File: tspc.c

package info (click to toggle)
wcslib 7.7%2Bds-1~bpo11%2B1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye-backports
  • size: 9,956 kB
  • sloc: ansic: 34,389; lex: 9,328; fortran: 6,731; sh: 3,367; sed: 497; pascal: 190; makefile: 15
file content (358 lines) | stat: -rw-r--r-- 12,496 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
/*============================================================================
  WCSLIB 7.7 - an implementation of the FITS WCS standard.
  Copyright (C) 1995-2021, Mark Calabretta

  This file is part of WCSLIB.

  WCSLIB is free software: you can redistribute it and/or modify it under the
  terms of the GNU Lesser General Public License as published by the Free
  Software Foundation, either version 3 of the License, or (at your option)
  any later version.

  WCSLIB is distributed in the hope that it will be useful, but WITHOUT ANY
  WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
  FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public License for
  more details.

  You should have received a copy of the GNU Lesser General Public License
  along with WCSLIB.  If not, see http://www.gnu.org/licenses.

  Author: Mark Calabretta, Australia Telescope National Facility, CSIRO.
  http://www.atnf.csiro.au/people/Mark.Calabretta
  $Id: tspc.c,v 7.7 2021/07/12 06:36:49 mcalabre Exp $
*=============================================================================
*
* tspc tests the spectral transformation driver routines for closure.
*
*---------------------------------------------------------------------------*/

// Needed to get nanosleep() from time.h.
#define _POSIX_C_SOURCE 199309L

#include <math.h>
#include <stdio.h>
#include <string.h>
#include <time.h>

#include <cpgplot.h>

#include <wcstrig.h>
#include <spc.h>


#define NSPEC 10001

const double tol = 1.0e-11;
const double C = 2.99792458e8;

int closure(const char[9], double, double, int, double, double, double);

// KPNO MARS spectrograph grism parameters.
double mars[7] = {4.5e5, 1.0, 27.0, 1.765, -1.077e6, 3.0, 5.0};


int main()

{
  printf(
    "Testing closure of WCSLIB spectral transformation routines (tspc.c)\n"
    "-------------------------------------------------------------------\n");

  // List status return messages.
  printf("\nList of spc status return values:\n");
  for (int status = 1; status <= 4; status++) {
    printf("%4d: %s.\n", status, spc_errmsg[status]);
  }


  // PGPLOT initialization.
  char text[80];
  strcpy(text, "/null");
  cpgbeg(0, text, 1, 1);

  int    naxisj = NSPEC;
  double crpixj = naxisj/2 + 1;

  double restfrq = 1420.40595e6;
  double restwav = C/restfrq;
  double x1 = 1.0e9;
  double x2 = 2.0e9;
  double cdeltX = (x2 - x1)/(naxisj - 1);
  double crvalX = x1 + (crpixj - 1.0)*cdeltX;
  printf("\nLinear frequency axis, span: %.1f to %.1f (GHz), step: %.3f "
         "(kHz)\n---------------------------------------------------------"
         "-----------------\n", x1*1e-9, x2*1e-9, cdeltX*1e-3);

  int nFail = 0;
  nFail += closure("WAVE-F2W",     0.0,     0.0, naxisj, crpixj, cdeltX, crvalX);
  nFail += closure("VOPT-F2W",     0.0, restwav, naxisj, crpixj, cdeltX, crvalX);
  nFail += closure("ZOPT-F2W",     0.0, restwav, naxisj, crpixj, cdeltX, crvalX);
  nFail += closure("AWAV-F2A",     0.0,     0.0, naxisj, crpixj, cdeltX, crvalX);
  nFail += closure("VELO-F2V", restfrq,     0.0, naxisj, crpixj, cdeltX, crvalX);
  nFail += closure("BETA-F2V", restfrq,     0.0, naxisj, crpixj, cdeltX, crvalX);

