by plotting oblique test grids for a wide
* variety of transformation parameters. A simple user interface provides
* limited control of the path taken through this parameter space.
*
*---------------------------------------------------------------------------*/
#include <cpgplot.h>
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <cel.h>
#define nint(x) ((int)(x + (((x) > 0.0) ? 0.5 : -0.5)))
int main()
{
char answer[16], ctrl, text[128];
int ci, crval1, crval1_j, crval2, crval2_i, first, ilat, ilng, iprj, j,
k, latpole, lonpole, lonpole_i, lonpole_j, phi_p, stat[361], status;
float xr[512], yr[512];
double alpha_p, lat[181], lng[361], phi[361], theta[361], x[361], y[361];
struct celprm native, celestial;
printf(
"Testing WCSLIB celestial coordinate transformation routines (tcel2.c)\n"
"---------------------------------------------------------------------\n");
// List status return messages.
printf("\nList of cel status return values:\n");
for (status = 1; status <= 6; status++) {
printf("%4d: %s.\n", status, cel_errmsg[status]);
}
printf("\n\nLegend (in the order drawn)\n---------------------------\n");
printf("Native graticule in dark green with the meridian containing the "
"celestial\n pole (LONPOLE) thicker and in green. Also tagged "
"beyond the perimeter.\n");
printf("Celestial graticule colour-coded, the direction of increasing "
"celestial\n longitude and latitude is white -> blue -> red, "
"with the equator and\n prime meridian in yellow.\n");
printf("Celestial meridian (CRVAL1) and parallel (CRVAL2) through the "
"reference point\n is thicker and dashed.\n");
printf("Reference point of the projection (phi0,theta0) is marked with "
"a green circle\n with red centre. It should coincide with the "
"dashed celestial meridian and\n parallel.\n");
printf("Celestial pole (LONPOLE,LATPOLE) marked with a green circle with "
"black centre.\n");
printf("Celestial prime meridian expected for \"change of origin\" case "
"marked with\n an open yellow circle (where applicable). Should "
"coincide with the prime\n meridian.\n");
printf("\n\n");
printf("Loop control; LONPOLE changes fastest, then CRVAL1, then CRVAL2\n"
"---------------------------------------------------------------\n"
" next: do next plot\n"
" skip: skip past invalid values of LONPOLE\n"
" break: break out of inner loop on LONPOLE\n"
" continue: cycle through inner loop on LONPOLE\n");
printf(" proj: skip to next projection\n"
" inc: LONPOLE++, preserving CRVAL1 & CRVAL2\n"
" jump: CRVAL2++, preserving CRVAL1 & LONPOLE\n"
" exit: terminate execution\n"
" quit: terminate execution\n"
"Capital letter kills query.\n");
printf("\n\n");
// PGPLOT initialization.
strcpy(text, "/null");
cpgbeg(0, text, 1, 1);
// Define pen colours.
cpgscr( 0, 0.0f, 0.0f, 0.0f); // Black
cpgscr( 1, 1.0f, 1.0f, 0.0f); // Yellow
cpgscr( 2, 1.0f, 1.0f, 1.0f); // White
cpgscr( 3, 0.5f, 0.5f, 0.8f); // Mauve
cpgscr( 4, 0.8f, 0.5f, 0.5f); // Pink
cpgscr( 5, 0.8f, 0.8f, 0.8f); // Grey
cpgscr( 6, 0.5f, 0.5f, 0.8f); // Mauve
cpgscr( 7, 0.8f, 0.5f, 0.5f); // Pink
cpgscr( 8, 0.3f, 0.5f, 0.3f); // Dark green
cpgscr( 9, 0.0f, 1.0f, 0.0f); // Green
cpgscr(10, 1.0f, 0.0f, 0.0f); // Red
// Define PGPLOT viewport.
cpgenv(-195.0f, 195.0f, -195.0f, 195.0f, 1, -2);
cpgsch(0.8f);
ctrl = 'n';
for (iprj = 0; iprj < 4; iprj++) {
// Initialize.
celini(&native);
celini(&celestial);
// Reference coordinates for the native graticule.
if (iprj == 0) {
// Set up a zenithal equidistant projection.
strcpy(native.prj.code, "ARC");
native.ref[0] = 0.0;
native.ref[1] = 90.0;
native.ref[2] = 180.0;
celestial.phi0 = 0.0;
celestial.theta0 = 90.0;
} else if (iprj == 1) {
// Set up a conic equidistant projection.
