File: ttab3.c

package info (click to toggle)
wcslib 7.7%2Bds-1~bpo11%2B1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye-backports
  • size: 9,956 kB
  • sloc: ansic: 34,389; lex: 9,328; fortran: 6,731; sh: 3,367; sed: 497; pascal: 190; makefile: 15
file content (199 lines) | stat: -rw-r--r-- 4,994 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
/*============================================================================
  WCSLIB 7.7 - an implementation of the FITS WCS standard.
  Copyright (C) 1995-2021, Mark Calabretta

  This file is part of WCSLIB.

  WCSLIB is free software: you can redistribute it and/or modify it under the
  terms of the GNU Lesser General Public License as published by the Free
  Software Foundation, either version 3 of the License, or (at your option)
  any later version.

  WCSLIB is distributed in the hope that it will be useful, but WITHOUT ANY
  WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
  FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public License for
  more details.

  You should have received a copy of the GNU Lesser General Public License
  along with WCSLIB.  If not, see http://www.gnu.org/licenses.

  Author: Mark Calabretta, Australia Telescope National Facility, CSIRO.
  http://www.atnf.csiro.au/people/Mark.Calabretta
  $Id: ttab3.c,v 7.7 2021/07/12 06:36:49 mcalabre Exp $
*=============================================================================
*
* ttab3 tests the -TAB routines using PGPLOT for graphical display.  It
* constructs a table that approximates Bonne's projection and uses it to
* draw a graticule.
*
*---------------------------------------------------------------------------*/

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <cpgplot.h>

#include <prj.h>
#include <tab.h>

#define K1 271
#define K2 235

int main()

{
  // Set up the lookup table.
  const int M  = 2;
  const int K[] = {K1, K2};
  const int map[] = {0, 1};
  const double crval[] = {135.0, 95.0};

  char text[80];
  int ci, i, ilat, ilng, j, k, m, stat[K2*K1], status;
  float xr[361], yr[361];
  double world[361][2], x[K1], xy[361][2], y[K2];
  struct tabprm tab;
  struct prjprm prj;

  printf(
    "Testing WCSLIB inverse coordinate lookup table routines (ttab3.c)\n"
    "-----------------------------------------------------------------\n");

  // List status return messages.
  printf("\nList of tab status return values:\n");
  for (status = 1; status <= 5; status++) {
    printf("%4d: %s.\n", status, tab_errmsg[status]);
  }

  printf("\n");


  // PGPLOT initialization.
  strcpy(text, "/null");
  cpgbeg(0, text, 1, 1);
  cpgvstd();
  cpgsch(0.7f);
  cpgwnad(-135.0f, 135.0f, -95.0f, 140.0f);
  cpgbox("BC", 0.0f, 0, "BC", 0.0f, 0);

  cpgscr(0, 0.00f, 0.00f, 0.00f);
  cpgscr(1, 1.00f, 1.00f, 0.00f);
  cpgscr(2, 1.00f, 1.00f, 1.00f);
  cpgscr(3, 0.50f, 0.50f, 0.80f);
  cpgscr(4, 0.80f, 0.50f, 0.50f);
  cpgscr(5, 0.80f, 0.80f, 0.80f);
  cpgscr(6, 0.50f, 0.50f, 0.80f);
  cpgscr(7, 0.80f, 0.50f, 0.50f);
  cpgscr(8, 0.30f, 0.50f, 0.30f);


  // Set up the lookup table.
  tab.flag = -1;
  if ((status = tabini(1, M, K, &tab))) {
    printf("tabini ERROR %d: %s.\n", status, tab_errmsg[status]);
    return 1;
  }

  tab.M = M;
  for (m = 0; m < tab.M; m++) {
    tab.K[m] = K[m];
    tab.map[m] = map[m];
    tab.crval[m] = crval[m];

    for (k = 0; k < tab.K[m]; k++) {
      tab.index[m][k] = (double)k;
    }
  }

  // Set up the lookup table to approximate Bonne's projection.
  for (i = 0; i < K1; i++) {
    x[i] = 135 - i;
  }
  for (j = 0; j < K2; j++) {
    y[j] = j - 95;
  }

  prjini(&prj);
  prj.pv[1] = 35.0;

  // Disable bounds checking (or alternatively, simply ignore out-of-bounds
  // errors).  This is necessary to provide continuity beyond the -180 and
  // +180 meridians, noting that bonx2s() computes out-of-bounds values so
  // as to provide continuity.
  prj.bounds = 0;

  status = bonx2s(&prj, K1, K2, 1, 2, x, y, tab.coord, tab.coord+1, stat);


  // Draw meridians.
  ci = 1;
  for (ilng = -180; ilng <= 180; ilng += 15) {
    if (++ci > 7) ci = 2;
    cpgsci(ilng?ci:1);

    for (j = 0, ilat = -90; ilat <= 90; ilat++, j++) {
      world[j][0] = (double)ilng;
      world[j][1] = (double)ilat;
    }

    // A fudge to account for the singularity at the poles.
    world[0][0] = 0.0;
    world[180][0] = 0.0;

    status = tabs2x(&tab, 181, 2, world[0], xy[0], stat);

    k = 0;
    for (j = 0; j < 181; j++) {
      if (stat[j]) {
        if (k > 1) cpgline(k, xr, yr);
        k = 0;
        continue;
      }

      xr[k] = xy[j][0];
      yr[k] = xy[j][1];
      k++;
    }

    cpgline(k, xr, yr);
  }


  // Draw parallels.
  ci = 1;
  for (ilat = -75; ilat <= 75; ilat += 15) {
    if (++ci > 7) ci = 2;
    cpgsci(ilat?ci:1);

    for (j = 0, ilng = -180; ilng <= 180; ilng++, j++) {
      world[j][0] = (double)ilng;
      world[j][1] = (double)ilat;
    }

    status = tabs2x(&tab, 361, 2, world[0], xy[0], stat);

    k = 0;
    for (j = 0; j < 361; j++) {
      if (stat[j]) {
        if (k > 1) cpgline(k, xr, yr);
        k = 0;
        continue;
      }

      xr[k] = xy[j][0];
      yr[k] = xy[j][1];
      k++;
    }

    cpgline(k, xr, yr);
  }

  cpgend();

  // Defeat spurious reporting of memory leaks.
  tabfree(&tab);

  return 0;
}