1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
|
/*============================================================================
WCSLIB 7.7 - an implementation of the FITS WCS standard.
Copyright (C) 1995-2021, Mark Calabretta
This file is part of WCSLIB.
WCSLIB is free software: you can redistribute it and/or modify it under the
terms of the GNU Lesser General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option)
any later version.
WCSLIB is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details.
You should have received a copy of the GNU Lesser General Public License
along with WCSLIB. If not, see http://www.gnu.org/licenses.
Author: Mark Calabretta, Australia Telescope National Facility, CSIRO.
http://www.atnf.csiro.au/people/Mark.Calabretta
$Id: ttab2.c,v 7.7 2021/07/12 06:36:49 mcalabre Exp $
*=============================================================================
*
* ttab2 tests the -TAB routines using PGPLOT for graphical display. It
* demonstrates the nature of linear interpolation in 2 dimensions by
* contouring the interior of a single 2 x 2 interpolation element as the
* values in each corner change.
*
*---------------------------------------------------------------------------*/
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <cpgplot.h>
#include <tab.h>
#define K1 2
#define K2 2
// Number of subdivisions on each side of the interpolation element.
#define NP 128
int main()
{
// Set up a 2 x 2 lookup table.
const int M = 2;
const int K[] = {K1, K2};
const int map[] = {0, 1};
const double crval[] = {0.0, 0.0};
char text[80];
int i, j, k, l, l1, l2, l3, lstep, m, stat[NP*NP], status;
float array[NP][NP], clev[31], v0, v1, w;
const float scl = 2.0f/(NP-1);
float ltm[6];
double x[NP][NP][2], world[NP][NP][2];
struct tabprm tab;
printf("Testing WCSLIB coordinate lookup table routines (ttab2.c)\n"
"---------------------------------------------------------\n");
// List status return messages.
printf("\nList of tab status return values:\n");
for (status = 1; status <= 5; status++) {
printf("%4d: %s.\n", status, tab_errmsg[status]);
}
printf("\n");
// PGPLOT initialization.
strcpy(text, "/null");
cpgbeg(0, text, 1, 1);
cpgvstd();
cpgsch(0.7f);
// The viewport is slightly oversized.
cpgwnad(-0.65f, 1.65f, -0.65f, 1.65f);
for (l = 0; l <= 30; l++) {
clev[l] = 0.2f*(l-10);
}
ltm[0] = -scl*(1.0f + (NP-1)/4.0f);
ltm[1] = scl;
ltm[2] = 0.0f;
ltm[3] = -scl*(1.0f + (NP-1)/4.0f);
ltm[4] = 0.0f;
ltm[5] = scl;
// Set up the lookup table.
tab.flag = -1;
if ((status = tabini(1, M, K, &tab))) {
printf("tabini ERROR %d: %s.\n", status, tab_errmsg[status]);
return 1;
}
tab.M = M;
for (m = 0; m < tab.M; m++) {
tab.K[m] = K[m];
tab.map[m] = map[m];
tab.crval[m] = crval[m];
for (k = 0; k < tab.K[m]; k++) {
tab.index[m][k] = (double)k;
}
}
// Subdivide the interpolation element.
for (i = 0; i < NP; i++) {
for (j = 0; j < NP; j++) {
x[i][j][0] = j*(K1-1.0)*scl - 0.5 - crval[0];
x[i][j][1] = i*(K2-1.0)*scl - 0.5 - crval[1];
}
}
// The first coordinate element is static.
tab.coord[0] = 0.0;
tab.coord[2] = 0.0;
tab.coord[4] = 0.0;
tab.coord[6] = 0.0;
// (k1,k2) = (0,0).
tab.coord[1] = 0.0;
// The second coordinate element varies in three of the corners.
for (l3 = 0; l3 <= 100; l3 += 20) {
// (k1,k2) = (1,1).
tab.coord[7] = 0.01 * l3;
for (l2 = 0; l2 <= 100; l2 += 20) {
// (k1,k2) = (0,1).
tab.coord[5] = 0.01 * l2;
cpgpage();
for (l1 = 0; l1 <= 100; l1 += 2) {
// (k1,k2) = (1,0).
tab.coord[3] = 0.01 * l1;
// Compute coordinates within the interpolation element.
tab.flag = 0;
if ((status = tabx2s(&tab, NP*NP, 2, (double *)x, (double *)world,
stat))) {
printf("tabx2s ERROR %d: %s.\n", status, tab_errmsg[status]);
}
// Start a new plot.