  restwav = 700.0e-9;
  restfrq = C/restwav;
  x1 = 300.0e-9;
  x2 = 900.0e-9;
  cdeltX = (x2 - x1)/(naxisj - 1);
  crvalX = x1 + (crpixj - 1.0)*cdeltX;
  printf("\nLinear vacuum wavelength axis, span: %.0f to %.0f (nm), "
         "step: %f (nm)\n---------------------------------------------"
         "-----------------------------\n", x1*1e9, x2*1e9, cdeltX*1e9);
  nFail += closure("FREQ-W2F",     0.0,     0.0, naxisj, crpixj, cdeltX, crvalX);
  nFail += closure("AFRQ-W2F",     0.0,     0.0, naxisj, crpixj, cdeltX, crvalX);
  nFail += closure("ENER-W2F",     0.0,     0.0, naxisj, crpixj, cdeltX, crvalX);
  nFail += closure("WAVN-W2F",     0.0,     0.0, naxisj, crpixj, cdeltX, crvalX);
  nFail += closure("VRAD-W2F", restfrq,     0.0, naxisj, crpixj, cdeltX, crvalX);
  nFail += closure("AWAV-W2A",     0.0,     0.0, naxisj, crpixj, cdeltX, crvalX);
  nFail += closure("VELO-W2V",     0.0, restwav, naxisj, crpixj, cdeltX, crvalX);
  nFail += closure("BETA-W2V",     0.0, restwav, naxisj, crpixj, cdeltX, crvalX);


  printf("\nLinear air wavelength axis, span: %.0f to %.0f (nm), "
         "step: %f (nm)\n------------------------------------------"
         "--------------------------------\n", x1*1e9, x2*1e9, cdeltX*1e9);
  nFail += closure("FREQ-A2F", 0.0,     0.0, naxisj, crpixj, cdeltX, crvalX);
  nFail += closure("AFRQ-A2F", 0.0,     0.0, naxisj, crpixj, cdeltX, crvalX);
  nFail += closure("ENER-A2F", 0.0,     0.0, naxisj, crpixj, cdeltX, crvalX);
  nFail += closure("WAVN-A2F", 0.0,     0.0, naxisj, crpixj, cdeltX, crvalX);
  nFail += closure("VRAD-A2F", restfrq, 0.0, naxisj, crpixj, cdeltX, crvalX);
  nFail += closure("WAVE-A2W", 0.0,     0.0, naxisj, crpixj, cdeltX, crvalX);
  nFail += closure("VOPT-A2W", 0.0, restwav, naxisj, crpixj, cdeltX, crvalX);
  nFail += closure("ZOPT-A2W", 0.0, restwav, naxisj, crpixj, cdeltX, crvalX);
  nFail += closure("VELO-A2V", 0.0, restwav, naxisj, crpixj, cdeltX, crvalX);
  nFail += closure("BETA-A2V", 0.0, restwav, naxisj, crpixj, cdeltX, crvalX);


  restfrq = 1420.40595e6;
  restwav = C/restfrq;
  x1 = -0.96*C;
  x2 =  0.96*C;
  cdeltX = (x2 - x1)/(naxisj - 1);
  crvalX = x1 + (crpixj - 1.0)*cdeltX;
  printf("\nLinear velocity axis, span: %.0f to %.0f m/s, step: %.0f "
         "(m/s)\n------------------------------------------------------"
         "--------------------\n", x1, x2, cdeltX);
  nFail += closure("FREQ-V2F", restfrq, 0.0, naxisj, crpixj, cdeltX, crvalX);
  nFail += closure("AFRQ-V2F", restfrq, 0.0, naxisj, crpixj, cdeltX, crvalX);
  nFail += closure("ENER-V2F", restfrq, 0.0, naxisj, crpixj, cdeltX, crvalX);
  nFail += closure("WAVN-V2F", restfrq, 0.0, naxisj, crpixj, cdeltX, crvalX);
  nFail += closure("VRAD-V2F", restfrq, 0.0, naxisj, crpixj, cdeltX, crvalX);
  nFail += closure("WAVE-V2W", 0.0, restwav, naxisj, crpixj, cdeltX, crvalX);
  nFail += closure("VOPT-V2W", 0.0, restwav, naxisj, crpixj, cdeltX, crvalX);
  nFail += closure("ZOPT-V2W", 0.0, restwav, naxisj, crpixj, cdeltX, crvalX);
  nFail += closure("AWAV-V2A", 0.0, restwav, naxisj, crpixj, cdeltX, crvalX);