strcpy(native.prj.code, "COD");
native.prj.pv[1] = 45.0;
native.prj.pv[2] = 25.0;
native.ref[0] = 0.0;
native.ref[1] = 45.0;
native.ref[2] = 180.0;
celestial.phi0 = 60.0;
celestial.theta0 = 45.0;
} else if (iprj == 2) {
// Set up a Sanson-Flamsteed projection as Bonne's equatorial.
strcpy(native.prj.code, "BON");
native.prj.pv[1] = 0.0;
native.ref[0] = 0.0;
native.ref[1] = 0.0;
native.ref[2] = 0.0;
celestial.phi0 = -30.0;
celestial.theta0 = 0.0;
} else if (iprj == 3) {
// Set up a polyconic projection.
strcpy(native.prj.code, "PCO");
native.ref[0] = 0.0;
native.ref[1] = 0.0;
native.ref[2] = 0.0;
celestial.phi0 = -60.0;
celestial.theta0 = -90.0;
}
celestial.prj = native.prj;
// Loop over CRVAL2, CRVAL1 and LONPOLE.
crval1_j = -180;
crval2_i = 45;
lonpole_i = 15;
lonpole_j = -180;
for (crval2 = -90; crval2 <= 90; crval2 += crval2_i) {
for (crval1 = -180; crval1 <= 180; crval1 += 90) {
first = 1;
for (lonpole = -180; lonpole <= 180; lonpole += lonpole_i) {
// lonpole = 999;
latpole = 999;
// if (crval2 < 0) latpole = -999;
// if (crval2 > 0) latpole = 999;
if (ctrl == 'j' || ctrl == 'J') {
// Restore CRVAL1 and LONPOLE from last time.
crval1 = crval1_j;
lonpole = lonpole_j;
}
celestial.ref[0] = (double)crval1;
celestial.ref[1] = (double)crval2;
celestial.ref[2] = (double)lonpole;
celestial.ref[3] = (double)latpole;
// Buffer PGPLOT output.
cpgbbuf();
cpgeras();
cpgsci(2);
// Write parameter summary.
sprintf(text, "(CRVAL1, CRVAL2, LONPOLE): (%+3.3d, %+2.2d, %+3.3d)",
crval1, crval2, lonpole);
cpgtext(-180.0f, 200.0f, text);
// Skip invalid values of LONPOLE.
if (celset(&celestial)) {
sprintf(text, "INVALID VALUE OF LONPOLE (= %+3.3d)", lonpole);
cpgtext(-90.0f, 0.0f, text);
sprintf(text, "%s projection, (\\gf\\d0\\u,\\gh\\d0\\u) = "
"(%+3.3d, %+2.2d)", native.prj.code, nint(celestial.phi0),
nint(celestial.theta0));
cpgtext(-180.0f, -200.0f, text);
if (ctrl == 's' || ctrl == 'S') {
cpgebuf();
continue;
}
goto skip;
}
// Write parameters.
sprintf(text, "%s projection, (\\gf\\d0\\u,\\gh\\d0\\u) = "
"(%+3.3d, %+2.2d) - green circle with red centre",
native.prj.code, nint(celestial.phi0),
nint(celestial.theta0));
cpgtext(-180.0f, -200.0f, text);
sprintf(text, "(CRVAL1, CRVAL2): (%+3.3d, %+2.2d) - dashed grid"
" lines", nint(celestial.ref[0]), nint(celestial.ref[1]));
cpgtext(-180.0f, -213.0f, text);
sprintf(text, "(LONPOLE, LATPOLE): (%+3.3d, %+3.3d) -> "
"(%+3.3d, %+2.2d) - open green circle", lonpole, latpole,
nint(celestial.ref[2]), nint(celestial.ref[3]));
cpgtext(-180.0f, -226.0f, text);
sprintf(text, "(\\ga\\dp\\u, \\gd\\dp\\u): (%+3.3d, %+2.2d)",
nint(celestial.euler[0]), nint(90.0-celestial.euler[1]));
cpgtext(-180.0f, -239.0f, text);
if (celestial.latpreq == 0) {
sprintf(text, "(LATPOLE not required.)");
} else if (celestial.latpreq == 1) {
sprintf(text, "(LATPOLE disambiguates.)");
} else if (celestial.latpreq == 2) {
sprintf(text, "(LATPOLE IS DEFINITIVE.)");
}
cpgtext(-40.0f, -239.0f, text);
// Draw the native graticule in the background (dark green).