cpgbbuf();
cpgeras();
cpgsci(1);
cpgslw(3);
cpgbox("BCNST", 0.0f, 0, "BCNSTV", 0.0f, 0);
cpgmtxt("T", 0.7f, 0.5f, 0.5f, "-TAB coordinates: "
"linear interpolation / extrapolation in 2-D");
// Draw the boundary of the interpolation element in red.
cpgsci(2);
cpgmove(-0.5f, 0.0f);
cpgdraw( 1.5f, 0.0f);
cpgmove( 1.0f, -0.5f);
cpgdraw( 1.0f, 1.5f);
cpgmove( 1.5f, 1.0f);
cpgdraw(-0.5f, 1.0f);
cpgmove( 0.0f, 1.5f);
cpgdraw( 0.0f, -0.5f);
// Label the value of the coordinate element in each corner.
sprintf(text, "%.1f", tab.coord[1]);
cpgtext(-0.09f, -0.05f, text);
sprintf(text, "%.2f", tab.coord[3]);
cpgtext( 1.02f, -0.05f, text);
sprintf(text, "%.1f", tab.coord[5]);
cpgtext(-0.13f, 1.02f, text);
sprintf(text, "%.1f", tab.coord[7]);
cpgtext( 1.02f, 1.02f, text);
cpgsci(1);
// Contour labelling: bottom.
v0 = world[0][0][1];
v1 = world[0][NP-1][1];
if (v0 != v1) {
lstep = (abs((int)((v1-v0)/0.2f)) < 10) ? 20 : 40;
for (l = -200; l <= 300; l += lstep) {
w = -0.5f + 2.0f * (l*0.01f - v0) / (v1 - v0);
if (w < -0.5 || w > 1.5) continue;
sprintf(text, "%4.1f", l*0.01f);
cpgptxt(w+0.04f, -0.56f, 0.0f, 1.0f, text);
}
}
// Contour labelling: left.
v0 = world[0][0][1];
v1 = world[NP-1][0][1];
if (v0 != v1) {
lstep = (abs((int)((v1-v0)/0.2f)) < 10) ? 20 : 40;
for (l = -200; l <= 300; l += lstep) {
w = -0.5f + 2.0f * (l*0.01f - v0) / (v1 - v0);
if (w < -0.5 || w > 1.5) continue;
sprintf(text, "%4.1f", l*0.01f);
cpgptxt(-0.52f, w-0.02f, 0.0f, 1.0f, text);
}
}
// Contour labelling: right.
v0 = world[0][NP-1][1];
v1 = world[NP-1][NP-1][1];
if (v0 != v1) {
lstep = (abs((int)((v1-v0)/0.2f)) < 10) ? 20 : 40;
for (l = -200; l <= 300; l += lstep) {
w = -0.5f + 2.0f * (l*0.01f - v0) / (v1 - v0);
if (w < -0.5 || w > 1.5) continue;
sprintf(text, "%.1f", l*0.01f);
cpgptxt(1.52f, w-0.02f, 0.0f, 0.0f, text);
}
}
// Contour labelling: top.
v0 = world[NP-1][0][1];
v1 = world[NP-1][NP-1][1];
if (v0 != v1) {
lstep = (abs((int)((v1-v0)/0.2f)) < 10) ? 20 : 40;
for (l = -200; l <= 300; l += lstep) {
w = -0.5f + 2.0f * (l*0.01f - v0) / (v1 - v0);
if (w < -0.5 || w > 1.5) continue;
sprintf(text, "%4.1f", l*0.01f);
cpgptxt(w+0.04f, 1.52f, 0.0f, 1.0f, text);
}
}
// Draw contours for the second coordinate element.
for (i = 0; i < NP; i++) {
for (j = 0; j < NP; j++) {
array[i][j] = world[i][j][1];
}
}
cpgsci(4);
cpgslw(2);
cpgcont(array[0], NP, NP, 1, NP, 1, NP, clev, 10, ltm);
cpgsci(7);
cpgcont(array[0], NP, NP, 1, NP, 1, NP, clev+10, 1, ltm);
cpgsci(5);
cpgcont(array[0], NP, NP, 1, NP, 1, NP, clev+11, 20, ltm);
cpgebuf();
}
}
}
cpgend();
tabfree(&tab);
return 0;
}
|