  restwav = 650.0e-9;
  restfrq = C/restwav;
  x1 =  300e-9;
  x2 = 1000e-9;
  cdeltX = (x2 - x1)/(naxisj - 1);
  crvalX = x1 + (crpixj - 1.0)*cdeltX;
  printf("\nVacuum wavelength grism axis, span: %.0f to %.0f (nm), "
         "step: %f (nm)\n--------------------------------------------"
         "------------------------------\n", x1*1e9, x2*1e9, cdeltX*1e9);
  nFail += closure("FREQ-GRI", 0.0,     0.0, naxisj, crpixj, cdeltX, crvalX);
  nFail += closure("AFRQ-GRI", 0.0,     0.0, naxisj, crpixj, cdeltX, crvalX);
  nFail += closure("ENER-GRI", 0.0,     0.0, naxisj, crpixj, cdeltX, crvalX);
  nFail += closure("WAVN-GRI", 0.0,     0.0, naxisj, crpixj, cdeltX, crvalX);
  nFail += closure("VRAD-GRI", restfrq, 0.0, naxisj, crpixj, cdeltX, crvalX);
  nFail += closure("WAVE-GRI", 0.0,     0.0, naxisj, crpixj, cdeltX, crvalX);
  nFail += closure("VOPT-GRI", 0.0, restwav, naxisj, crpixj, cdeltX, crvalX);
  nFail += closure("ZOPT-GRI", 0.0, restwav, naxisj, crpixj, cdeltX, crvalX);
  nFail += closure("AWAV-GRI", 0.0,     0.0, naxisj, crpixj, cdeltX, crvalX);
  nFail += closure("VELO-GRI", 0.0, restwav, naxisj, crpixj, cdeltX, crvalX);
  nFail += closure("BETA-GRI", 0.0, restwav, naxisj, crpixj, cdeltX, crvalX);


  // Reproduce Fig. 5 of Paper III.
  naxisj = 1700;
  crpixj = 719.8;
  crvalX = 7245.2e-10;
  cdeltX = 2.956e-10;
  restwav = 8500.0e-10;
  restfrq = C/restwav;
  x1 = crvalX + (1 - crpixj)*cdeltX;
  x2 = crvalX + (naxisj - crpixj)*cdeltX;
  mars[5] = 0.0;
  mars[6] = 0.0;
  printf("\nAir wavelength grism axis, span: %.0f to %.0f (nm), "
         "step: %f (nm)\n--------------------------------------------"
         "------------------------------\n", x1*1e9, x2*1e9, cdeltX*1e9);
  nFail += closure("AWAV-GRA", 0.0,     0.0, naxisj, crpixj, cdeltX, crvalX);
  nFail += closure("VELO-GRA", 0.0, restwav, naxisj, crpixj, cdeltX, crvalX);

  cpgask(0);
  cpgend();

  if (nFail) {
    printf("\nFAIL: %d closure residuals exceed reporting tolerance.\n",
      nFail);
  } else {
    printf("\nPASS: All closure residuals are within reporting tolerance.\n");
  }

  return nFail;
}

//----------------------------------------------------------------------------

int closure (
  const char ctypeS[9],
  double restfrq,
  double restwav,
  int    naxisj,
  double crpixj,
  double cdeltX,
  double crvalX)

{
  int status;

  // Get keyvalues for the required spectral axis type.
  char   ptype, xtype;
  int    restreq;
  double crvalS, dSdX;
  if ((status = spcxps(ctypeS, crvalX, restfrq, restwav, &ptype, &xtype,
                       &restreq, &crvalS, &dSdX))) {
    printf("ERROR %d from spcxps() for %s.\n", status, ctypeS);
    return 1;
  }
  double cdeltS = cdeltX * dSdX;

  struct spcprm spc;
  spcini(&spc);

  if (ctypeS[5] == 'G') {
    // KPNO MARS spectrograph grism parameters.
    spc.pv[0] = mars[0];
    spc.pv[1] = mars[1];
    spc.pv[2] = mars[2];
    spc.pv[3] = mars[3];
    spc.pv[4] = mars[4];
    spc.pv[5] = mars[5];
    spc.pv[6] = mars[6];
  }

  // Construct the axis.
  double spec1[NSPEC];
  for (int j = 0; j < naxisj; j++) {
    spec1[j] = (j+1 - crpixj)*cdeltS;
  }

  printf("%4s (CRVALk+w) range: %13.6e to %13.6e, step: %13.6e\n", ctypeS,
    crvalS+spec1[0], crvalS+spec1[naxisj-1], cdeltS);