cpgsci(8);
// Draw native meridians of longitude.
for (j = 0, ilat = -90; ilat <= 90; ilat++, j++) {
lat[j] = (double)ilat;
}
phi_p = nint(celestial.ref[2]);
for (ilng = -180; ilng <= 180; ilng += 15) {
lng[0] = (double)ilng;
if (ilng == -180) lng[0] = -179.99;
if (ilng == 180) lng[0] = 179.99;
// Meridian containing the celestial pole (thick green).
if (ilng == phi_p) {
cpgslw(5);
cpgsci(9);
}
cels2x(&native, 1, 181, 1, 1, lng, lat, phi, theta, x, y, stat);
k = 0;
for (j = 0; j < 181; j++) {
if (stat[j]) {
if (k > 1) cpgline(k, xr, yr);
k = 0;
continue;
}
xr[k] = -x[j];
yr[k] = y[j];
k++;
}
cpgline(k, xr, yr);
cpgslw(1);
cpgsci(8);
}
// Draw native parallels of latitude.
lng[0] = -179.99;
lng[360] = 179.99;
for (j = 1, ilng = -179; ilng < 180; ilng++, j++) {
lng[j] = (double)ilng;
}
for (ilat = -90; ilat <= 90; ilat += 15) {
lat[0] = (double)ilat;
cels2x(&native, 361, 1, 1, 1, lng, lat, phi, theta, x, y, stat);
k = 0;
for (j = 0; j < 361; j++) {
if (stat[j]) {
if (k > 1) cpgline(k, xr, yr);
k = 0;
continue;
}
xr[k] = -x[j];
yr[k] = y[j];
k++;
}
cpgline(k, xr, yr);
}
// Tag the longitude of the celestial pole.
cpgslw(5);
cpgsci(9);
phi[0] = celestial.ref[2];
theta[0] = -90.0;
theta[1] = -80.0;
prjs2x(&(native.prj), 1, 2, 1, 1, phi, theta, x, y, stat);
xr[0] = -x[0];
yr[0] = y[0];
xr[1] = -x[0] + (x[1] - x[0]);
yr[1] = y[0] - (y[1] - y[0]);
cpgline(2, xr, yr);
// Draw a colour-coded celestial coordinate graticule.
ci = 1;
// Draw celestial meridians of longitude.
for (j = 0, ilat = -90; ilat <= 90; ilat++, j++) {
lat[j] = (double)ilat;
}
for (ilng = -180; ilng <= 180; ilng += 15) {
lng[0] = (double)ilng;
// Cycle through colours with the prime meridian in yellow.
if (++ci > 7) ci = 2;
cpgsci(ilng?ci:1);
// Dash the reference longitude and make it thicker.
if ((ilng-crval1)%360 == 0) {
cpgsls(2);
cpgslw(5);
}
cels2x(&celestial, 1, 181, 1, 1, lng, lat, phi, theta, x, y,
stat);
k = 0;
for (j = 0; j < 181; j++) {
if (stat[j]) {
if (k > 1) cpgline(k, xr, yr);
k = 0;
continue;
}
// Test for discontinuities.
if (j > 0) {
if (fabs(phi[j]-phi[j-1]) > 15.0) {
if (k > 1) cpgline(k, xr, yr);
k = 0;
}
}
xr[k] = -x[j];
yr[k] = y[j];
k++;
}
cpgline(k, xr, yr);
cpgsls(1);
cpgslw(1);
}
// Draw celestial parallels of latitude.
for (j = 0, ilng = -180; ilng <= 180; ilng++, j++) {
lng[j] = (double)ilng;
}
ci = 1;
for (ilat = -90; ilat <= 90; ilat += 15) {
lat[0] = (double)ilat;
// Cycle through colours with the prime meridian in yellow.
if (++ci > 7) ci = 2;
cpgsci(ilat?ci:1);
// Dash the reference latitude and make it thicker.
if (ilat == crval2) {
cpgsls(2);
cpgslw(5);
}
cels2x(&celestial, 361, 1, 1, 1, lng, lat, phi, theta, x, y,
stat);
k = 0;
for (j = 0; j < 361; j++) {
if (stat[j]) {
if (k > 1) cpgline(k, xr, yr);
k = 0;
continue;
}
// Test for discontinuities.