  // Initialize.
  spc.flag = 0;
  spc.crval = crvalS;
  spc.restfrq = restfrq;
  spc.restwav = restwav;
  strncpy(spc.type, ctypeS, 4);
  spc.type[4] = '\0';
  strcpy(spc.code, ctypeS+5);

  // Convert the first to the second.
  int    stat1[NSPEC], stat2[NSPEC];
  double spec2[NSPEC];
  if ((status = spcx2s(&spc, naxisj, 1, 1, spec1, spec2, stat1))) {
    printf("spcx2s ERROR %d: %s.\n", status, spc_errmsg[status]);
  }

  // Convert the second back to the first.
  double clos[NSPEC];
  if ((status = spcs2x(&spc, naxisj, 1, 1, spec2, clos, stat2))) {
    printf("spcs2x ERROR %d: %s.\n", status, spc_errmsg[status]);
  }

  double residmax = 0.0;

  // Test closure.
  int nFail = 0;
  for (int j = 0; j < naxisj; j++) {
    if (stat1[j]) {
      printf("%s: w =%20.12e -> %s = ???, stat = %d\n", ctypeS, spec1[j],
             spc.type, stat1[j]);
      continue;
    }

    if (stat2[j]) {
      printf("%s: w =%20.12e -> %s =%20.12e -> w = ???, stat = %d\n",
             ctypeS, spec1[j], spc.type, spec2[j], stat2[j]);
      continue;
    }

    double resid = fabs((clos[j] - spec1[j])/cdeltS);
    if (resid > residmax) residmax = resid;

    if (resid > tol) {
      nFail++;
      printf("%s: w =%20.12e -> %s =%20.12e ->\n          w =%20.12e,  "
             "resid =%20.12e\n", ctypeS, spec1[j], spc.type, spec2[j],
             clos[j], resid);
    }
  }

  printf("%s: Maximum closure residual = %.1e pixel.\n", ctypeS, residmax);


  // Draw graph.
  cpgbbuf();
  cpgeras();

  float x[NSPEC], y[NSPEC];
  float xmin = (float)(crvalS + spec1[0]);
  float xmax = (float)(crvalS + spec1[naxisj-1]);
  float ymin = (float)(spec2[0]) - xmin;
  float ymax = ymin;
  for (int j = 0; j < naxisj; j++) {
    x[j] = (float)(j+1);
    y[j] = (float)(spec2[j] - (crvalS + spec1[j]));
    if (y[j] > ymax) ymax = y[j];
    if (y[j] < ymin) ymin = y[j];
  }

  int j = (int)crpixj + 1;
  if (y[j] < 0.0) {
    float tmp  = ymin;
    ymin = ymax;
    ymax = tmp;
  }

  cpgask(0);
  cpgenv(1.0f, (float)naxisj, ymin, ymax, 0, -1);

  char sname[32], title[80], units[8], ylab[80];
  cpgsci(1);
  cpgbox("ABNTS", 0.0f, 0, "BNTS", 0.0f, 0);
  spctyp(ctypeS, 0x0, 0x0, sname, units, 0x0, 0x0, 0x0);
  sprintf(ylab, "%s - correction [%s]", sname, units);
  sprintf(title, "%s:  CRVALk + w [%s]", ctypeS, units);
  cpglab("Pixel coordinate", ylab, title);

  cpgaxis("N", 0.0f, ymax, (float)naxisj, ymax, xmin, xmax, 0.0f, 0, -0.5f,
    0.0f, 0.5f, -0.5f, 0.0f);

  cpgaxis("N", (float)naxisj, ymin, (float)naxisj, ymax, (float)(ymin/cdeltS),
    (float)(ymax/cdeltS), 0.0f, 0, 0.5f, 0.0f, 0.5f, 0.1f, 0.0f);
  cpgmtxt("R", 2.2f, 0.5f, 0.5f, "Pixel offset");

  cpgline(naxisj, x, y);
  cpgsci(7);
  cpgpt1((float)crpixj, 0.0f, 24);
  cpgebuf();

  // Allow 200ms to view the plot on fast machines.
  struct timespec nano = {(time_t)0, 200000000L};
  nanosleep(&nano, 0x0);

  printf("Type <RETURN> for next page: ");
  (void)getchar();

  printf("\n");

  return nFail;
}