if (j > 0) {
if (fabs(phi[j]-phi[j-1]) > 15.0) {
if (k > 1) cpgline(k, xr, yr);
k = 0;
}
}
xr[k] = -x[j];
yr[k] = y[j];
k++;
}
cpgline(k, xr, yr);
cpgsls(1);
cpgslw(1);
}
// Mark the fiducial point (green with red centre).
phi[0] = celestial.phi0;
theta[0] = celestial.theta0;
prjs2x(&(native.prj), 1, 1, 1, 1, phi, theta, x, y, stat);
xr[0] = -x[0];
yr[0] = y[0];
cpgslw(5);
cpgsci(9);
cpgpt1(xr[0], yr[0], 24);
cpgpt1(xr[0], yr[0], 23);
cpgsci(10);
cpgpt1(xr[0], yr[0], 17);
// Mark the celestial pole.
phi[0] = celestial.ref[2];
theta[0] = celestial.ref[3];
prjs2x(&(native.prj), 1, 1, 1, 1, phi, theta, x, y, stat);
xr[0] = -x[0];
yr[0] = y[0];
cpgslw(5);
cpgsci(9);
cpgpt1(xr[0], yr[0], 24);
cpgpt1(xr[0], yr[0], 23);
cpgsci(0);
cpgpt1(xr[0], yr[0], 17);
// Mark zero celestial longitude expected for "change of origin"
// case with a thick yellow circle.
if (celestial.euler[1] == 0.0 || celestial.euler[1] == 180.0) {
if (celestial.theta0 == 90.0) {
alpha_p = celestial.ref[0];
} else if (fabs(celestial.ref[1]) == 90.0) {
alpha_p = celestial.ref[0];
} else if (celestial.euler[1] == 0.0) {
alpha_p = celestial.ref[0] + celestial.ref[2] -
celestial.phi0 - 180.0;
} else {
alpha_p = celestial.ref[0] - celestial.ref[2] +
celestial.phi0;
}
if (celestial.euler[1] == 0.0) {
phi[0] = celestial.euler[2] - alpha_p + 180.0;
} else {
phi[0] = celestial.euler[2] + alpha_p;
}
phi[0] = fmod(phi[0], 360.0);
if (phi[0] < -180.0) {
phi[0] += 360.0;
} else if (phi[0] > 180.0) {
phi[0] -= 360.0;
}
theta[0] = -45.0;
prjs2x(&(native.prj), 1, 1, 1, 1, phi, theta, x, y, stat);
xr[0] = -x[0];
yr[0] = y[0];
cpgslw(5);
cpgsci(1);
cpgpt1(xr[0], yr[0], 24);
}
cpgslw(1);
// Flush PGPLOT buffer.
skip:
cpgebuf();
if ((ctrl >= 'A' && ctrl <= 'Z') ||
((ctrl == 'c' || ctrl == 'b' || ctrl == 'j') && !first)) {
// Keep going.
} else {
printf("Next, skip, break, continue, exit [%c]: ", ctrl);
if (fgets(answer, 16, stdin) == 0) answer[0] = 0;
if (strchr("bBcCeEiIjJnNpPqQsS", (int)answer[0]) != 0) {
ctrl = answer[0];
}
}
if (ctrl == 'i' || ctrl == 'I') {
lonpole_i = 1;
} else {
lonpole_i = 15;
}
if (ctrl == 'P') {
// There's no point in skipping all projections.
ctrl = 'p';
break;
}
if (ctrl == 'p') break;
if (ctrl == 'b' || ctrl == 'B') break;
if (ctrl == 'j' || ctrl == 'J') break;
if (ctrl == 'e' || ctrl == 'E') goto end;
if (ctrl == 'q' || ctrl == 'Q') goto end;
first = 0;
}
if (ctrl == 'p') break;
if (ctrl == 'j' || ctrl == 'J') break;
}
if (ctrl == 'p') break;
if (ctrl == 'j' || ctrl == 'J') {
// Save CRVAL1 and LONPOLE for next time.
crval1_j = crval1;
lonpole_j = lonpole;
// Slow down CRVAL2.
crval2_i = 1;
} else {
crval2_i = 45;
}
}
}
end:
cpgask(0);
cpgend();
return 0;
}
|